code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def lowercase__( __UpperCamelCase: str ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
'''simple docstring''' from __future__ import annotations UpperCamelCase_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowercase__( __UpperCamelCase: list[list[int]] ,__UpperCamelCase: list[int] ,__UpperCamelCase: list[int] ,__UpperCamelCase: int ,__UpperCamelCase: list[list[int]] ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE : Tuple = init[0] SCREAMING_SNAKE_CASE : Optional[Any] = init[1] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE : int = [[f, g, x, y]] SCREAMING_SNAKE_CASE : List[str] = False # flag that is set when search is complete SCREAMING_SNAKE_CASE : Dict = False # flag set if we can't find expand while not found and not resign: if len(__UpperCamelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE : List[Any] = cell.pop() SCREAMING_SNAKE_CASE : List[str] = next_cell[2] SCREAMING_SNAKE_CASE : Dict = next_cell[3] SCREAMING_SNAKE_CASE : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE : Union[str, Any] = True else: for i in range(len(__UpperCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE : Tuple = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE : List[Any] = g + cost SCREAMING_SNAKE_CASE : Union[str, Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : str = goal[0] SCREAMING_SNAKE_CASE : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE : Union[str, Any] = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE : Optional[Any] = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE : Optional[Any] = xa SCREAMING_SNAKE_CASE : Dict = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE : int = [] for i in range(len(__UpperCamelCase ) ): path.append(invpath[len(__UpperCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase_ = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase_ = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase_ = 1 # the cost map which pushes the path closer to the goal UpperCamelCase_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase_ = 9_9 UpperCamelCase_ , UpperCamelCase_ = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
28
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
1
'''simple docstring''' from math import ceil def lowercase__( __UpperCamelCase: int = 10_01 ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE : str = 2 * i + 1 SCREAMING_SNAKE_CASE : Tuple = 2 * i SCREAMING_SNAKE_CASE : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: UpperCamelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
28
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
'''simple docstring''' from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = None def lowercase__( ): """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = left_node q.put(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = right_node q.put(__UpperCamelCase ) raise def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : List[Any] = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : Any = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : int = node while n or stack: while n: stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = n.left SCREAMING_SNAKE_CASE : Tuple = stack.pop() print(n.data ,end=',' ) SCREAMING_SNAKE_CASE : str = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ): """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
28
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' ,[ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] ,) def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) SCREAMING_SNAKE_CASE : Tuple = DatasetInfosDict.from_directory(__UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' ,[ DatasetInfo(), DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,), ] ,) def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: DatasetInfo ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = str(__UpperCamelCase ) dataset_info.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = DatasetInfo.from_directory(__UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCamelCase ,'dataset_info.json' ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = DatasetInfo( description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) SCREAMING_SNAKE_CASE : Optional[Any] = dataset_info._to_yaml_dict() assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) SCREAMING_SNAKE_CASE : List[str] = yaml.safe_dump(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = yaml.safe_load(__UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DatasetInfo() SCREAMING_SNAKE_CASE : Optional[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' ,[ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] ,) def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: DatasetInfosDict ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) dataset_infos_dict.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = DatasetInfosDict.from_directory(__UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCamelCase ,'README.md' ) )
28
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
1
'''simple docstring''' import pprint import requests UpperCamelCase_ = "https://zenquotes.io/api" def lowercase__( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '/today' ).json() def lowercase__( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": UpperCamelCase_ = random_quotes() pprint.pprint(response)
28
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
1
'''simple docstring''' import math from collections.abc import Callable def lowercase__( __UpperCamelCase: Callable[[float], float] ,__UpperCamelCase: float ,__UpperCamelCase: float ): """simple docstring""" SCREAMING_SNAKE_CASE : float = xa SCREAMING_SNAKE_CASE : float = xa while True: if x_n == x_na or function(__UpperCamelCase ) == function(__UpperCamelCase ): raise ZeroDivisionError('float division by zero, could not find root' ) SCREAMING_SNAKE_CASE : float = x_na - ( function(__UpperCamelCase ) / ((function(__UpperCamelCase ) - function(__UpperCamelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na SCREAMING_SNAKE_CASE : Dict = x_na SCREAMING_SNAKE_CASE : Tuple = x_na def lowercase__( __UpperCamelCase: float ): """simple docstring""" return math.pow(__UpperCamelCase ,3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
28
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _a : '''simple docstring''' def __init__( self, A, A=100, A=13, A=30, A=2, A=3, A=True, A=True, A=32, A=4, A=4, A=37, A="gelu", A=0.1, A=0.1, A=10, A=0.02, A=3, A=None, A=[0, 1, 2, 3], ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : List[Any] = 100 SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices SCREAMING_SNAKE_CASE : Tuple = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : Union[str, Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Union[str, Any] = num_patches + 1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=A, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = BeitModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = BeitForMaskedImageModeling(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.type_sequence_label_size SCREAMING_SNAKE_CASE : str = BeitForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Any = BeitForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : List[str] = BeitForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE : Dict = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) A : Tuple = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[Any] = False A : Any = False A : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = BeitModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A, nn.Linear ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(A ) SCREAMING_SNAKE_CASE : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : int = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE : List[Any] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : Dict = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class(config=A ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = BeitModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Tuple = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).pixel_values.to(A ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(pixel_values=A, bool_masked_pos=A ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(A ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], A, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : str = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(A ) self.assertTrue(torch.allclose(logits[0, :3], A, atol=1E-4 ) ) SCREAMING_SNAKE_CASE : int = 281 self.assertEqual(logits.argmax(-1 ).item(), A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**A ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(A ) self.assertTrue(torch.allclose(logits[0, :3], A, atol=1E-4 ) ) SCREAMING_SNAKE_CASE : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item(), A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE : Tuple = model.to(A ) SCREAMING_SNAKE_CASE : int = BeitImageProcessor(do_resize=A, size=640, do_center_crop=A ) SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('hf-internal-testing/fixtures_ade20k', split='test' ) SCREAMING_SNAKE_CASE : str = Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : str = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : str = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ], device=A, ) else: SCREAMING_SNAKE_CASE : int = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE : Tuple = model.to(A ) SCREAMING_SNAKE_CASE : Tuple = BeitImageProcessor(do_resize=A, size=640, do_center_crop=A ) SCREAMING_SNAKE_CASE : Any = load_dataset('hf-internal-testing/fixtures_ade20k', split='test' ) SCREAMING_SNAKE_CASE : Optional[int] = Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : List[Any] = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : List[Any] = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, A )
28
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
28
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase_ = "true" def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Any=82 ,__UpperCamelCase: Union[str, Any]=16 ): """simple docstring""" set_seed(42 ) SCREAMING_SNAKE_CASE : List[Any] = RegressionModel() SCREAMING_SNAKE_CASE : List[str] = deepcopy(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = RegressionDataset(length=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(__UpperCamelCase ,batch_size=__UpperCamelCase ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(__UpperCamelCase ,__UpperCamelCase ) return model, ddp_model, dataloader def lowercase__( __UpperCamelCase: Accelerator ,__UpperCamelCase: Tuple=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset('glue' ,'mrpc' ,split='validation' ) def tokenize_function(__UpperCamelCase: str ): SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : Union[str, Any] = dataset.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,) SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase: List[Any] ): if use_longest: return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return DataLoader(__UpperCamelCase ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=16 ) def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = Accelerator(dispatch_batches=__UpperCamelCase ,split_batches=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataloader(__UpperCamelCase ,not dispatch_batches ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' ,return_dict=__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(__UpperCamelCase ,__UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = [], [] for logit, targ in logits_and_targets: logits.append(__UpperCamelCase ) targs.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = torch.cat(__UpperCamelCase ), torch.cat(__UpperCamelCase ) return logits, targs def lowercase__( __UpperCamelCase: Accelerator ,__UpperCamelCase: int=82 ,__UpperCamelCase: List[Any]=False ,__UpperCamelCase: Optional[Any]=False ,__UpperCamelCase: str=16 ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_basic_setup(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = generate_predictions(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) assert ( len(__UpperCamelCase ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__UpperCamelCase )}" def lowercase__( __UpperCamelCase: bool = False ,__UpperCamelCase: bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('glue' ,'mrpc' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(__UpperCamelCase ,__UpperCamelCase ) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = setup['no'] model.to(__UpperCamelCase ) model.eval() for batch in dataloader: batch.to(__UpperCamelCase ) with torch.inference_mode(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__UpperCamelCase ,references=batch['labels'] ) SCREAMING_SNAKE_CASE : List[Any] = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE : List[str] = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE : Tuple = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__UpperCamelCase ,references=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=__UpperCamelCase ,dispatch_batches=__UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(__UpperCamelCase ,__UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=__UpperCamelCase ,dispatch_batches=__UpperCamelCase ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(__UpperCamelCase ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Accelerator() test_torch_metrics(__UpperCamelCase ,5_12 ) accelerator.state._reset_state() def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
28
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): '''simple docstring''' self.test() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : str = self.advance() if not self.does_advance(A ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.update(A ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A=False ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super(A, self ).__init__() if not isinstance(A, A ) or len(A ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(A, A ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) SCREAMING_SNAKE_CASE : Tuple = token_ids SCREAMING_SNAKE_CASE : Tuple = len(self.token_ids ) SCREAMING_SNAKE_CASE : Optional[int] = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def UpperCamelCase_ ( self ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(A )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : int = False if self.does_advance(A ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : int = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : int = True self.reset() return stepped, completed, reset def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Dict = 0 def UpperCamelCase_ ( self ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase_ ( self, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : List[Any] = self.fulfilled_idx SCREAMING_SNAKE_CASE : List[Any] = self.completed return new_constraint class _a : '''simple docstring''' def __init__( self, A, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = max([len(A ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : Optional[int] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Dict = root for tidx, token_id in enumerate(A ): if token_id not in level: SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[Any] = level[token_id] if no_subsets and self.has_subsets(A, A ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F" {nested_token_ids}." ) SCREAMING_SNAKE_CASE : Any = root def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : Optional[Any] = start[current_token] SCREAMING_SNAKE_CASE : Optional[Any] = list(start.keys() ) return next_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.next_tokens(A ) return len(A ) == 0 def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = list(root.values() ) if len(A ) == 0: return 1 else: return sum([self.count_leaves(A ) for nn in next_nodes] ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.count_leaves(A ) return len(A ) != leaf_count class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super(A, self ).__init__() if not isinstance(A, A ) or len(A ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(A, A ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(A, A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) SCREAMING_SNAKE_CASE : Dict = DisjunctiveTrie(A ) SCREAMING_SNAKE_CASE : int = nested_token_ids SCREAMING_SNAKE_CASE : int = self.trie.max_height SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(A ) == 0: return None else: return token_list def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[Any] = False if self.does_advance(A ): self.current_seq.append(A ) SCREAMING_SNAKE_CASE : Tuple = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : int = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[str] = completed return stepped, completed, reset def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCamelCase_ ( self ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase_ ( self, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Tuple = self.seqlen SCREAMING_SNAKE_CASE : Dict = self.current_seq SCREAMING_SNAKE_CASE : str = self.completed return new_constraint class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : List[str] = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : str = len(A ) SCREAMING_SNAKE_CASE : Any = False self.init_state() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : str = [constraint.copy(stateful=A ) for constraint in self.constraints] def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : List[str] = constraint.advance() if isinstance(A, A ): token_list.append(A ) elif isinstance(A, A ): token_list.extend(A ) else: SCREAMING_SNAKE_CASE : List[Any] = self.inprogress_constraint.advance() if isinstance(A, A ): token_list.append(A ) elif isinstance(A, A ): token_list.extend(A ) if len(A ) == 0: return None else: return token_list def UpperCamelCase_ ( self, A ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.add(A ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.update(A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A ) ) SCREAMING_SNAKE_CASE : Dict = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : Any = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[int] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = pending_constraint.update(A ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A ) SCREAMING_SNAKE_CASE : Optional[Any] = None if not complete and stepped: SCREAMING_SNAKE_CASE : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Any = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : Dict = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase_ ( self, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : int = [ constraint.copy(stateful=A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.copy(stateful=A ) SCREAMING_SNAKE_CASE : Optional[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
28
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
1
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCamelCase_ = get_logger(__name__) class _a ( enum.Enum ): '''simple docstring''' A : Tuple = '''all_checks''' A : Dict = '''basic_checks''' A : List[str] = '''no_checks''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__( __UpperCamelCase: Optional[dict] ,__UpperCamelCase: dict ,__UpperCamelCase: Any=None ): """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) SCREAMING_SNAKE_CASE : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE : List[Any] = ' for ' + verification_name if verification_name is not None else '' if len(__UpperCamelCase ) > 0: raise NonMatchingChecksumError( f"Checksums didn't match{for_verification_name}:\n" f"{bad_urls}\n" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__( __UpperCamelCase: Optional[dict] ,__UpperCamelCase: dict ): """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) SCREAMING_SNAKE_CASE : List[Any] = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__UpperCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__UpperCamelCase ) ) logger.info('All the splits matched successfully.' ) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: bool = True ): """simple docstring""" if record_checksum: SCREAMING_SNAKE_CASE : str = shaaaa() with open(__UpperCamelCase ,'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) ,B'' ): m.update(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = m.hexdigest() else: SCREAMING_SNAKE_CASE : int = None return {"num_bytes": os.path.getsize(__UpperCamelCase ), "checksum": checksum} def lowercase__( __UpperCamelCase: Optional[int] ): """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
28
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
1
'''simple docstring''' def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" while a != 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = b % a, a return b def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if gcd(__UpperCamelCase ,__UpperCamelCase ) != 1: SCREAMING_SNAKE_CASE : Tuple = f"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = 1, 0, a SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = 0, 1, m while va != 0: SCREAMING_SNAKE_CASE : Optional[Any] = ua // va SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
28
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
1
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate UpperCamelCase_ = trt.Logger(trt.Logger.WARNING) UpperCamelCase_ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=3_8_4, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=1_2_8, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=2_0, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=3_0, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=4_2, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) UpperCamelCase_ = parser.parse_args() if args.tokenizer_name: UpperCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) UpperCamelCase_ = args.per_device_eval_batch_size UpperCamelCase_ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties UpperCamelCase_ = True UpperCamelCase_ = "temp_engine/bert-fp32.engine" if args.fpaa: UpperCamelCase_ = "temp_engine/bert-fp16.engine" if args.inta: UpperCamelCase_ = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") UpperCamelCase_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network UpperCamelCase_ = [network.get_input(i) for i in range(network.num_inputs)] UpperCamelCase_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: UpperCamelCase_ = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) UpperCamelCase_ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) UpperCamelCase_ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ,__UpperCamelCase: Tuple ,__UpperCamelCase: List[str] ,__UpperCamelCase: List[str] ,__UpperCamelCase: Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = np.asarray(inputs['input_ids'] ,dtype=np.intaa ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(inputs['attention_mask'] ,dtype=np.intaa ) SCREAMING_SNAKE_CASE : Dict = np.asarray(inputs['token_type_ids'] ,dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] ,input_ids.ravel() ,__UpperCamelCase ) cuda.memcpy_htod_async(d_inputs[1] ,attention_mask.ravel() ,__UpperCamelCase ) cuda.memcpy_htod_async(d_inputs[2] ,token_type_ids.ravel() ,__UpperCamelCase ) # start time SCREAMING_SNAKE_CASE : Optional[int] = time.time() # Run inference context.execute_async( bindings=[int(__UpperCamelCase ) for d_inp in d_inputs] + [int(__UpperCamelCase ), int(__UpperCamelCase )] ,stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) cuda.memcpy_dtoh_async(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time SCREAMING_SNAKE_CASE : List[Any] = time.time() SCREAMING_SNAKE_CASE : Tuple = end_time - start_time SCREAMING_SNAKE_CASE : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. UpperCamelCase_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCamelCase_ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. UpperCamelCase_ = raw_datasets["validation"].column_names UpperCamelCase_ = "question" if "question" in column_names else column_names[0] UpperCamelCase_ = "context" if "context" in column_names else column_names[1] UpperCamelCase_ = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). UpperCamelCase_ = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCamelCase_ = min(args.max_seq_length, tokenizer.model_max_length) def lowercase__( __UpperCamelCase: List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. SCREAMING_SNAKE_CASE : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] ,examples[context_column_name if pad_on_right else question_column_name] ,truncation='only_second' if pad_on_right else 'only_first' ,max_length=__UpperCamelCase ,stride=args.doc_stride ,return_overflowing_tokens=__UpperCamelCase ,return_offsets_mapping=__UpperCamelCase ,padding='max_length' ,) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. SCREAMING_SNAKE_CASE : Tuple = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. SCREAMING_SNAKE_CASE : List[str] = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). SCREAMING_SNAKE_CASE : Optional[int] = tokenized_examples.sequence_ids(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. SCREAMING_SNAKE_CASE : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. SCREAMING_SNAKE_CASE : List[str] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples UpperCamelCase_ = raw_datasets["validation"] # Validation Feature Creation UpperCamelCase_ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) UpperCamelCase_ = default_data_collator UpperCamelCase_ = eval_dataset.remove_columns(["example_id", "offset_mapping"]) UpperCamelCase_ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: Any ,__UpperCamelCase: Dict="eval" ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = postprocess_qa_predictions( examples=__UpperCamelCase ,features=__UpperCamelCase ,predictions=__UpperCamelCase ,version_2_with_negative=args.version_2_with_negative ,n_best_size=args.n_best_size ,max_answer_length=args.max_answer_length ,null_score_diff_threshold=args.null_score_diff_threshold ,output_dir=args.output_dir ,prefix=__UpperCamelCase ,) # Format the result to the format the metric expects. if args.version_2_with_negative: SCREAMING_SNAKE_CASE : List[Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: SCREAMING_SNAKE_CASE : Optional[int] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] SCREAMING_SNAKE_CASE : Any = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__UpperCamelCase ,label_ids=__UpperCamelCase ) UpperCamelCase_ = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowercase__( __UpperCamelCase: Any ): """simple docstring""" return trt.volume(engine.get_binding_shape(__UpperCamelCase ) ) * engine.get_binding_dtype(__UpperCamelCase ).itemsize # Allocate device memory for inputs and outputs. UpperCamelCase_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer UpperCamelCase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) UpperCamelCase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) UpperCamelCase_ = cuda.mem_alloc(h_outputa.nbytes) UpperCamelCase_ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. UpperCamelCase_ = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") UpperCamelCase_ = 0.0 UpperCamelCase_ = 0 UpperCamelCase_ = timeit.default_timer() UpperCamelCase_ = None for step, batch in enumerate(eval_dataloader): UpperCamelCase_ , UpperCamelCase_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 UpperCamelCase_ , UpperCamelCase_ = outputs UpperCamelCase_ = torch.tensor(start_logits) UpperCamelCase_ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered UpperCamelCase_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) UpperCamelCase_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) UpperCamelCase_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) UpperCamelCase_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: UpperCamelCase_ = nested_truncate(all_preds, len(eval_dataset)) UpperCamelCase_ = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1_0_0_0 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1_0_0_0)) logger.info("Total Number of Inference = %d", niter) UpperCamelCase_ = post_processing_function(eval_examples, eval_dataset, all_preds) UpperCamelCase_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
28
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": 5_1_2, "facebook/dpr-ctx_encoder-multiset-base": 5_1_2, } UpperCamelCase_ = { "facebook/dpr-question_encoder-single-nq-base": 5_1_2, "facebook/dpr-question_encoder-multiset-base": 5_1_2, } UpperCamelCase_ = { "facebook/dpr-reader-single-nq-base": 5_1_2, "facebook/dpr-reader-multiset-base": 5_1_2, } UpperCamelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCamelCase_ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCamelCase_ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = VOCAB_FILES_NAMES A : Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Dict = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = DPRContextEncoderTokenizer class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[int] = VOCAB_FILES_NAMES A : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A : List[Any] = DPRQuestionEncoderTokenizer UpperCamelCase_ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCamelCase_ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCamelCase_ = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(SCREAMING_SNAKE_CASE ) class _a : '''simple docstring''' def __call__( self, A, A = None, A = None, A = False, A = False, A = None, A = None, A = None, **A, ): '''simple docstring''' if titles is None and texts is None: return super().__call__( A, padding=A, truncation=A, max_length=A, return_tensors=A, return_attention_mask=A, **A, ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : int = titles if texts is None else texts return super().__call__( A, A, padding=A, truncation=A, max_length=A, return_tensors=A, return_attention_mask=A, **A, ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(A, A ) else [titles] SCREAMING_SNAKE_CASE : int = texts if not isinstance(A, A ) else [texts] SCREAMING_SNAKE_CASE : Union[str, Any] = len(A ) SCREAMING_SNAKE_CASE : Tuple = questions if not isinstance(A, A ) else [questions] * n_passages assert len(A ) == len( A ), F"There should be as many titles than texts but got {len(A )} titles and {len(A )} texts." SCREAMING_SNAKE_CASE : str = super().__call__(A, A, padding=A, truncation=A )['input_ids'] SCREAMING_SNAKE_CASE : int = super().__call__(A, add_special_tokens=A, padding=A, truncation=A )['input_ids'] SCREAMING_SNAKE_CASE : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A, A ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : Optional[Any] = attention_mask return self.pad(A, padding=A, max_length=A, return_tensors=A ) def UpperCamelCase_ ( self, A, A, A = 16, A = 64, A = 4, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = reader_input['input_ids'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = reader_output[:3] SCREAMING_SNAKE_CASE : Optional[int] = len(A ) SCREAMING_SNAKE_CASE : List[str] = sorted(range(A ), reverse=A, key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : List[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = len(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=A, top_spans=A, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=A, start_index=A, end_index=A, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase_ ( self, A, A, A, A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : List[Any] = sorted(A, key=lambda A : x[1], reverse=A ) SCREAMING_SNAKE_CASE : str = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Dict = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE ) class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = VOCAB_FILES_NAMES A : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION A : Dict = ['''input_ids''', '''attention_mask'''] A : str = DPRReaderTokenizer
28
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
1
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Any = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_pad def UpperCamelCase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0] if isinstance(A, Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A, 'image_mean' ) ) self.assertTrue(hasattr(A, 'image_std' ) ) self.assertTrue(hasattr(A, 'do_normalize' ) ) self.assertTrue(hasattr(A, 'do_resize' ) ) self.assertTrue(hasattr(A, 'size' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad, A ) SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A, Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A ) SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A ) for image in image_inputs: self.assertIsInstance(A, np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify orig_size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : int = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify masks SCREAMING_SNAKE_CASE : Optional[int] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
28
1
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 1 for i in range(1 ,num + 1 ): fact *= i return fact def lowercase__( __UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 while number > 0: SCREAMING_SNAKE_CASE : Optional[Any] = number % 10 sum_of_digits += last_digit SCREAMING_SNAKE_CASE : Optional[Any] = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowercase__( __UpperCamelCase: int = 1_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = factorial(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = split_and_add(__UpperCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
28
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
1
'''simple docstring''' def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) SCREAMING_SNAKE_CASE : Optional[Any] = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) SCREAMING_SNAKE_CASE : int = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[int] = False A : Dict = False A : List[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = 5 self.assertEqual(len(A ), A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : int = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[str] = model.to(A ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, A )
28
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ).convert('RGB' ) return image def lowercase__( __UpperCamelCase: Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: int ,__UpperCamelCase: Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = val def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias" ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((q_bias, torch.zeros_like(__UpperCamelCase ,requires_grad=__UpperCamelCase ), v_bias) ) SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 3_64 if 'coco' in model_name else 2_24 SCREAMING_SNAKE_CASE : Dict = BlipaVisionConfig(image_size=__UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: SCREAMING_SNAKE_CASE : Optional[int] = OPTConfig.from_pretrained('facebook/opt-2.7b' ,eos_token_id=__UpperCamelCase ).to_dict() elif "opt-6.7b" in model_name: SCREAMING_SNAKE_CASE : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' ,eos_token_id=__UpperCamelCase ).to_dict() elif "t5-xl" in model_name: SCREAMING_SNAKE_CASE : int = TaConfig.from_pretrained('google/flan-t5-xl' ,dense_act_fn='gelu' ,bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE : Any = TaConfig.from_pretrained('google/flan-t5-xxl' ,dense_act_fn='gelu' ,bos_token_id=1 ).to_dict() SCREAMING_SNAKE_CASE : Optional[int] = BlipaConfig(vision_config=__UpperCamelCase ,text_config=__UpperCamelCase ) return config, image_size @torch.no_grad() def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: Union[str, Any]=None ,__UpperCamelCase: Dict=False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer('\n' ,add_special_tokens=__UpperCamelCase ).input_ids[0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = get_blipa_config(__UpperCamelCase ,eos_token_id=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = BlipaForConditionalGeneration(__UpperCamelCase ).eval() SCREAMING_SNAKE_CASE : Union[str, Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = model_name_to_original[model_name] # load original model print('Loading original model...' ) SCREAMING_SNAKE_CASE : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = load_model_and_preprocess( name=__UpperCamelCase ,model_type=__UpperCamelCase ,is_eval=__UpperCamelCase ,device=__UpperCamelCase ) original_model.eval() print('Done!' ) # update state dict keys SCREAMING_SNAKE_CASE : List[str] = original_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(__UpperCamelCase ) if key.startswith('Qformer.bert' ): SCREAMING_SNAKE_CASE : Any = key.replace('Qformer.bert' ,'qformer' ) if "attention.self" in key: SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('self' ,'attention' ) if "opt_proj" in key: SCREAMING_SNAKE_CASE : Any = key.replace('opt_proj' ,'language_projection' ) if "t5_proj" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('t5_proj' ,'language_projection' ) if key.startswith('opt' ): SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('opt' ,'language' ) if key.startswith('t5' ): SCREAMING_SNAKE_CASE : Optional[int] = key.replace('t5' ,'language' ) SCREAMING_SNAKE_CASE : Optional[int] = val # read in qv biases read_in_q_v_bias(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = hf_model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase ) assert len(__UpperCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] SCREAMING_SNAKE_CASE : str = load_demo_image() SCREAMING_SNAKE_CASE : Any = vis_processors['eval'](__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = tokenizer(['\n'] ,return_tensors='pt' ).input_ids.to(__UpperCamelCase ) # create processor SCREAMING_SNAKE_CASE : Optional[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} ,image_mean=__UpperCamelCase ,image_std=__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = BlipaProcessor(image_processor=__UpperCamelCase ,tokenizer=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = processor(images=__UpperCamelCase ,return_tensors='pt' ).pixel_values.to(__UpperCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) original_model.to(__UpperCamelCase ) hf_model.to(__UpperCamelCase ) with torch.no_grad(): if "opt" in model_name: SCREAMING_SNAKE_CASE : Any = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits SCREAMING_SNAKE_CASE : Dict = hf_model(__UpperCamelCase ,__UpperCamelCase ).logits else: SCREAMING_SNAKE_CASE : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits SCREAMING_SNAKE_CASE : Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id ,-1_00 ) SCREAMING_SNAKE_CASE : Tuple = hf_model(__UpperCamelCase ,__UpperCamelCase ,labels=__UpperCamelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' ,original_logits[0, :3, :3] ) print('First values of HF logits:' ,logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": SCREAMING_SNAKE_CASE : int = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] ,device=__UpperCamelCase ) assert torch.allclose(logits[0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] ,device=__UpperCamelCase ) else: # cast to same type SCREAMING_SNAKE_CASE : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(__UpperCamelCase ) ,__UpperCamelCase ,atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) SCREAMING_SNAKE_CASE : Optional[Any] = '' SCREAMING_SNAKE_CASE : str = tokenizer(__UpperCamelCase ,return_tensors='pt' ).input_ids.to(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = original_model.generate({'image': original_pixel_values} ) SCREAMING_SNAKE_CASE : Tuple = hf_model.generate( __UpperCamelCase ,__UpperCamelCase ,do_sample=__UpperCamelCase ,num_beams=5 ,max_length=30 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.0 ,length_penalty=1.0 ,temperature=1 ,) print('Original generation:' ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.shape[1] SCREAMING_SNAKE_CASE : Dict = processor.batch_decode(outputs[:, prompt_length:] ,skip_special_tokens=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print('HF generation:' ,__UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if push_to_hub: processor.push_to_hub(f"nielsr/{model_name}" ) hf_model.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCamelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures") class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : List[Any] = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Any = HTTPError SCREAMING_SNAKE_CASE : Any = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=A ) as mock_head: SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(A ) @is_staging_test class _a ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor", trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
28
1
'''simple docstring''' import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase__( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase__( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_loading_script_name SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = script_dir / f"{script_name}.py" with open(__UpperCamelCase ,'w' ) as f: f.write(__UpperCamelCase ) return str(__UpperCamelCase )
28
'''simple docstring''' class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = val SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Union[str, Any] = None def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: SCREAMING_SNAKE_CASE : Optional[int] = Node(A ) else: self.left.insert(A ) elif val > self.val: if self.right is None: SCREAMING_SNAKE_CASE : int = Node(A ) else: self.right.insert(A ) else: SCREAMING_SNAKE_CASE : int = val def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ): """simple docstring""" if root: inorder(root.left ,__UpperCamelCase ) res.append(root.val ) inorder(root.right ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[Any] ): """simple docstring""" if len(__UpperCamelCase ) == 0: return arr SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] ) for i in range(1 ,len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. SCREAMING_SNAKE_CASE : Dict = [] inorder(__UpperCamelCase ,__UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
28
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ): """simple docstring""" from .. import __version__ SCREAMING_SNAKE_CASE : int = take_from SCREAMING_SNAKE_CASE : Optional[int] = () if not isinstance(args[0] ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) SCREAMING_SNAKE_CASE : Tuple = None if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(__UpperCamelCase ,__UpperCamelCase ): values += (getattr(__UpperCamelCase ,__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE : Any = call_frame.filename SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(__UpperCamelCase ) == 0: return elif len(__UpperCamelCase ) == 1: return values[0] return values
28
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( A ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError()
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
'''simple docstring''' import math class _a : '''simple docstring''' def __init__( self, A=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' SCREAMING_SNAKE_CASE : str = n SCREAMING_SNAKE_CASE : Tuple = [ [math.inf for j in range(0, A )] for i in range(0, A ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE : Optional[Any] = [ [math.inf for j in range(0, A )] for i in range(0, A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = w def UpperCamelCase_ ( self ): '''simple docstring''' for k in range(0, self.n ): for i in range(0, self.n ): for j in range(0, self.n ): SCREAMING_SNAKE_CASE : Optional[Any] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": UpperCamelCase_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
28
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCamelCase_ = datasets.utils.logging.get_logger(__name__) UpperCamelCase_ = ["names", "prefix"] UpperCamelCase_ = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] UpperCamelCase_ = ["encoding_errors", "on_bad_lines"] UpperCamelCase_ = ["date_format"] @dataclass class _a ( datasets.BuilderConfig ): '''simple docstring''' A : str = "," A : Optional[str] = None A : Optional[Union[int, List[int], str]] = "infer" A : Optional[List[str]] = None A : Optional[List[str]] = None A : Optional[Union[int, str, List[int], List[str]]] = None A : Optional[Union[List[int], List[str]]] = None A : Optional[str] = None A : bool = True A : Optional[Literal["c", "python", "pyarrow"]] = None A : Dict[Union[int, str], Callable[[Any], Any]] = None A : Optional[list] = None A : Optional[list] = None A : bool = False A : Optional[Union[int, List[int]]] = None A : Optional[int] = None A : Optional[Union[str, List[str]]] = None A : bool = True A : bool = True A : bool = False A : bool = True A : Optional[str] = None A : str = "." A : Optional[str] = None A : str = '"' A : int = 0 A : Optional[str] = None A : Optional[str] = None A : Optional[str] = None A : Optional[str] = None A : bool = True A : bool = True A : int = 0 A : bool = True A : bool = False A : Optional[str] = None A : int = 10_000 A : Optional[datasets.Features] = None A : Optional[str] = "strict" A : Literal["error", "warn", "skip"] = "error" A : Optional[str] = None def UpperCamelCase_ ( self ): '''simple docstring''' if self.delimiter is not None: SCREAMING_SNAKE_CASE : List[str] = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE : Tuple = self.column_names @property def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), A ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _a ( datasets.ArrowBasedBuilder ): '''simple docstring''' A : Tuple = CsvConfig def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A, (str, list, tuple) ): SCREAMING_SNAKE_CASE : List[Any] = data_files if isinstance(A, A ): SCREAMING_SNAKE_CASE : Dict = [files] SCREAMING_SNAKE_CASE : int = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(A, A ): SCREAMING_SNAKE_CASE : List[Any] = [files] SCREAMING_SNAKE_CASE : List[str] = [dl_manager.iter_files(A ) for file in files] splits.append(datasets.SplitGenerator(name=A, gen_kwargs={'files': files} ) ) return splits def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.config.features is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(A ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=A ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : Union[str, Any] = table_cast(A, A ) return pa_table def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE : List[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(A ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(A ) ): SCREAMING_SNAKE_CASE : Any = pd.read_csv(A, iterator=A, dtype=A, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(A ): SCREAMING_SNAKE_CASE : Dict = pa.Table.from_pandas(A ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(A )}: {e}" ) raise
28
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
1
'''simple docstring''' import sys import turtle def lowercase__( __UpperCamelCase: tuple[float, float] ,__UpperCamelCase: tuple[float, float] ): """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase__( __UpperCamelCase: tuple[float, float] ,__UpperCamelCase: tuple[float, float] ,__UpperCamelCase: tuple[float, float] ,__UpperCamelCase: int ,): """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__UpperCamelCase ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,depth - 1 ) triangle(__UpperCamelCase ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,depth - 1 ) triangle(__UpperCamelCase ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) UpperCamelCase_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") UpperCamelCase_ = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
28
'''simple docstring''' from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = None def lowercase__( ): """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = left_node q.put(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = right_node q.put(__UpperCamelCase ) raise def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : List[Any] = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : Any = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : int = node while n or stack: while n: stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = n.left SCREAMING_SNAKE_CASE : Tuple = stack.pop() print(n.data ,end=',' ) SCREAMING_SNAKE_CASE : str = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ): """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
28
1
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCamelCase_ = logging.get_logger(__name__) def lowercase__( __UpperCamelCase: bool ,__UpperCamelCase: bool ): """simple docstring""" def run_func(__UpperCamelCase: Dict ): @wraps(__UpperCamelCase ) def run_in_eager_mode(*__UpperCamelCase: List[str] ,**__UpperCamelCase: Union[str, Any] ): return func(*__UpperCamelCase ,**__UpperCamelCase ) @wraps(__UpperCamelCase ) @tf.function(experimental_compile=__UpperCamelCase ) def run_in_graph_mode(*__UpperCamelCase: str ,**__UpperCamelCase: Union[str, Any] ): return func(*__UpperCamelCase ,**__UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = random.Random() SCREAMING_SNAKE_CASE : Optional[Any] = [rng.randint(0 ,vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCamelCase ,shape=(batch_size, sequence_length) ,dtype=tf.intaa ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : TensorFlowBenchmarkArguments A : PretrainedConfig A : str = "TensorFlow" @property def UpperCamelCase_ ( self ): '''simple docstring''' return tf.__version__ def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_inference_func(A, A, A ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_train_func(A, A, A ) return self._measure_speed(_train ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], A ) SCREAMING_SNAKE_CASE : List[Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) SCREAMING_SNAKE_CASE : Dict = self._prepare_inference_func(A, A, A ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], A ) SCREAMING_SNAKE_CASE : Tuple = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_train_func(A, A, A ) return self._measure_memory(_train ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) SCREAMING_SNAKE_CASE : Optional[int] = ( hasattr(A, 'architectures' ) and isinstance(config.architectures, A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: SCREAMING_SNAKE_CASE : int = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model SCREAMING_SNAKE_CASE : int = __import__('transformers', fromlist=[model_class] ) SCREAMING_SNAKE_CASE : List[Any] = getattr(A, A ) SCREAMING_SNAKE_CASE : List[str] = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: SCREAMING_SNAKE_CASE : List[str] = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently SCREAMING_SNAKE_CASE : str = config.vocab_size if hasattr(A, 'vocab_size' ) else config.encoder.vocab_size SCREAMING_SNAKE_CASE : List[Any] = random_input_ids(A, A, A ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(A, decoder_input_ids=A, training=A ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(A, training=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) SCREAMING_SNAKE_CASE : List[Any] = ( hasattr(A, 'architectures' ) and isinstance(config.architectures, A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: SCREAMING_SNAKE_CASE : str = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model SCREAMING_SNAKE_CASE : Optional[Any] = __import__('transformers', fromlist=[model_class] ) SCREAMING_SNAKE_CASE : Dict = getattr(A, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: SCREAMING_SNAKE_CASE : int = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently SCREAMING_SNAKE_CASE : Optional[Any] = config.vocab_size if hasattr(A, 'vocab_size' ) else config.encoder.vocab_size SCREAMING_SNAKE_CASE : Optional[int] = random_input_ids(A, A, A ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): SCREAMING_SNAKE_CASE : List[str] = model(A, decoder_input_ids=A, labels=A, training=A )[0] SCREAMING_SNAKE_CASE : Optional[int] = tf.gradients(A, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(A, labels=A, training=A )[0] SCREAMING_SNAKE_CASE : Optional[int] = tf.gradients(A, model.trainable_variables ) return gradients SCREAMING_SNAKE_CASE : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self, A ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(A, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average SCREAMING_SNAKE_CASE : Tuple = timeit.repeat( A, repeat=self.args.repeat, number=10, ) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def UpperCamelCase_ ( self, A ): '''simple docstring''' logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) SCREAMING_SNAKE_CASE : str = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() SCREAMING_SNAKE_CASE : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) SCREAMING_SNAKE_CASE : Optional[Any] = nvml.nvmlDeviceGetMemoryInfo(A ) SCREAMING_SNAKE_CASE : List[str] = meminfo.used SCREAMING_SNAKE_CASE : List[str] = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) SCREAMING_SNAKE_CASE : str = None else: SCREAMING_SNAKE_CASE : Tuple = measure_peak_memory_cpu(A ) SCREAMING_SNAKE_CASE : Any = Memory(A ) if isinstance(A, A ) else memory_bytes if self.args.trace_memory_line_by_line: SCREAMING_SNAKE_CASE : Optional[Any] = stop_memory_tracing(A ) if memory is None: SCREAMING_SNAKE_CASE : int = summary.total else: SCREAMING_SNAKE_CASE : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
28
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=5, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=False, A=True, A="None", A=3, A=4, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = relative_attention SCREAMING_SNAKE_CASE : List[str] = position_biased_input SCREAMING_SNAKE_CASE : Dict = pos_att_type SCREAMING_SNAKE_CASE : List[Any] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size], self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_config() SCREAMING_SNAKE_CASE : Tuple = 300 return config def UpperCamelCase_ ( self, A ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ), [] ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = DebertaModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(A, attention_mask=A, token_type_ids=A )[0] SCREAMING_SNAKE_CASE : Optional[int] = model(A, token_type_ids=A )[0] SCREAMING_SNAKE_CASE : List[Any] = model(A )[0] self.parent.assertListEqual(list(sequence_output.size() ), [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = DebertaForMaskedLM(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(A, attention_mask=A, token_type_ids=A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : Dict = DebertaForSequenceClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A, attention_mask=A, token_type_ids=A, labels=A ) self.parent.assertListEqual(list(result.logits.size() ), [self.batch_size, self.num_labels] ) self.check_loss_output(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DebertaForTokenClassification(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A, attention_mask=A, token_type_ids=A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DebertaForQuestionAnswering(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( A, attention_mask=A, token_type_ids=A, start_positions=A, end_positions=A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : int = config_and_inputs SCREAMING_SNAKE_CASE : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) A : Optional[int] = True A : int = False A : Union[str, Any] = False A : Optional[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = DebertaModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self, config_class=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = DebertaModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(A, attention_mask=A )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], A, atol=1E-4 ), F"{output[:, 1:4, 1:4]}" )
28
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = analyze_text(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE : Optional[Any] = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE : Tuple = single_char_strings[ch] SCREAMING_SNAKE_CASE : Dict = my_str / all_sum my_fir_sum += prob * math.loga(__UpperCamelCase ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string SCREAMING_SNAKE_CASE : Tuple = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE : Optional[int] = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE : Any = two_char_strings[sequence] SCREAMING_SNAKE_CASE : Optional[int] = int(__UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(__UpperCamelCase ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = Counter() # type: ignore SCREAMING_SNAKE_CASE : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(__UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowercase__( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
28
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "roberta-base": 5_1_2, "roberta-large": 5_1_2, "roberta-large-mnli": 5_1_2, "distilroberta-base": 5_1_2, "roberta-base-openai-detector": 5_1_2, "roberta-large-openai-detector": 5_1_2, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Tuple = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = ['''input_ids''', '''attention_mask'''] A : List[Any] = RobertaTokenizer def __init__( self, A=None, A=None, A=None, A="replace", A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=False, A=True, **A, ): '''simple docstring''' super().__init__( A, A, tokenizer_file=A, errors=A, bos_token=A, eos_token=A, sep_token=A, cls_token=A, unk_token=A, pad_token=A, mask_token=A, add_prefix_space=A, trim_offsets=A, **A, ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', A ) != add_prefix_space: SCREAMING_SNAKE_CASE : Any = getattr(A, pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Tuple = pre_tok_class(**A ) SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space SCREAMING_SNAKE_CASE : str = 'post_processor' SCREAMING_SNAKE_CASE : str = getattr(self.backend_tokenizer, A, A ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : str = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(state['cls'] ) SCREAMING_SNAKE_CASE : List[str] = False if state.get('add_prefix_space', A ) != add_prefix_space: SCREAMING_SNAKE_CASE : int = add_prefix_space SCREAMING_SNAKE_CASE : Any = True if state.get('trim_offsets', A ) != trim_offsets: SCREAMING_SNAKE_CASE : Dict = trim_offsets SCREAMING_SNAKE_CASE : int = True if changes_to_apply: SCREAMING_SNAKE_CASE : str = getattr(A, state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[int] = component_class(**A ) setattr(self.backend_tokenizer, A, A ) @property def UpperCamelCase_ ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else value SCREAMING_SNAKE_CASE : List[Any] = value def UpperCamelCase_ ( self, *A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = kwargs.get('is_split_into_words', A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A, **A ) def UpperCamelCase_ ( self, *A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = kwargs.get('is_split_into_words', A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*A, **A ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self._tokenizer.model.save(A, name=A ) return tuple(A ) def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
28
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
28
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''note_seq'''] def __init__( self, *A, **A ): '''simple docstring''' requires_backends(self, ['note_seq'] ) @classmethod def UpperCamelCase_ ( cls, *A, **A ): '''simple docstring''' requires_backends(cls, ['note_seq'] ) @classmethod def UpperCamelCase_ ( cls, *A, **A ): '''simple docstring''' requires_backends(cls, ['note_seq'] )
28
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
1
'''simple docstring''' def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = int(__UpperCamelCase ) # Initialize Result SCREAMING_SNAKE_CASE : Optional[int] = [] # Traverse through all denomination for denomination in reversed(__UpperCamelCase ): # Find denominations while int(__UpperCamelCase ) >= int(__UpperCamelCase ): total_value -= int(__UpperCamelCase ) answer.append(__UpperCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCamelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCamelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCamelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
28
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Tuple=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Optional[int]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] for old_item in old_list: SCREAMING_SNAKE_CASE : List[Any] = old_item.replace('in_layers.0' ,'norm1' ) SCREAMING_SNAKE_CASE : Optional[Any] = new_item.replace('in_layers.2' ,'conv1' ) SCREAMING_SNAKE_CASE : Dict = new_item.replace('out_layers.0' ,'norm2' ) SCREAMING_SNAKE_CASE : int = new_item.replace('out_layers.3' ,'conv2' ) SCREAMING_SNAKE_CASE : Tuple = new_item.replace('emb_layers.1' ,'time_emb_proj' ) SCREAMING_SNAKE_CASE : Optional[Any] = new_item.replace('skip_connection' ,'conv_shortcut' ) SCREAMING_SNAKE_CASE : List[Any] = shave_segments(__UpperCamelCase ,n_shave_prefix_segments=__UpperCamelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: List[str]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for old_item in old_list: SCREAMING_SNAKE_CASE : str = old_item SCREAMING_SNAKE_CASE : Optional[int] = new_item.replace('norm.weight' ,'group_norm.weight' ) SCREAMING_SNAKE_CASE : Dict = new_item.replace('norm.bias' ,'group_norm.bias' ) SCREAMING_SNAKE_CASE : Dict = new_item.replace('proj_out.weight' ,'proj_attn.weight' ) SCREAMING_SNAKE_CASE : List[str] = new_item.replace('proj_out.bias' ,'proj_attn.bias' ) SCREAMING_SNAKE_CASE : List[Any] = shave_segments(__UpperCamelCase ,n_shave_prefix_segments=__UpperCamelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Dict=None ,__UpperCamelCase: Union[str, Any]=None ,__UpperCamelCase: Any=None ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): SCREAMING_SNAKE_CASE : Optional[int] = old_checkpoint[path] SCREAMING_SNAKE_CASE : str = old_tensor.shape[0] // 3 SCREAMING_SNAKE_CASE : List[str] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) SCREAMING_SNAKE_CASE : Any = old_tensor.shape[0] // config['num_head_channels'] // 3 SCREAMING_SNAKE_CASE : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = old_tensor.split(channels // num_heads ,dim=1 ) SCREAMING_SNAKE_CASE : Tuple = query.reshape(__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = key.reshape(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = value.reshape(__UpperCamelCase ) for path in paths: SCREAMING_SNAKE_CASE : List[str] = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here SCREAMING_SNAKE_CASE : str = new_path.replace('middle_block.0' ,'mid_block.resnets.0' ) SCREAMING_SNAKE_CASE : int = new_path.replace('middle_block.1' ,'mid_block.attentions.0' ) SCREAMING_SNAKE_CASE : Any = new_path.replace('middle_block.2' ,'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: SCREAMING_SNAKE_CASE : Union[str, Any] = new_path.replace(replacement['old'] ,replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: SCREAMING_SNAKE_CASE : Union[str, Any] = old_checkpoint[path['old']][:, :, 0] else: SCREAMING_SNAKE_CASE : Tuple = old_checkpoint[path['old']] def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : int = checkpoint['time_embed.0.weight'] SCREAMING_SNAKE_CASE : Dict = checkpoint['time_embed.0.bias'] SCREAMING_SNAKE_CASE : List[str] = checkpoint['time_embed.2.weight'] SCREAMING_SNAKE_CASE : List[str] = checkpoint['time_embed.2.bias'] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['input_blocks.0.0.weight'] SCREAMING_SNAKE_CASE : Dict = checkpoint['input_blocks.0.0.bias'] SCREAMING_SNAKE_CASE : Dict = checkpoint['out.0.weight'] SCREAMING_SNAKE_CASE : str = checkpoint['out.0.bias'] SCREAMING_SNAKE_CASE : str = checkpoint['out.2.weight'] SCREAMING_SNAKE_CASE : Dict = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only SCREAMING_SNAKE_CASE : List[str] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) SCREAMING_SNAKE_CASE : Any = { layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only SCREAMING_SNAKE_CASE : Tuple = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) SCREAMING_SNAKE_CASE : str = { layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only SCREAMING_SNAKE_CASE : Any = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) SCREAMING_SNAKE_CASE : int = { layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Tuple = (i - 1) // (config['num_res_blocks'] + 1) SCREAMING_SNAKE_CASE : List[str] = (i - 1) % (config['num_res_blocks'] + 1) SCREAMING_SNAKE_CASE : Any = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key] SCREAMING_SNAKE_CASE : Optional[int] = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] if f"input_blocks.{i}.0.op.weight" in checkpoint: SCREAMING_SNAKE_CASE : List[str] = checkpoint[ f"input_blocks.{i}.0.op.weight" ] SCREAMING_SNAKE_CASE : Dict = checkpoint[ f"input_blocks.{i}.0.op.bias" ] continue SCREAMING_SNAKE_CASE : int = renew_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = {'old': f"input_blocks.{i}.0", 'new': f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} SCREAMING_SNAKE_CASE : str = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,additional_replacements=[meta_path, resnet_op] ,config=__UpperCamelCase ) if len(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = renew_attention_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = { 'old': f"input_blocks.{i}.1", 'new': f"down_blocks.{block_id}.attentions.{layer_in_block_id}", } SCREAMING_SNAKE_CASE : str = { f"input_blocks.{i}.1.qkv.bias": { 'key': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", 'query': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", 'value': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"input_blocks.{i}.1.qkv.weight": { 'key': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", 'query': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", 'value': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,additional_replacements=[meta_path] ,attention_paths_to_split=__UpperCamelCase ,config=__UpperCamelCase ,) SCREAMING_SNAKE_CASE : List[str] = middle_blocks[0] SCREAMING_SNAKE_CASE : Union[str, Any] = middle_blocks[1] SCREAMING_SNAKE_CASE : List[Any] = middle_blocks[2] SCREAMING_SNAKE_CASE : Any = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,config=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,config=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = renew_attention_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,attention_paths_to_split=__UpperCamelCase ,config=__UpperCamelCase ) for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = i // (config['num_res_blocks'] + 1) SCREAMING_SNAKE_CASE : str = i % (config['num_res_blocks'] + 1) SCREAMING_SNAKE_CASE : Dict = [shave_segments(__UpperCamelCase ,2 ) for name in output_blocks[i]] SCREAMING_SNAKE_CASE : str = {} for layer in output_block_layers: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = layer.split('.' )[0], shave_segments(__UpperCamelCase ,1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = [layer_name] if len(__UpperCamelCase ) > 1: SCREAMING_SNAKE_CASE : Optional[Any] = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] SCREAMING_SNAKE_CASE : Optional[Any] = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] SCREAMING_SNAKE_CASE : Dict = renew_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = renew_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = {'old': f"output_blocks.{i}.0", 'new': f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,additional_replacements=[meta_path] ,config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): SCREAMING_SNAKE_CASE : Optional[Any] = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[ f"output_blocks.{i}.{index}.conv.weight" ] SCREAMING_SNAKE_CASE : List[str] = checkpoint[ f"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: SCREAMING_SNAKE_CASE : List[str] = [] if len(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = renew_attention_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = { 'old': f"output_blocks.{i}.1", 'new': f"up_blocks.{block_id}.attentions.{layer_in_block_id}", } SCREAMING_SNAKE_CASE : int = { f"output_blocks.{i}.1.qkv.bias": { 'key': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", 'query': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", 'value': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"output_blocks.{i}.1.qkv.weight": { 'key': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", 'query': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", 'value': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,additional_replacements=[meta_path] ,attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None ,config=__UpperCamelCase ,) else: SCREAMING_SNAKE_CASE : Union[str, Any] = renew_resnet_paths(__UpperCamelCase ,n_shave_prefix_segments=1 ) for path in resnet_0_paths: SCREAMING_SNAKE_CASE : Dict = '.'.join(['output_blocks', str(__UpperCamelCase ), path['old']] ) SCREAMING_SNAKE_CASE : Optional[int] = '.'.join(['up_blocks', str(__UpperCamelCase ), 'resnets', str(__UpperCamelCase ), path['new']] ) SCREAMING_SNAKE_CASE : int = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCamelCase_ = json.loads(f.read()) UpperCamelCase_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCamelCase_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCamelCase_ = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) UpperCamelCase_ = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) UpperCamelCase_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: bool = True ,__UpperCamelCase: float = math.inf ,__UpperCamelCase: float = -math.inf ,__UpperCamelCase: float = math.inf ,__UpperCamelCase: float = -math.inf ,__UpperCamelCase: bool = False ,__UpperCamelCase: float = 1_00 ,__UpperCamelCase: float = 0.0_1 ,__UpperCamelCase: float = 1 ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = search_prob SCREAMING_SNAKE_CASE : Any = start_temperate SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Tuple = None while not search_end: SCREAMING_SNAKE_CASE : str = current_state.score() if best_state is None or current_score > best_state.score(): SCREAMING_SNAKE_CASE : Any = current_state scores.append(__UpperCamelCase ) iterations += 1 SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : List[str] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to SCREAMING_SNAKE_CASE : Optional[int] = random.randint(0 ,len(__UpperCamelCase ) - 1 ) # picking a random neighbor SCREAMING_SNAKE_CASE : Union[str, Any] = neighbors.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: SCREAMING_SNAKE_CASE : str = change * -1 # in case we are finding minimum if change > 0: # improves the solution SCREAMING_SNAKE_CASE : str = picked_neighbor else: SCREAMING_SNAKE_CASE : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability SCREAMING_SNAKE_CASE : List[Any] = picked_neighbor SCREAMING_SNAKE_CASE : Any = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor SCREAMING_SNAKE_CASE : Tuple = True else: SCREAMING_SNAKE_CASE : Dict = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__UpperCamelCase ) ,__UpperCamelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCamelCase_ = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) UpperCamelCase_ = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCamelCase_ = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) UpperCamelCase_ = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" return (3 * x**2) - (6 * y) UpperCamelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCamelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) UpperCamelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCamelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
28
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
1
'''simple docstring''' import operator as op UpperCamelCase_ = "scaler.pt" UpperCamelCase_ = "pytorch_model" UpperCamelCase_ = "random_states" UpperCamelCase_ = "optimizer" UpperCamelCase_ = "scheduler" UpperCamelCase_ = "pytorch_model.bin" UpperCamelCase_ = "pytorch_model.bin.index.json" UpperCamelCase_ = "model.safetensors" UpperCamelCase_ = "model.safetensors.index.json" UpperCamelCase_ = "1.10.2" UpperCamelCase_ = "py38" UpperCamelCase_ = "4.17.0" UpperCamelCase_ = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] UpperCamelCase_ = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] UpperCamelCase_ = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] UpperCamelCase_ = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] UpperCamelCase_ = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] UpperCamelCase_ = "2.0.1" UpperCamelCase_ = ["pdsh", "standard", "openmpi", "mvapich"] UpperCamelCase_ = ["default", "reduce-overhead", "max-autotune"] UpperCamelCase_ = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase_ = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] UpperCamelCase_ = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] UpperCamelCase_ = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
28
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
1
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase_ = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" UpperCamelCase_ = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" UpperCamelCase_ = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ), codebase_urls=['https://www.atticusprojectai.org/cuad'], reference_urls=['https://www.atticusprojectai.org/cuad'], ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = {prediction['id']: prediction['prediction_text'] for prediction in predictions} SCREAMING_SNAKE_CASE : List[Any] = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=A, predictions=A ) return score
28
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCamelCase_ = TypeVar("T") class _a ( Generic[T] ): '''simple docstring''' def __init__( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any | T = None SCREAMING_SNAKE_CASE : int = len(A ) SCREAMING_SNAKE_CASE : list[T] = [any_type for _ in range(self.N )] + arr SCREAMING_SNAKE_CASE : int = fnc self.build() def UpperCamelCase_ ( self ): '''simple docstring''' for p in range(self.N - 1, 0, -1 ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.fn(self.st[p * 2], self.st[p * 2 + 1] ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' p += self.N SCREAMING_SNAKE_CASE : str = v while p > 1: SCREAMING_SNAKE_CASE : Union[str, Any] = p // 2 SCREAMING_SNAKE_CASE : List[str] = self.fn(self.st[p * 2], self.st[p * 2 + 1] ) def UpperCamelCase_ ( self, A, A ): # noqa: E741 '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = l + self.N, r + self.N SCREAMING_SNAKE_CASE : T | None = None while l <= r: if l % 2 == 1: SCREAMING_SNAKE_CASE : Any = self.st[l] if res is None else self.fn(A, self.st[l] ) if r % 2 == 0: SCREAMING_SNAKE_CASE : Optional[Any] = self.st[r] if res is None else self.fn(A, self.st[r] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCamelCase_ = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] UpperCamelCase_ = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } UpperCamelCase_ = SegmentTree(test_array, min) UpperCamelCase_ = SegmentTree(test_array, max) UpperCamelCase_ = SegmentTree(test_array, lambda a, b: a + b) def lowercase__( ): """simple docstring""" for i in range(len(__UpperCamelCase ) ): for j in range(__UpperCamelCase ,len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : Dict = reduce(__UpperCamelCase ,test_array[i : j + 1] ) SCREAMING_SNAKE_CASE : Dict = reduce(__UpperCamelCase ,test_array[i : j + 1] ) SCREAMING_SNAKE_CASE : Dict = reduce(lambda __UpperCamelCase ,__UpperCamelCase : a + b ,test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__UpperCamelCase ,__UpperCamelCase ) assert max_range == max_segment_tree.query(__UpperCamelCase ,__UpperCamelCase ) assert sum_range == sum_segment_tree.query(__UpperCamelCase ,__UpperCamelCase ) test_all_segments() for index, value in test_updates.items(): UpperCamelCase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
28
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Any = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_pad def UpperCamelCase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0] if isinstance(A, Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A, 'image_mean' ) ) self.assertTrue(hasattr(A, 'image_std' ) ) self.assertTrue(hasattr(A, 'do_normalize' ) ) self.assertTrue(hasattr(A, 'do_resize' ) ) self.assertTrue(hasattr(A, 'size' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad, A ) SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A, Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A ) SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A ) for image in image_inputs: self.assertIsInstance(A, np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify orig_size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : int = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify masks SCREAMING_SNAKE_CASE : Optional[int] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
28
1
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase_ = False class _a ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion', torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt', image=A, text_to_image_strength=0.75, generator=A, guidance_scale=7.5, num_inference_steps=2, output_type='numpy', ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = VersatileDiffusionPipeline.from_pretrained(A, torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Dict = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.dual_guided( prompt='first prompt', image=A, text_to_image_strength=0.75, generator=A, guidance_scale=7.5, num_inference_steps=2, output_type='numpy', ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion', torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = 'cyberpunk 2077' SCREAMING_SNAKE_CASE : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe.dual_guided( prompt=A, image=A, text_to_image_strength=0.75, generator=A, guidance_scale=7.5, num_inference_steps=50, output_type='numpy', ).images SCREAMING_SNAKE_CASE : Any = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Optional[Any] = 'A painting of a squirrel eating a burger ' SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.text_to_image( prompt=A, generator=A, guidance_scale=7.5, num_inference_steps=50, output_type='numpy' ).images SCREAMING_SNAKE_CASE : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[str] = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : List[str] = pipe.image_variation(A, generator=A, output_type='numpy' ).images SCREAMING_SNAKE_CASE : Any = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
28
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) SCREAMING_SNAKE_CASE : int = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[int] = False A : Dict = False A : List[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = 5 self.assertEqual(len(A ), A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : int = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[str] = model.to(A ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, A )
28
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase_ ( unittest.TestCase ): def A ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __magic_name__ :Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowerCAmelCase , cache_dir=__lowerCAmelCase ) __magic_name__ :Dict = [t[-1] for t in os.walk(os.path.join(__lowerCAmelCase , os.listdir(__lowerCAmelCase )[0] , '''snapshots''' ) )] __magic_name__ :Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class lowerCamelCase_ ( unittest.TestCase ): def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowerCAmelCase ) __magic_name__ :Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __magic_name__ :int = jax.random.PRNGKey(0 ) __magic_name__ :Any = 4 __magic_name__ :str = jax.device_count() __magic_name__ :List[str] = num_samples * [prompt] __magic_name__ :str = pipeline.prepare_inputs(__lowerCAmelCase ) # shard inputs and rng __magic_name__ :List[Any] = replicate(__lowerCAmelCase ) __magic_name__ :int = jax.random.split(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :int = shard(__lowerCAmelCase ) __magic_name__ :Any = pipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , jit=__lowerCAmelCase ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(__lowerCAmelCase , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 __magic_name__ :List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__lowerCAmelCase ) == num_samples def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :str = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__lowerCAmelCase ) __magic_name__ :Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __magic_name__ :List[str] = jax.random.PRNGKey(0 ) __magic_name__ :str = 5_0 __magic_name__ :Tuple = jax.device_count() __magic_name__ :Any = num_samples * [prompt] __magic_name__ :Dict = pipeline.prepare_inputs(__lowerCAmelCase ) # shard inputs and rng __magic_name__ :List[Any] = replicate(__lowerCAmelCase ) __magic_name__ :List[str] = jax.random.split(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Union[str, Any] = shard(__lowerCAmelCase ) __magic_name__ :Optional[int] = pipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , jit=__lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(__lowerCAmelCase , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowerCAmelCase ) __magic_name__ :List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __magic_name__ :Tuple = jax.random.PRNGKey(0 ) __magic_name__ :str = 5_0 __magic_name__ :Optional[Any] = jax.device_count() __magic_name__ :List[Any] = num_samples * [prompt] __magic_name__ :List[Any] = pipeline.prepare_inputs(__lowerCAmelCase ) # shard inputs and rng __magic_name__ :Dict = replicate(__lowerCAmelCase ) __magic_name__ :Tuple = jax.random.split(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[Any] = shard(__lowerCAmelCase ) __magic_name__ :List[str] = pipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , jit=__lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__lowerCAmelCase , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) __magic_name__ :Union[str, Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __magic_name__ :Any = jax.random.PRNGKey(0 ) __magic_name__ :Any = 5_0 __magic_name__ :Optional[Any] = jax.device_count() __magic_name__ :Optional[Any] = num_samples * [prompt] __magic_name__ :Optional[Any] = pipeline.prepare_inputs(__lowerCAmelCase ) # shard inputs and rng __magic_name__ :Tuple = replicate(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = jax.random.split(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Tuple = shard(__lowerCAmelCase ) __magic_name__ :Tuple = pipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , jit=__lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__lowerCAmelCase , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def A ( self ): """simple docstring""" __magic_name__ :Dict = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) __magic_name__ , __magic_name__ :Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__lowerCAmelCase , safety_checker=__lowerCAmelCase , ) __magic_name__ :Any = scheduler.create_state() __magic_name__ :Optional[int] = scheduler_state __magic_name__ :int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __magic_name__ :Tuple = jax.random.PRNGKey(0 ) __magic_name__ :Any = 5_0 __magic_name__ :Dict = jax.device_count() __magic_name__ :List[Any] = num_samples * [prompt] __magic_name__ :Optional[int] = pipeline.prepare_inputs(__lowerCAmelCase ) # shard inputs and rng __magic_name__ :List[str] = replicate(__lowerCAmelCase ) __magic_name__ :Tuple = jax.random.split(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :int = shard(__lowerCAmelCase ) __magic_name__ :Tuple = pipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , jit=__lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(__lowerCAmelCase , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __magic_name__ :str = jax.device_count() __magic_name__ :str = num_samples * [prompt] __magic_name__ :Dict = jax.random.split(jax.random.PRNGKey(0 ) , __lowerCAmelCase ) __magic_name__ , __magic_name__ :Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowerCAmelCase , ) __magic_name__ :Any = replicate(__lowerCAmelCase ) __magic_name__ :Optional[int] = pipeline.prepare_inputs(__lowerCAmelCase ) __magic_name__ :Any = shard(__lowerCAmelCase ) __magic_name__ :int = pipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , jit=__lowerCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __magic_name__ :List[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention __magic_name__ , __magic_name__ :Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowerCAmelCase , use_memory_efficient_attention=__lowerCAmelCase , ) __magic_name__ :List[Any] = replicate(__lowerCAmelCase ) __magic_name__ :Any = pipeline.prepare_inputs(__lowerCAmelCase ) __magic_name__ :Any = shard(__lowerCAmelCase ) __magic_name__ :Any = pipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , jit=__lowerCAmelCase ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __magic_name__ :List[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowerCamelCase (_a ): def __init__( self: Optional[int],A_: Dict,A_: List[str]=13,A_: List[str]=7,A_: Dict=True,A_: Any=True,A_: Optional[Any]=False,A_: Any=True,A_: List[Any]=99,A_: Optional[Any]=32,A_: Union[str, Any]=5,A_: str=4,A_: Optional[int]=64,A_: Tuple="gelu",A_: Optional[int]=0.1,A_: str=0.1,A_: Union[str, Any]=512,A_: Optional[Any]=16,A_: Any=2,A_: Dict=0.0_2,A_: Dict=3,A_: List[Any]=4,A_: Optional[Any]=None,A_: Tuple=2,A_: Optional[int]=2,A_: int=2,A_: List[Any]=2,A_: Optional[Any]=4,A_: Any=1,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope __UpperCamelCase = q_groups __UpperCamelCase = k_groups __UpperCamelCase = v_groups __UpperCamelCase = post_attention_groups __UpperCamelCase = intermediate_groups __UpperCamelCase = output_groups def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size],self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size],self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self: List[Any] ): '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def snake_case_ ( self: List[str],A_: str,A_: str,A_: str,A_: List[Any],A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = SqueezeBertModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self: int,A_: Optional[Any],A_: List[Any],A_: List[str],A_: List[str],A_: Optional[Any],A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = SqueezeBertForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self: str,A_: str,A_: Union[str, Any],A_: Tuple,A_: Any,A_: List[str],A_: Dict ): '''simple docstring''' __UpperCamelCase = SqueezeBertForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model( A_,attention_mask=A_,start_positions=A_,end_positions=A_ ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case_ ( self: Optional[int],A_: Optional[int],A_: List[str],A_: int,A_: Optional[int],A_: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = SqueezeBertForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def snake_case_ ( self: str,A_: Any,A_: str,A_: Optional[Any],A_: Optional[Any],A_: Optional[Any],A_: Dict ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = SqueezeBertForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_,attention_mask=A_,labels=A_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self: Union[str, Any],A_: Tuple,A_: str,A_: Any,A_: Union[str, Any],A_: Dict,A_: str ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = SqueezeBertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() __UpperCamelCase = model( A_,attention_mask=A_,labels=A_,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase), (__UpperCamelCase), (__UpperCamelCase), (__UpperCamelCase), (__UpperCamelCase), (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _lowercase = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase = False _lowercase = True _lowercase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = SqueezeBertModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,dim=37 ) def snake_case_ ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*A_ ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*A_ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*A_ ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*A_ ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*A_ ) @slow def snake_case_ ( self: int ): '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = SqueezeBertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_sentencepiece @require_tokenizers @require_torch class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) __UpperCamelCase = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) __UpperCamelCase = model(A_ )[0] __UpperCamelCase = torch.Size((1, 3) ) self.assertEqual(output.shape,A_ ) __UpperCamelCase = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(A_,A_,atol=1E-4 ) )
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures") class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : List[Any] = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Any = HTTPError SCREAMING_SNAKE_CASE : Any = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=A ) as mock_head: SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(A ) @is_staging_test class _a ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor", trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
28
0
from __future__ import annotations from typing import Any class lowerCamelCase__ ( _A): """simple docstring""" pass class lowerCamelCase__ : """simple docstring""" def __init__( self : int , __lowerCAmelCase : Any ) -> None: _A = data _A = None def __iter__( self : int ) -> Optional[Any]: _A = self _A = [] while node: if node in visited: raise ContainsLoopError visited.append(__lowerCAmelCase ) yield node.data _A = node.next_node @property def snake_case_ ( self : str ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCAmelCase_ = Node(1) UpperCAmelCase_ = Node(2) UpperCAmelCase_ = Node(3) UpperCAmelCase_ = Node(4) print(root_node.has_loop) # False UpperCAmelCase_ = root_node.next_node print(root_node.has_loop) # True UpperCAmelCase_ = Node(5) UpperCAmelCase_ = Node(6) UpperCAmelCase_ = Node(5) UpperCAmelCase_ = Node(6) print(root_node.has_loop) # False UpperCAmelCase_ = Node(1) print(root_node.has_loop) # False
2
'''simple docstring''' class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = val SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Union[str, Any] = None def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: SCREAMING_SNAKE_CASE : Optional[int] = Node(A ) else: self.left.insert(A ) elif val > self.val: if self.right is None: SCREAMING_SNAKE_CASE : int = Node(A ) else: self.right.insert(A ) else: SCREAMING_SNAKE_CASE : int = val def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ): """simple docstring""" if root: inorder(root.left ,__UpperCamelCase ) res.append(root.val ) inorder(root.right ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[Any] ): """simple docstring""" if len(__UpperCamelCase ) == 0: return arr SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] ) for i in range(1 ,len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. SCREAMING_SNAKE_CASE : Dict = [] inorder(__UpperCamelCase ,__UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
28
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase : Dict = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } lowerCAmelCase : Optional[int] = {'facebook/blenderbot_small-90M': 5_12} def A_( A : int): UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase = char UpperCamelCase = set(A) return pairs class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , )-> Optional[int]: '''simple docstring''' super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in merges] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = {} @property def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' if token in self.cache: return self.cache[token] UpperCamelCase = re.sub('([.,!?()])' , R' \1' , A_ ) UpperCamelCase = re.sub('(\')' , R' \1 ' , A_ ) UpperCamelCase = re.sub(R'\s{2,}' , ' ' , A_ ) if "\n" in token: UpperCamelCase = token.replace('\n' , ' __newln__' ) UpperCamelCase = token.split(' ' ) UpperCamelCase = [] for token in tokens: if not len(A_ ): continue UpperCamelCase = token.lower() UpperCamelCase = tuple(A_ ) UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCamelCase = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(A_ ): try: UpperCamelCase = word.index(A_ , A_ ) new_word.extend(word[i:j] ) UpperCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(A_ ) UpperCamelCase = new_word if len(A_ ) == 1: break else: UpperCamelCase = get_pairs(A_ ) UpperCamelCase = '@@ '.join(A_ ) UpperCamelCase = word[:-4] UpperCamelCase = word words.append(A_ ) return " ".join(A_ ) def UpperCAmelCase_ ( self , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = re.findall(R'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' UpperCamelCase = token.lower() return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' return self.decoder.get(A_ , self.unk_token ) def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip() return out_string def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) UpperCamelCase = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
3
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ): """simple docstring""" from .. import __version__ SCREAMING_SNAKE_CASE : int = take_from SCREAMING_SNAKE_CASE : Optional[int] = () if not isinstance(args[0] ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) SCREAMING_SNAKE_CASE : Tuple = None if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(__UpperCamelCase ,__UpperCamelCase ): values += (getattr(__UpperCamelCase ,__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE : Any = call_frame.filename SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(__UpperCamelCase ) == 0: return elif len(__UpperCamelCase ) == 1: return values[0] return values
28
0
"""simple docstring""" __UpperCamelCase : Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __UpperCamelCase : Any = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __UpperCamelCase : List[str] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _lowercase = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ = k.replace(UpperCamelCase__ , UpperCamelCase__ ) if k.startswith("""encoder""" ): SCREAMING_SNAKE_CASE__ = k.replace(""".attn""" , """.self_attn""" ) SCREAMING_SNAKE_CASE__ = k.replace("""norm1""" , """self_attn_layer_norm""" ) SCREAMING_SNAKE_CASE__ = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): SCREAMING_SNAKE_CASE__ = k.replace("""norm1""" , """self_attn_layer_norm""" ) SCREAMING_SNAKE_CASE__ = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) SCREAMING_SNAKE_CASE__ = k.replace("""norm3""" , """final_layer_norm""" ) return k def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: SCREAMING_SNAKE_CASE__ = sd.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd SCREAMING_SNAKE_CASE__ = v _lowerCamelCase = ['START'] @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ = model["""model"""] SCREAMING_SNAKE_CASE__ = BlenderbotConfig.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = BlenderbotForConditionalGeneration(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = m.model.state_dict().keys() SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue SCREAMING_SNAKE_CASE__ = rename_state_dict_key(UpperCamelCase__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: SCREAMING_SNAKE_CASE__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCamelCase__ ) m.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) m.half() m.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) _lowerCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
6
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger() @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : nn.Module UpperCAmelCase : List[nn.Module] = field(default_factory=__lowerCAmelCase ) UpperCAmelCase : list = field(default_factory=__lowerCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Tensor , _UpperCAmelCase : Tensor ): _A = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_UpperCAmelCase ) def __call__( self : List[str] , _UpperCAmelCase : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def lowerCAmelCase_ ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : nn.Module UpperCAmelCase : nn.Module UpperCAmelCase : int = 0 UpperCAmelCase : List = field(default_factory=__lowerCAmelCase ) UpperCAmelCase : List = field(default_factory=__lowerCAmelCase ) def __call__( self : Dict , _UpperCAmelCase : Tensor ): _A = Tracker(self.dest )(_UpperCAmelCase ).parametrized _A = Tracker(self.src )(_UpperCAmelCase ).parametrized _A = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) ) _A = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise Exception( F'''Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while''' F''' destination module has {len(_UpperCAmelCase )}.''' ) for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def _snake_case ( _snake_case : str , _snake_case : ResNetConfig , _snake_case : Path , _snake_case : bool = True ) -> Union[str, Any]: '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): _A = timm.create_model(_snake_case , pretrained=_snake_case ).eval() _A = ResNetForImageClassification(_snake_case ).eval() _A = ModuleTransfer(src=_snake_case , dest=_snake_case ) _A = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_snake_case ) assert torch.allclose(from_model(_snake_case ) , our_model(_snake_case ).logits ), "The model logits don't match the original one." _A = F'''resnet{"-".join(name.split("resnet" ) )}''' print(_snake_case ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_snake_case , ) # we can use the convnext one _A = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_snake_case , ) print(F'''Pushed {checkpoint_name}''' ) def _snake_case ( _snake_case : Path , _snake_case : str = None , _snake_case : bool = True ) -> Tuple: '''simple docstring''' _A = 'imagenet-1k-id2label.json' _A = 10_00 _A = (1, num_labels) _A = 'huggingface/label-files' _A = num_labels _A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) _A = {int(_snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} _A = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case ) _A = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_snake_case , names_to_config[model_name] , _snake_case , _snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_snake_case , _snake_case , _snake_case , _snake_case ) return config, expected_shape if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) a = parser.parse_args() a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
7
'''simple docstring''' from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = None def lowercase__( ): """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = left_node q.put(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = right_node q.put(__UpperCamelCase ) raise def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : List[Any] = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : Any = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : int = node while n or stack: while n: stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = n.left SCREAMING_SNAKE_CASE : Tuple = stack.pop() print(n.data ,end=',' ) SCREAMING_SNAKE_CASE : str = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ): """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
28
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Any = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __lowerCAmelCase : """simple docstring""" def _a ( self : Dict , _snake_case : List[str] ): """simple docstring""" raise NotImplementedError() def _a ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError() class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , _snake_case : "AutoTokenizer" , _snake_case : bool = False , **_snake_case : Tuple ): """simple docstring""" A__ = tokenizer A__ = skip_prompt A__ = decode_kwargs # variables used in the streaming process A__ = [] A__ = 0 A__ = True def _a ( self : Optional[int] , _snake_case : str ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: A__ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: A__ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) A__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): A__ = text[self.print_len :] A__ = [] A__ = 0 # If the last token is a CJK character, we print the characters. elif len(_snake_case ) > 0 and self._is_chinese_char(ord(text[-1] ) ): A__ = text[self.print_len :] self.print_len += len(_snake_case ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: A__ = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(_snake_case ) self.on_finalized_text(_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" if len(self.token_cache ) > 0: A__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) A__ = text[self.print_len :] A__ = [] A__ = 0 else: A__ = '' A__ = True self.on_finalized_text(_snake_case , stream_end=_snake_case ) def _a ( self : Optional[int] , _snake_case : str , _snake_case : bool = False ): """simple docstring""" print(_snake_case , flush=_snake_case , end='' if not stream_end else None ) def _a ( self : Any , _snake_case : str ): """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : "AutoTokenizer" , _snake_case : bool = False , _snake_case : Optional[float] = None , **_snake_case : str ): """simple docstring""" super().__init__(_snake_case , _snake_case , **_snake_case ) A__ = Queue() A__ = None A__ = timeout def _a ( self : Optional[int] , _snake_case : str , _snake_case : bool = False ): """simple docstring""" self.text_queue.put(_snake_case , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[int] ): """simple docstring""" return self def _a ( self : Dict ): """simple docstring""" A__ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
9
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "deta" UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] , _A : Tuple=None , _A : Dict=900 , _A : Union[str, Any]=2048 , _A : Union[str, Any]=6 , _A : List[str]=2048 , _A : str=8 , _A : Optional[int]=6 , _A : List[str]=1024 , _A : Optional[int]=8 , _A : List[str]=0.0 , _A : List[str]=True , _A : Any="relu" , _A : Any=256 , _A : Optional[int]=0.1 , _A : str=0.0 , _A : Dict=0.0 , _A : str=0.02 , _A : Union[str, Any]=1.0 , _A : Union[str, Any]=True , _A : Any=False , _A : Union[str, Any]="sine" , _A : int=5 , _A : Optional[Any]=4 , _A : Any=4 , _A : Union[str, Any]=True , _A : Dict=300 , _A : List[Any]=True , _A : Any=True , _A : Tuple=1 , _A : Optional[int]=5 , _A : str=2 , _A : Tuple=1 , _A : Tuple=1 , _A : Any=5 , _A : Tuple=2 , _A : str=0.1 , _A : List[str]=0.25 , **_A : Dict , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_A , _A ): _UpperCamelCase = backbone_config.pop('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(_A ) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCamelCase_ ( self : Optional[int] ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self : int ): return self.d_model def UpperCamelCase_ ( self : int ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __A ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = JukeboxTokenizer __lowerCamelCase : Dict = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def a__ (self ) -> Dict: """simple docstring""" import torch _a = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) _a = tokenizer(**self.metas )['''input_ids'''] # fmt: off _a = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def a__ (self ) -> Optional[int]: """simple docstring""" import torch _a = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) _a = tokenizer(**self.metas )['''input_ids'''] # fmt: off _a = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
11
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
28
0
import os lowerCamelCase__ : int = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0} def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : List[str] = 0 while index < len(lowercase_ ) - 1: lowercase__ : str = SYMBOLS[numerals[index]] lowercase__ : str = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : List[Any] = """""" lowercase__ : List[Any] = num // 10_00 numerals += m_count * "M" num %= 10_00 lowercase__ : List[Any] = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 lowercase__ : Optional[Any] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase ( lowercase_ = "/p089_roman.txt" ) -> int: '''simple docstring''' lowercase__ : Optional[int] = 0 with open(os.path.dirname(lowercase_ ) + roman_numerals_filename ) as filea: lowercase__ : int = filea.readlines() for line in lines: lowercase__ : Optional[int] = line.strip() lowercase__ : Dict = parse_roman_numerals(lowercase_ ) lowercase__ : int = generate_roman_numerals(lowercase_ ) savings += len(lowercase_ ) - len(lowercase_ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
12
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : List[Any] = tempfile.mkdtemp() # fmt: off __lowerCamelCase : Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on __lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __lowerCamelCase : Tuple = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } __lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase : List[str] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : Optional[int] = self.get_image_processor() __lowerCamelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCamelCase : Optional[int] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __lowerCamelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.get_image_processor() __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : int = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.prepare_image_inputs() __lowerCamelCase : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Any = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = 'lower newer' __lowerCamelCase : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : int = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = 'lower newer' __lowerCamelCase : List[str] = self.prepare_image_inputs() __lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Tuple = self.get_image_processor() __lowerCamelCase : int = self.get_tokenizer() __lowerCamelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : int = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = self.get_image_processor() __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : int = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = 'lower newer' __lowerCamelCase : int = self.prepare_image_inputs() __lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
13
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''PerceiverFeatureExtractor'''] a__ = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A : Union[str, Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = v.to_dict() return d
15
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
0
import os def __a ( ): with open(os.path.dirname(A__ ) + "/p022_names.txt" ) as file: SCREAMING_SNAKE_CASE = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE = names.replace("\"" , "" ).split("," ) names.sort() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 for i, name in enumerate(A__ ): for letter in name: name_score += ord(A__ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE = 0 return total_score if __name__ == "__main__": print(solution())
16
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
0
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __A : Dict = nums[0] for i in range(1 ,len(a__ ) ): __A : List[Any] = nums[i] __A : Optional[Any] = max(a__ ,ans + num ,a__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[Any] = int(input('''Enter number of elements : ''').strip()) UpperCAmelCase_ : Optional[int] = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
17
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
'''simple docstring''' import datasets from .evaluate import evaluate _SCREAMING_SNAKE_CASE = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" _SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" _SCREAMING_SNAKE_CASE = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _lowerCAmelCase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _lowerCAmelCase = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
18
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__snake_case, __snake_case ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(__snake_case ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
19
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Any = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_pad def UpperCamelCase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0] if isinstance(A, Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A, 'image_mean' ) ) self.assertTrue(hasattr(A, 'image_std' ) ) self.assertTrue(hasattr(A, 'do_normalize' ) ) self.assertTrue(hasattr(A, 'do_resize' ) ) self.assertTrue(hasattr(A, 'size' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad, A ) SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A, Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A ) SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A ) for image in image_inputs: self.assertIsInstance(A, np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify orig_size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : int = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify masks SCREAMING_SNAKE_CASE : Optional[int] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
28
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _lowercase( __a : Dict ): a__ =SwinConfig() a__ =swin_name.split('_' ) a__ =name_split[1] a__ =int(name_split[4] ) a__ =int(name_split[3][-1] ) if model_size == "tiny": a__ =96 a__ =(2, 2, 6, 2) a__ =(3, 6, 12, 24) elif model_size == "small": a__ =96 a__ =(2, 2, 18, 2) a__ =(3, 6, 12, 24) elif model_size == "base": a__ =128 a__ =(2, 2, 18, 2) a__ =(4, 8, 16, 32) else: a__ =192 a__ =(2, 2, 18, 2) a__ =(6, 12, 24, 48) if "in22k" in swin_name: a__ =2_1841 else: a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =img_size a__ =num_classes a__ =embed_dim a__ =depths a__ =num_heads a__ =window_size return config def _lowercase( __a : Any ): if "patch_embed.proj" in name: a__ =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a__ =name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a__ ='encoder.' + name if "attn.proj" in name: a__ =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a__ =name.replace('attn' , 'attention.self' ) if "norm1" in name: a__ =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a__ =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a__ =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a__ =name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a__ ='layernorm.weight' if name == "norm.bias": a__ ='layernorm.bias' if "head" in name: a__ =name.replace('head' , 'classifier' ) else: a__ ='swin.' + name return name def _lowercase( __a : List[str] , __a : List[str] ): for key in orig_state_dict.copy().keys(): a__ =orig_state_dict.pop(__a ) if "mask" in key: continue elif "qkv" in key: a__ =key.split('.' ) a__ =int(key_split[1] ) a__ =int(key_split[3] ) a__ =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a__ =val[:dim, :] a__ =val[ dim : dim * 2, : ] a__ =val[-dim:, :] else: a__ =val[ :dim ] a__ =val[ dim : dim * 2 ] a__ =val[ -dim: ] else: a__ =val return orig_state_dict def _lowercase( __a : List[str] , __a : List[Any] ): a__ =timm.create_model(__a , pretrained=__a ) timm_model.eval() a__ =get_swin_config(__a ) a__ =SwinForImageClassification(__a ) model.eval() a__ =convert_state_dict(timm_model.state_dict() , __a ) model.load_state_dict(__a ) a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a__ =Image.open(requests.get(__a , stream=__a ).raw ) a__ =image_processor(images=__a , return_tensors='pt' ) a__ =timm_model(inputs['pixel_values'] ) a__ =model(**__a ).logits assert torch.allclose(__a , __a , atol=1e-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase: Tuple = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase_ : Any = 4 UpperCAmelCase_ : List[str] = 3 class __A ( UpperCamelCase__ ): pass def lowerCAmelCase_ ( lowerCamelCase ): for shard in shards: for i in range(lowerCamelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( ): __magic_name__ : Tuple =int(os.environ["""RANK"""] ) __magic_name__ : List[Any] =int(os.environ["""WORLD_SIZE"""] ) __magic_name__ : Optional[Any] =ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCamelCase ) parser.add_argument("""--local_rank""" , type=lowerCamelCase ) parser.add_argument("""--num_workers""" , type=lowerCamelCase , default=0 ) __magic_name__ : List[str] =parser.parse_args() __magic_name__ : int =args.streaming __magic_name__ : Optional[int] =args.num_workers __magic_name__ : str ={"""shards""": [F"shard_{shard_idx}" for shard_idx in range(lowerCamelCase )]} __magic_name__ : Optional[Any] =IterableDataset.from_generator(lowerCamelCase , gen_kwargs=lowerCamelCase ) if not streaming: __magic_name__ : Dict =Dataset.from_list(list(lowerCamelCase ) ) __magic_name__ : Tuple =split_dataset_by_node(lowerCamelCase , rank=lowerCamelCase , world_size=lowerCamelCase ) __magic_name__ : List[Any] =torch.utils.data.DataLoader(lowerCamelCase , num_workers=lowerCamelCase ) __magic_name__ : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD __magic_name__ : Tuple =full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __magic_name__ : Union[str, Any] =sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
21
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) SCREAMING_SNAKE_CASE : int = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[int] = False A : Dict = False A : List[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = 5 self.assertEqual(len(A ), A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : int = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[str] = model.to(A ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, A )
28
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A : lowercase_ = 42 lowercase_ = 42 class A : def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str: """simple docstring""" _a = [[] for _ in range(lowerCAmelCase_ )] _a = size def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" return self._size def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict: """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None: """simple docstring""" _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
22
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
0
def _snake_case (__lowercase): if not isinstance(__lowercase , __lowercase): raise TypeError('only integers accepted as input') else: UpperCamelCase_ = str(abs(__lowercase)) UpperCamelCase_ = [list(__lowercase) for char in range(len(__lowercase))] for index in range(len(__lowercase)): num_transpositions[index].pop(__lowercase) return max( int(''.join(list(__lowercase))) for transposition in num_transpositions) if __name__ == "__main__": __import__("""doctest""").testmod()
23
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures") class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : List[Any] = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Any = HTTPError SCREAMING_SNAKE_CASE : Any = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=A ) as mock_head: SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(A ) @is_staging_test class _a ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor", trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
28
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''post_extract_proj''': '''feature_projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.upsample.0''': '''encoder.upsample.projection''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def _UpperCamelCase (_lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] )-> str: '''simple docstring''' for attribute in key.split('''.''' ): __snake_case = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case = value elif weight_type == "weight_g": __snake_case = value elif weight_type == "weight_v": __snake_case = value elif weight_type == "bias": __snake_case = value else: __snake_case = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _UpperCamelCase (_lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] )-> List[str]: '''simple docstring''' __snake_case = [] __snake_case = fairseq_model.state_dict() __snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case = True else: for key, mapped_key in MAPPING.items(): __snake_case = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case = True if "*" in mapped_key: __snake_case = name.split(_lowerCamelCase )[0].split('''.''' )[-2] __snake_case = mapped_key.replace('''*''' , _lowerCamelCase ) if "weight_g" in name: __snake_case = '''weight_g''' elif "weight_v" in name: __snake_case = '''weight_v''' elif "weight" in name: __snake_case = '''weight''' elif "bias" in name: __snake_case = '''bias''' else: __snake_case = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] )-> Optional[Any]: '''simple docstring''' __snake_case = full_name.split('''conv_layers.''' )[-1] __snake_case = name.split('''.''' ) __snake_case = int(items[0] ) __snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] )-> Union[str, Any]: '''simple docstring''' __snake_case = SEWConfig() if is_finetuned: __snake_case = model.wav_encoder.wav_model.cfg else: __snake_case = model.cfg __snake_case = fs_config.conv_bias __snake_case = eval(fs_config.conv_feature_layers ) __snake_case = [x[0] for x in conv_layers] __snake_case = [x[1] for x in conv_layers] __snake_case = [x[2] for x in conv_layers] __snake_case = '''gelu''' __snake_case = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' __snake_case = 0.0 __snake_case = fs_config.activation_fn.name __snake_case = fs_config.encoder_embed_dim __snake_case = 0.02 __snake_case = fs_config.encoder_ffn_embed_dim __snake_case = 1E-5 __snake_case = fs_config.encoder_layerdrop __snake_case = fs_config.encoder_attention_heads __snake_case = fs_config.conv_pos_groups __snake_case = fs_config.conv_pos __snake_case = len(_lowerCamelCase ) __snake_case = fs_config.encoder_layers __snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case = model.cfg __snake_case = fs_config.final_dropout __snake_case = fs_config.layerdrop __snake_case = fs_config.activation_dropout __snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case = fs_config.attention_dropout __snake_case = fs_config.dropout_input __snake_case = fs_config.dropout __snake_case = fs_config.mask_channel_length __snake_case = fs_config.mask_channel_prob __snake_case = fs_config.mask_length __snake_case = fs_config.mask_prob __snake_case = '''Wav2Vec2FeatureExtractor''' __snake_case = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[Any]=True )-> int: '''simple docstring''' if is_finetuned: __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case = convert_config(model[0] , _lowerCamelCase ) __snake_case = model[0].eval() __snake_case = True if config.feat_extract_norm == '''layer''' else False __snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case = target_dict.pad_index __snake_case = target_dict.bos_index __snake_case = target_dict.pad_index __snake_case = target_dict.bos_index __snake_case = target_dict.eos_index __snake_case = len(target_dict.symbols ) __snake_case = os.path.join(_lowerCamelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCamelCase , ) __snake_case = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case = SEWForCTC(_lowerCamelCase ) else: __snake_case = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCAmelCase_ : str = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
24
'''simple docstring''' class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = val SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Union[str, Any] = None def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: SCREAMING_SNAKE_CASE : Optional[int] = Node(A ) else: self.left.insert(A ) elif val > self.val: if self.right is None: SCREAMING_SNAKE_CASE : int = Node(A ) else: self.right.insert(A ) else: SCREAMING_SNAKE_CASE : int = val def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ): """simple docstring""" if root: inorder(root.left ,__UpperCamelCase ) res.append(root.val ) inorder(root.right ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[Any] ): """simple docstring""" if len(__UpperCamelCase ) == 0: return arr SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] ) for i in range(1 ,len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. SCREAMING_SNAKE_CASE : Dict = [] inorder(__UpperCamelCase ,__UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
28
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(a , "num_attention_heads" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a : List[str] , a : List[str]=13 , a : Union[str, Any]=64 , a : List[Any]=3 , a : Dict=3 , a : int=2 , a : str=1 , a : str=16 , a : Union[str, Any]=[128, 256, 384] , a : int=[4, 6, 8] , a : List[Any]=[2, 3, 4] , a : Dict=[16, 16, 16] , a : Union[str, Any]=0 , a : Any=[2, 2, 2] , a : Tuple=[2, 2, 2] , a : Optional[Any]=0.02 , a : Optional[int]=True , a : List[str]=True , a : Dict=2 , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = stride SCREAMING_SNAKE_CASE : Optional[Any] = padding SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : Dict = key_dim SCREAMING_SNAKE_CASE : Tuple = drop_path_rate SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : int = attention_ratio SCREAMING_SNAKE_CASE : int = mlp_ratio SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : List[Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : Any = initializer_range def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __UpperCamelCase ( self : int , a : Any , a : Tuple , a : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = LevitModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a ) SCREAMING_SNAKE_CASE : List[str] = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Optional[int] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __UpperCamelCase ( self : Any , a : List[Any] , a : Union[str, Any] , a : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = LevitForImageClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = LevitModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : str ) -> str: """simple docstring""" return @unittest.skip(reason="Levit does not use inputs_embeds" ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" pass @unittest.skip(reason="Levit does not output attentions" ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(a : Dict , a : List[Any] , a : str ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.hidden_states SCREAMING_SNAKE_CASE : Tuple = len(self.model_tester.depths ) + 1 self.assertEqual(len(a ) , a ) SCREAMING_SNAKE_CASE : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Optional[int] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE : Any = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(a , a , a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : Tuple , a : int , a : str , a : List[str]=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE : str = model_class(a ) model.to(a ) model.train() SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(a , a , return_labels=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**a ).loss loss.backward() def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = True for model_class in self.all_model_classes: if model_class in get_values(a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE : Any = model_class(a ) model.gradient_checkpointing_enable() model.to(a ) model.train() SCREAMING_SNAKE_CASE : str = self._prepare_for_class(a , a , return_labels=a ) SCREAMING_SNAKE_CASE : Dict = model(**a ).loss loss.backward() def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[int] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE : str = problem_type["title"] SCREAMING_SNAKE_CASE : List[str] = problem_type["num_labels"] SCREAMING_SNAKE_CASE : str = model_class(a ) model.to(a ) model.train() SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(a , a , return_labels=a ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE : List[str] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a ) as warning_list: SCREAMING_SNAKE_CASE : List[Any] = model(**a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = LevitModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( a ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**a ) # verify the logits SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([1.0448, -0.3745, -1.8317] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
25
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ): """simple docstring""" from .. import __version__ SCREAMING_SNAKE_CASE : int = take_from SCREAMING_SNAKE_CASE : Optional[int] = () if not isinstance(args[0] ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) SCREAMING_SNAKE_CASE : Tuple = None if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(__UpperCamelCase ,__UpperCamelCase ): values += (getattr(__UpperCamelCase ,__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE : Any = call_frame.filename SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(__UpperCamelCase ) == 0: return elif len(__UpperCamelCase ) == 1: return values[0] return values
28
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _A ( __lowercase ): lowercase__: Any = '''bloom''' lowercase__: List[str] = ['''past_key_values'''] lowercase__: Any = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self : str , __magic_name__ : str=25_08_80 , __magic_name__ : Optional[Any]=64 , __magic_name__ : Dict=2 , __magic_name__ : Optional[int]=8 , __magic_name__ : Optional[int]=1E-5 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=1 , __magic_name__ : int=2 , __magic_name__ : List[str]=False , __magic_name__ : str=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=1 , __magic_name__ : Any=False , **__magic_name__ : List[Any] , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = vocab_size # Backward compatibility with n_embed kwarg __snake_case : List[str] = kwargs.pop("""n_embed""" , __magic_name__ ) __snake_case : Union[str, Any] = hidden_size if n_embed is None else n_embed __snake_case : Union[str, Any] = n_layer __snake_case : Dict = n_head __snake_case : Dict = layer_norm_epsilon __snake_case : int = initializer_range __snake_case : Optional[int] = use_cache __snake_case : List[str] = pretraining_tp __snake_case : int = apply_residual_connection_post_layernorm __snake_case : str = hidden_dropout __snake_case : Tuple = attention_dropout __snake_case : int = bos_token_id __snake_case : Any = eos_token_id __snake_case : Union[str, Any] = slow_but_exact super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): lowercase__: Optional[int] = version.parse('''1.12''' ) def __init__( self : Optional[int] , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Optional[int]: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : str = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" , inverted_values_shape=__magic_name__ ) __snake_case : List[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Any = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return self._config.n_head @property def lowercase__ ( self : Optional[int] ) -> float: """simple docstring""" return 1E-3 def lowercase__ ( self : List[Any] , __magic_name__ : "PreTrainedTokenizer" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : int = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : List[str] = self._config.hidden_size // self.num_attention_heads __snake_case : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __snake_case : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __snake_case : Dict = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Union[str, Any] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Any = ordered_inputs["""attention_mask"""].dtype __snake_case : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" return 13
26
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=2 , snake_case_=True , snake_case_=False , snake_case_=10 , snake_case_=3 , snake_case_=32 * 8 , snake_case_=32 * 8 , snake_case_=4 , snake_case_=64 , ): _A = parent _A = batch_size _A = is_training _A = use_auxiliary_loss _A = num_queries _A = num_channels _A = min_size _A = max_size _A = num_labels _A = hidden_dim _A = hidden_dim def lowerCAmelCase__ ( self ): _A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case_ ) _A = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case_ ) _A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case_ ) > 0.5 ).float() _A = (torch.rand((self.batch_size, self.num_labels) , device=snake_case_ ) > 0.5).long() _A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase__ ( self ): _A = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _A = self.num_queries _A = self.num_labels _A = [1, 1, 1, 1] _A = self.num_channels _A = 64 _A = 128 _A = self.hidden_dim _A = self.hidden_dim _A = self.hidden_dim return config def lowerCAmelCase__ ( self ): _A, _A, _A, _A, _A = self.prepare_config_and_inputs() _A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = output.encoder_hidden_states _A = output.pixel_decoder_hidden_states _A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , config.decoder_layers ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False ): with torch.no_grad(): _A = MaskaFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) _A = model(snake_case_ , output_hidden_states=snake_case_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = MaskaFormerForUniversalSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() def comm_check_on_output(snake_case_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _A = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) _A = model(snake_case_ ) comm_check_on_output(snake_case_ ) _A = model( pixel_values=snake_case_ , pixel_mask=snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) comm_check_on_output(snake_case_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __magic_name__ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = MaskaFormerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowerCAmelCase__ ( self ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _A = MaskaFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase__ ( self ): _A = (self.model_tester.min_size,) * 2 _A = { 'pixel_values': torch.randn((2, 3, *size) , device=snake_case_ ), 'mask_labels': torch.randn((2, 10, *size) , device=snake_case_ ), 'class_labels': torch.zeros(2 , 10 , device=snake_case_ ).long(), } _A = self.model_tester.get_config() _A = MaskaFormerForUniversalSegmentation(snake_case_ ).to(snake_case_ ) _A = model(**snake_case_ ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ).to(snake_case_ ) _A = model(**snake_case_ , output_attentions=snake_case_ ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase__ ( self ): if not self.model_tester.is_training: return _A = self.all_model_classes[1] _A, _A, _A, _A, _A = self.model_tester.prepare_config_and_inputs() _A = model_class(snake_case_ ) model.to(snake_case_ ) model.train() _A = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ).loss loss.backward() def lowerCAmelCase__ ( self ): _A = self.all_model_classes[1] _A, _A, _A, _A, _A = self.model_tester.prepare_config_and_inputs() _A = True _A = True _A = model_class(snake_case_ ).to(snake_case_ ) model.train() _A = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) _A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A : Optional[Any] = 1E-4 def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase__ ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase__ ( self ): _A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case_ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 384, 384) ) with torch.no_grad(): _A = model(**snake_case_ ) _A = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) _A = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) _A = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowerCAmelCase__ ( self ): _A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case_ ).eval() _A = self.default_image_processor _A = prepare_img() _A = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 384, 384) ) with torch.no_grad(): _A = model(**snake_case_ ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _A = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _A = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowerCAmelCase__ ( self ): _A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case_ ).eval() _A = self.default_image_processor _A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) _A = inputs['pixel_values'].to(snake_case_ ) _A = [el.to(snake_case_ ) for el in inputs['mask_labels']] _A = [el.to(snake_case_ ) for el in inputs['class_labels']] with torch.no_grad(): _A = model(**snake_case_ ) self.assertTrue(outputs.loss is not None )
27
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase_ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } lowerCamelCase_ = f"{src_lang}-{tgt_lang}" lowerCamelCase_ = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) print(f"Generating {path}" ) with open(lowerCAmelCase__ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(lowerCAmelCase__ ) # make sure we are under the root of the project A_ = Path(__file__).resolve().parent.parent.parent A_ = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: A_ = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
29
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
0
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = len(_lowercase ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase_ : int = 0 print(_lowercase , end=''',''' ) # Consider rest of the activities for j in range(_lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_lowercase , end=''',''' ) UpperCAmelCase_ : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() __a = [1, 3, 0, 5, 8, 5] __a = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
30
'''simple docstring''' from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = None def lowercase__( ): """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = left_node q.put(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = right_node q.put(__UpperCamelCase ) raise def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : List[Any] = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : Any = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : int = node while n or stack: while n: stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = n.left SCREAMING_SNAKE_CASE : Tuple = stack.pop() print(n.data ,end=',' ) SCREAMING_SNAKE_CASE : str = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ): """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
28
0
from __future__ import annotations import requests lowerCamelCase__ : int = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = "new" , __UpperCAmelCase : list | None = None ) -> dict: SCREAMING_SNAKE_CASE_ = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__UpperCAmelCase ) - valid_terms ) ): SCREAMING_SNAKE_CASE_ = f"Invalid search term: {invalid_search_terms}" raise ValueError(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={'User-agent': 'A random string'} , ) if response.status_code == 4_29: raise requests.HTTPError SCREAMING_SNAKE_CASE_ = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__UpperCAmelCase )} SCREAMING_SNAKE_CASE_ = {} for id_ in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
31
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
0
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase_ = TypeVar("T") UpperCAmelCase_ = Union[List[T], Tuple[T, ...]] UpperCAmelCase_ = Union[T, List[T], Dict[str, T]] UpperCAmelCase_ = Union[str, bytes, os.PathLike]
32
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
0
import collections import importlib.util import os import re from pathlib import Path lowerCamelCase__ : str = """src/transformers""" # Matches is_xxx_available() lowerCamelCase__ : List[str] = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCamelCase__ : Any = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase__ : Optional[Any] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCamelCase__ : Dict = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCamelCase__ : Tuple = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase__ : Dict = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase__ : List[Any] = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase__ : Dict = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCamelCase__ : List[Any] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCamelCase__ : Dict = re.compile(r"""^\s*try:""") # Catches a line with else: lowerCamelCase__ : Dict = re.compile(r"""^\s*else:""") def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: if _re_test_backend.search(__lowerCAmelCase ) is None: return None snake_case__ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]: with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ = f.readlines() snake_case__ = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure snake_case__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: snake_case__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): snake_case__ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] snake_case__ = re.findall('''\[([^\]]+)\]''' , __lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue snake_case__ = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: snake_case__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 snake_case__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): snake_case__ = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: snake_case__ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(''', ''' ) snake_case__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: snake_case__ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(''', ''' ) snake_case__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 snake_case__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case__ = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): snake_case__ = lines[line_index] snake_case__ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. snake_case__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): snake_case__ = lines[line_index] snake_case__ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: def find_duplicates(__lowerCAmelCase ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case__ = [] for key in import_dict_objects.keys(): snake_case__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) snake_case__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case__ = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: snake_case__ = os.path.join(__lowerCAmelCase , '''__init__.py''' ) snake_case__ = parse_init(__lowerCAmelCase ) if objects is not None: snake_case__ = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError('''\n\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: snake_case__ = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue snake_case__ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) snake_case__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue snake_case__ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) snake_case__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules lowerCamelCase__ : Optional[int] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: # This is to make sure the transformers module imported is the one in the repo. snake_case__ = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(__lowerCAmelCase , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) snake_case__ = spec.loader.load_module() snake_case__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__lowerCAmelCase ) > 0: snake_case__ = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
33
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6}, } } UpperCamelCase = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_2_8, '''task_specific_params.summarization.min_length''': 1_2, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_4_2, '''task_specific_params.summarization_cnn.min_length''': 5_6, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 6_2, '''task_specific_params.summarization_xsum.min_length''': 1_1, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(lowerCamelCase_) , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = np.random.randn(3 , 4) self.assertTrue(np.allclose(transpose(lowerCamelCase_) , x.transpose())) UpperCamelCase = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(transpose(lowerCamelCase_ , axes=(1, 2, 0)) , x.transpose((1, 2, 0)))) @require_torch def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_) , transpose(lowerCamelCase_).numpy())) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_ , axes=(1, 2, 0)) , transpose(lowerCamelCase_ , axes=(1, 2, 0)).numpy())) @require_tf def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_) , transpose(lowerCamelCase_).numpy())) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_ , axes=(1, 2, 0)) , transpose(lowerCamelCase_ , axes=(1, 2, 0)).numpy())) @require_flax def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_) , np.asarray(transpose(lowerCamelCase_)))) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_ , axes=(1, 2, 0)) , np.asarray(transpose(lowerCamelCase_ , axes=(1, 2, 0))))) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(3 , 4) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (4, 3)) , np.reshape(lowerCamelCase_ , (4, 3)))) UpperCamelCase = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (1_2, 5)) , np.reshape(lowerCamelCase_ , (1_2, 5)))) @require_torch def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (4, 3)) , reshape(lowerCamelCase_ , (4, 3)).numpy())) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (1_2, 5)) , reshape(lowerCamelCase_ , (1_2, 5)).numpy())) @require_tf def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (4, 3)) , reshape(lowerCamelCase_ , (4, 3)).numpy())) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (1_2, 5)) , reshape(lowerCamelCase_ , (1_2, 5)).numpy())) @require_flax def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (4, 3)) , np.asarray(reshape(lowerCamelCase_ , (4, 3))))) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (1_2, 5)) , np.asarray(reshape(lowerCamelCase_ , (1_2, 5))))) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = np.random.randn(1 , 3 , 4) self.assertTrue(np.allclose(squeeze(lowerCamelCase_) , np.squeeze(lowerCamelCase_))) UpperCamelCase = np.random.randn(1 , 4 , 1 , 5) self.assertTrue(np.allclose(squeeze(lowerCamelCase_ , axis=2) , np.squeeze(lowerCamelCase_ , axis=2))) @require_torch def UpperCAmelCase__ ( self) -> int: UpperCamelCase = np.random.randn(1 , 3 , 4) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_) , squeeze(lowerCamelCase_).numpy())) UpperCamelCase = np.random.randn(1 , 4 , 1 , 5) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_ , axis=2) , squeeze(lowerCamelCase_ , axis=2).numpy())) @require_tf def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(1 , 3 , 4) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_) , squeeze(lowerCamelCase_).numpy())) UpperCamelCase = np.random.randn(1 , 4 , 1 , 5) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_ , axis=2) , squeeze(lowerCamelCase_ , axis=2).numpy())) @require_flax def UpperCAmelCase__ ( self) -> str: UpperCamelCase = np.random.randn(1 , 3 , 4) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_) , np.asarray(squeeze(lowerCamelCase_)))) UpperCamelCase = np.random.randn(1 , 4 , 1 , 5) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_ , axis=2) , np.asarray(squeeze(lowerCamelCase_ , axis=2)))) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = np.random.randn(3 , 4) self.assertTrue(np.allclose(expand_dims(lowerCamelCase_ , axis=1) , np.expand_dims(lowerCamelCase_ , axis=1))) @require_torch def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(expand_dims(lowerCamelCase_ , axis=1) , expand_dims(lowerCamelCase_ , axis=1).numpy())) @require_tf def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(expand_dims(lowerCamelCase_ , axis=1) , expand_dims(lowerCamelCase_ , axis=1).numpy())) @require_flax def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(expand_dims(lowerCamelCase_ , axis=1) , np.asarray(expand_dims(lowerCamelCase_ , axis=1))))
34
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
28
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ :Union[str, Any] = 16 a_ :Any = 32 def a ( A__ , A__ , A__ , A__ , A__ = 1_6 ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ : Any = DatasetDict( { '''train''': dataset['''train'''].select(A__ ), '''validation''': dataset['''train'''].select(A__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : List[str] = datasets.map( A__ , batched=A__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Tuple = 8 else: SCREAMING_SNAKE_CASE__ : int = None return tokenizer.pad( A__ , padding='''longest''' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) SCREAMING_SNAKE_CASE__ : Tuple = DataLoader( tokenized_datasets['''test'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader, test_dataloader def a ( A__ , A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Download the dataset SCREAMING_SNAKE_CASE__ : List[Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits SCREAMING_SNAKE_CASE__ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : Union[str, Any] = config['''lr'''] SCREAMING_SNAKE_CASE__ : List[Any] = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(config['''seed'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE__ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(A__ ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE__ : Optional[Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) SCREAMING_SNAKE_CASE__ : List[str] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_fold_dataloaders( A__ , A__ , A__ , A__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Optional[int] = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=1_0_0 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(**A__ ) SCREAMING_SNAKE_CASE__ : Tuple = outputs.loss SCREAMING_SNAKE_CASE__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**A__ ) SCREAMING_SNAKE_CASE__ : Dict = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A__ , references=A__ , ) SCREAMING_SNAKE_CASE__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A__ ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE__ : List[str] = [] for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**A__ ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.logits SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.cat(A__ , dim=0 ) SCREAMING_SNAKE_CASE__ : List[str] = torch.stack(A__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ : List[str] = metric.compute(predictions=A__ , references=A__ ) accelerator.print('''Average test metrics from all folds:''' , A__ ) def a ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A__ , default=A__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=A__ , default=3 , help='''The number of splits to perform across the dataset''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(A__ , A__ ) if __name__ == "__main__": main()
35
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : Optional[int] = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCamelCase( self : List[Any] ): a__ : Any = 1 a__ : Optional[int] = 3 a__ : Optional[int] = (32, 32) a__ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase__ ) return image @property def _UpperCamelCase( self : Union[str, Any] ): torch.manual_seed(0 ) a__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _UpperCamelCase( self : Optional[Any] ): torch.manual_seed(0 ) a__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _UpperCamelCase( self : List[str] ): torch.manual_seed(0 ) a__ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def _UpperCamelCase( self : Union[str, Any] ): def extract(*lowerCamelCase__ : List[Any] , **lowerCamelCase__ : int ): class A__ : """simple docstring""" def __init__( self : Tuple ): a__ : Dict = torch.ones([0] ) def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ): self.pixel_values.to(lowerCamelCase__ ) return self return Out() return extract def _UpperCamelCase( self : Tuple ): a__ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator a__ : Dict = self.dummy_cond_unet a__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) a__ : Tuple = self.dummy_vae a__ : Optional[int] = self.dummy_text_encoder a__ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk a__ : Tuple = StableDiffusionPipeline( unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=self.dummy_extractor , ) a__ : Any = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Tuple = "A painting of a squirrel eating a burger" a__ : Union[str, Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) a__ : List[Any] = sd_pipe([prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) a__ : List[Any] = output.images a__ : Optional[Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) a__ : Dict = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCamelCase__ , )[0] a__ : Tuple = image[0, -3:, -3:, -1] a__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__ : Optional[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase( self : Union[str, Any] ): a__ : str = "cpu" # ensure determinism for the device-dependent torch.Generator a__ : Optional[Any] = self.dummy_cond_unet a__ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) a__ : Any = self.dummy_vae a__ : List[Any] = self.dummy_text_encoder a__ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk a__ : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=self.dummy_extractor , ) a__ : int = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Dict = "A painting of a squirrel eating a burger" a__ : int = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) a__ : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) a__ : int = output.images a__ : int = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) a__ : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCamelCase__ , )[0] a__ : str = image[0, -3:, -3:, -1] a__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__ : Tuple = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase( self : Tuple ): a__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert isinstance(pipe.scheduler , lowerCamelCase__ ) assert pipe.safety_checker is None a__ : Optional[int] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) a__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None a__ : Optional[Any] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCamelCase( self : Optional[Any] ): a__ : List[Any] = self.dummy_cond_unet a__ : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) a__ : Tuple = self.dummy_vae a__ : str = self.dummy_text_encoder a__ : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 a__ : Union[str, Any] = unet.half() a__ : List[Any] = vae.half() a__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk a__ : Tuple = StableDiffusionPipeline( unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=self.dummy_extractor , ) a__ : List[Any] = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : List[str] = "A painting of a squirrel eating a burger" a__ : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Any ): a__ : Tuple = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCamelCase__ ) a__ : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a__ : Optional[Any] = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Union[str, Any] = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) a__ : Optional[Any] = 4_003_660_346 a__ : List[str] = 7 # without safety guidance (sld_guidance_scale = 0) a__ : str = torch.manual_seed(lowerCamelCase__ ) a__ : Any = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) a__ : str = output.images a__ : List[Any] = image[0, -3:, -3:, -1] a__ : Tuple = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) a__ : List[Any] = torch.manual_seed(lowerCamelCase__ ) a__ : Optional[Any] = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a__ : Dict = output.images a__ : Union[str, Any] = image[0, -3:, -3:, -1] a__ : Dict = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase( self : Tuple ): a__ : Tuple = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCamelCase__ ) a__ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a__ : Optional[int] = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Optional[int] = "padme amidala taking a bath artwork, safe for work, no nudity" a__ : Tuple = 2_734_971_755 a__ : Union[str, Any] = 7 a__ : List[Any] = torch.manual_seed(lowerCamelCase__ ) a__ : List[str] = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) a__ : Tuple = output.images a__ : List[str] = image[0, -3:, -3:, -1] a__ : Optional[Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 a__ : Optional[Any] = torch.manual_seed(lowerCamelCase__ ) a__ : List[str] = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a__ : List[Any] = output.images a__ : Optional[Any] = image[0, -3:, -3:, -1] a__ : str = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase( self : Optional[Any] ): a__ : Any = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) a__ : Dict = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Any = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) a__ : Tuple = 1_044_355_234 a__ : List[Any] = 12 a__ : str = torch.manual_seed(lowerCamelCase__ ) a__ : Any = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) a__ : int = output.images a__ : Optional[int] = image[0, -3:, -3:, -1] a__ : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 a__ : Dict = torch.manual_seed(lowerCamelCase__ ) a__ : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a__ : Dict = output.images a__ : Union[str, Any] = image[0, -3:, -3:, -1] a__ : Tuple = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
37
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : List[Any] = num_channels snake_case__ : str = image_size snake_case__ : Union[str, Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : Tuple = do_normalize snake_case__ : Dict = image_mean snake_case__ : Union[str, Any] = image_std def __UpperCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ): snake_case__ : str = DPTImageProcessingTester(self ) @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) def __UpperCamelCase ( self ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
38
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "data2vec-vision" def __init__( self : int , _UpperCamelCase : int=7_6_8 , _UpperCamelCase : str=1_2 , _UpperCamelCase : str=1_2 , _UpperCamelCase : int=3_0_7_2 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : str=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : Optional[int]=1e-12 , _UpperCamelCase : Optional[int]=2_2_4 , _UpperCamelCase : str=1_6 , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : List[Any]=False , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Tuple=True , _UpperCamelCase : Optional[int]=[3, 5, 7, 1_1] , _UpperCamelCase : Dict=[1, 2, 3, 6] , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Dict=0.4 , _UpperCamelCase : Any=2_5_6 , _UpperCamelCase : List[str]=1 , _UpperCamelCase : Dict=False , _UpperCamelCase : Union[str, Any]=2_5_5 , **_UpperCamelCase : Dict , ) ->List[Any]: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = use_mask_token snake_case_ = use_absolute_position_embeddings snake_case_ = use_relative_position_bias snake_case_ = use_shared_relative_position_bias snake_case_ = layer_scale_init_value snake_case_ = drop_path_rate snake_case_ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ = out_indices snake_case_ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = semantic_loss_ignore_index class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = version.parse("1.11" ) @property def snake_case__( self : List[str] ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__( self : Tuple ) ->float: return 1e-4
39
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : int = PriorTransformer UpperCAmelCase__ : Optional[Any] = "hidden_states" @property def snake_case_ ( self ) -> Any: UpperCamelCase : List[str] = 4 UpperCamelCase : Dict = 8 UpperCamelCase : int = 7 UpperCamelCase : Dict = floats_tensor((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = floats_tensor((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=0 ) -> Optional[Any]: torch.manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = 4 UpperCamelCase : int = 8 UpperCamelCase : Tuple = 7 UpperCamelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case_ ( self ) -> Optional[Any]: return (4, 8) @property def snake_case_ ( self ) -> str: return (4, 8) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : List[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } UpperCamelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self ) -> str: UpperCamelCase , UpperCamelCase : Dict = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy', output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ), 0 ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case_ ( self ) -> int: UpperCamelCase , UpperCamelCase : Optional[int] = self.prepare_init_args_and_inputs_for_common() UpperCamelCase : Union[str, Any] = self.model_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Tuple = [*signature.parameters.keys()] UpperCamelCase : List[Any] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[Any] = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_, 'set_default_attn_processor' ): model.set_default_attn_processor() UpperCamelCase : int = self.get_dummy_seed_input() with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : Dict = output[0, :5].flatten().cpu() print(SCREAMING_SNAKE_CASE_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCamelCase : Optional[int] = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, rtol=1e-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=77, SCREAMING_SNAKE_CASE_=0 ) -> Any: torch.manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = batch_size UpperCamelCase : Any = embedding_dim UpperCamelCase : Any = num_embeddings UpperCamelCase : Dict = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case_ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior', subfolder='prior' ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = self.get_dummy_seed_input(seed=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase : List[Any] = model(**SCREAMING_SNAKE_CASE_ )[0] assert list(sample.shape ) == [1, 768] UpperCamelCase : List[str] = sample[0, :8].flatten().cpu() print(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 )
40
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase__ = 5_0000 lowerCAmelCase__ = 5000 lowerCAmelCase__ , lowerCAmelCase__ = os.path.split(__file__) lowerCAmelCase__ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def _A ( A__ , A__ ): """simple docstring""" for i in range(A__ ): __lowercase = dataset[i] @get_duration def _A ( A__ , A__ , A__ ): """simple docstring""" for i in range(0 , len(A__ ) , A__ ): __lowercase = dataset[i : i + batch_size] @get_duration def _A ( A__ , A__ , A__ ): """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): __lowercase = dataset[i] @get_duration def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): __lowercase = dataset[i : i + batch_size] def _A ( ): """simple docstring""" __lowercase = {'''num examples''': SPEED_TEST_N_EXAMPLES} __lowercase = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] __lowercase = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) __lowercase = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) __lowercase = generate_example_dataset( os.path.join(A__ , '''dataset.arrow''' ) , A__ , num_examples=A__ , seq_shapes={'''list''': (100,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) __lowercase = func(A__ , **A__ ) print('''shuffling dataset''' ) __lowercase = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(A__ ) ) __lowercase = func( A__ , **A__ ) with open(A__ , '''wb''' ) as f: f.write(json.dumps(A__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
41
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = params lowerCamelCase_ = np.array(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = np.array([len(SCREAMING_SNAKE_CASE_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Any: '''simple docstring''' return len(self.lengths ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.params.max_model_input_size lowerCamelCase_ = self.lengths > max_len logger.info(f'''Splitting {sum(SCREAMING_SNAKE_CASE_ )} too long sequences.''' ) def divide_chunks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return [l[i : i + n] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )] lowerCamelCase_ = [] lowerCamelCase_ = [] if self.params.mlm: lowerCamelCase_ ,lowerCamelCase_ = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: lowerCamelCase_ ,lowerCamelCase_ = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowerCamelCase_ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowerCamelCase_ = np.insert(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ ) if sub_s[-1] != sep_id: lowerCamelCase_ = np.insert(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(SCREAMING_SNAKE_CASE_ ) new_tok_ids.extend(SCREAMING_SNAKE_CASE_ ) new_lengths.extend([len(SCREAMING_SNAKE_CASE_ ) for l in sub_seqs] ) lowerCamelCase_ = np.array(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = np.array(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = len(self ) lowerCamelCase_ = self.lengths > 11 lowerCamelCase_ = self.token_ids[indices] lowerCamelCase_ = self.lengths[indices] lowerCamelCase_ = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowerCamelCase_ = self.params.special_tok_ids['unk_token'] lowerCamelCase_ = len(self ) lowerCamelCase_ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowerCamelCase_ = (unk_occs / self.lengths) < 0.5 lowerCamelCase_ = self.token_ids[indices] lowerCamelCase_ = self.lengths[indices] lowerCamelCase_ = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [t[0] for t in batch] lowerCamelCase_ = [t[1] for t in batch] assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) # Max for paddings lowerCamelCase_ = max(SCREAMING_SNAKE_CASE_ ) # Pad token ids if self.params.mlm: lowerCamelCase_ = self.params.special_tok_ids['pad_token'] else: lowerCamelCase_ = self.params.special_tok_ids['unk_token'] lowerCamelCase_ = [list(t.astype(SCREAMING_SNAKE_CASE_ ) ) + [pad_idx] * (max_seq_len_ - len(SCREAMING_SNAKE_CASE_ )) for t in token_ids] assert len(tk_ ) == len(SCREAMING_SNAKE_CASE_ ) assert all(len(SCREAMING_SNAKE_CASE_ ) == max_seq_len_ for t in tk_ ) lowerCamelCase_ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowerCamelCase_ = torch.tensor(SCREAMING_SNAKE_CASE_ ) # (bs) return tk_t, lg_t
42
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Any = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_pad def UpperCamelCase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0] if isinstance(A, Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A, 'image_mean' ) ) self.assertTrue(hasattr(A, 'image_std' ) ) self.assertTrue(hasattr(A, 'do_normalize' ) ) self.assertTrue(hasattr(A, 'do_resize' ) ) self.assertTrue(hasattr(A, 'size' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad, A ) SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A, Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A ) SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A ) for image in image_inputs: self.assertIsInstance(A, np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify orig_size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : int = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify masks SCREAMING_SNAKE_CASE : Optional[int] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
28
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _a ( UpperCamelCase__ ): _lowercase : List[str] = '''roformer''' def __init__( self: Optional[int] , UpperCamelCase_: Optional[Any]=50_000 , UpperCamelCase_: Tuple=None , UpperCamelCase_: int=768 , UpperCamelCase_: Any=12 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: Optional[Any]=3_072 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Tuple=1_536 , UpperCamelCase_: Any=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Any=1E-1_2 , UpperCamelCase_: Optional[Any]=0 , UpperCamelCase_: str=False , UpperCamelCase_: Optional[int]=True , **UpperCamelCase_: Dict , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size if embedding_size is None else embedding_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = rotary_value lowercase__ = use_cache class _a ( UpperCamelCase__ ): @property def lowerCamelCase_ ( self: str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
43
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
0
'''simple docstring''' from scipy.stats import spearmanr import datasets UpperCAmelCase_ : Any = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' UpperCAmelCase_ : Union[str, Any] = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' UpperCAmelCase_ : List[str] = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ),reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"],) def lowerCamelCase_ ( self : List[Any],__A : Optional[Any],__A : Tuple,__A : Tuple=False ): _lowerCamelCase : Any = spearmanr(__A,__A ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
44
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) SCREAMING_SNAKE_CASE : int = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[int] = False A : Dict = False A : List[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = 5 self.assertEqual(len(A ), A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : int = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[str] = model.to(A ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, A )
28
0
from collections.abc import Sequence def A ( lowercase__ : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) UpperCamelCase__ :int = nums[0] for i in range(1 , len(lowercase__ ) ): UpperCamelCase__ :str = nums[i] UpperCamelCase__ :List[str] = max(lowercase__ , ans + num , lowercase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCamelCase = int(input("Enter number of elements : ").strip()) UpperCamelCase = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
45
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
0
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCAmelCase : Dict = '''facebook/wmt19-en-de''' _lowerCAmelCase : int = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCAmelCase : List[Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCAmelCase : Any = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test _lowerCAmelCase : List[str] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') _lowerCAmelCase : Union[str, Any] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save _lowerCAmelCase : int = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
46
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures") class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : List[Any] = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Any = HTTPError SCREAMING_SNAKE_CASE : Any = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=A ) as mock_head: SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(A ) @is_staging_test class _a ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor", trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
28
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ): # save results if os.path.exists(lowerCamelCase_ ): if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile( os.path.join(lowerCamelCase_ , 'config.json' ) ): os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) ) if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ): os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) else: os.makedirs(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ): __a : Dict = 2 if unlogit: __a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ ) __a : Any = p * torch.log(lowerCamelCase_ ) __a : Union[str, Any] = 0 return -plogp.sum(dim=-1 ) def UpperCAmelCase__ ( lowerCamelCase_ : Any ): logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) ) for row in range(len(lowerCamelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ): __a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads __a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) __a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) if head_mask is None: __a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCamelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __a : Any = None __a : Optional[int] = 0.0 __a : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __a : Dict = tuple(t.to(args.device ) for t in inputs ) ((__a) , ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __a , __a , __a : int = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCamelCase_ ): __a : List[str] = entropy(attn.detach() , lowerCamelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __a : Optional[Any] = 2 __a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(lowerCamelCase_ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(lowerCamelCase_ ) logger.info('Head ranked by importance scores' ) __a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __a : str = torch.arange( head_importance.numel() , device=args.device ) __a : Tuple = head_ranks.view_as(lowerCamelCase_ ) print_ad_tensor(lowerCamelCase_ ) return attn_entropy, head_importance, total_loss def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): __a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ ) __a : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold ) __a : Tuple = torch.ones_like(lowerCamelCase_ ) __a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __a : Tuple = original_score while current_score >= original_score * args.masking_threshold: __a : Optional[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __a : List[str] = float('Inf' ) __a : List[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCamelCase_ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __a : Any = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __a : int = new_head_mask.view(-1 ) __a : Tuple = 0.0 __a : int = new_head_mask.view_as(lowerCamelCase_ ) __a : Optional[int] = new_head_mask.clone().detach() print_ad_tensor(lowerCamelCase_ ) # Compute metric and head importance again __a , __a , __a : int = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ ) __a : List[Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('Final head mask' ) print_ad_tensor(lowerCamelCase_ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): __a : List[Any] = datetime.now() __a , __a , __a : List[str] = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ ) __a : List[str] = 1 / loss __a : List[Any] = datetime.now() - before_time __a : List[str] = sum(p.numel() for p in model.parameters() ) __a : Dict = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __a : Tuple = [ v, ] assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCamelCase_ ) __a : Optional[Any] = sum(p.numel() for p in model.parameters() ) __a : Tuple = datetime.now() __a , __a , __a : Tuple = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , ) __a : Optional[Any] = 1 / loss __a : List[Any] = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 ) save_model(lowerCamelCase_ , args.output_dir ) def UpperCAmelCase__ ( ): __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' ) parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 ) parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' ) __a : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __a : Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __a : Union[str, Any] = torch.device('cuda' , args.local_rank ) __a : Any = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __a : List[Any] = nn.parallel.DistributedDataParallel( lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ ) elif args.n_gpu > 1: __a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ ) torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , lowerCamelCase_ ) # Prepare dataset __a : Tuple = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __a : str = (torch.from_numpy(lowerCamelCase_ ),) __a : List[str] = TensorDataset(*lowerCamelCase_ ) __a : Optional[Any] = RandomSampler(lowerCamelCase_ ) __a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
47
'''simple docstring''' class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = val SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Union[str, Any] = None def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: SCREAMING_SNAKE_CASE : Optional[int] = Node(A ) else: self.left.insert(A ) elif val > self.val: if self.right is None: SCREAMING_SNAKE_CASE : int = Node(A ) else: self.right.insert(A ) else: SCREAMING_SNAKE_CASE : int = val def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ): """simple docstring""" if root: inorder(root.left ,__UpperCamelCase ) res.append(root.val ) inorder(root.right ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[Any] ): """simple docstring""" if len(__UpperCamelCase ) == 0: return arr SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] ) for i in range(1 ,len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. SCREAMING_SNAKE_CASE : Dict = [] inorder(__UpperCamelCase ,__UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
28
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : List[Any] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ): """simple docstring""" from .. import __version__ SCREAMING_SNAKE_CASE : int = take_from SCREAMING_SNAKE_CASE : Optional[int] = () if not isinstance(args[0] ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) SCREAMING_SNAKE_CASE : Tuple = None if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(__UpperCamelCase ,__UpperCamelCase ): values += (getattr(__UpperCamelCase ,__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE : Any = call_frame.filename SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(__UpperCamelCase ) == 0: return elif len(__UpperCamelCase ) == 1: return values[0] return values
28
0
"""simple docstring""" def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = 0 for ch in input_str: __UpperCAmelCase = ord(snake_case_ ) __UpperCAmelCase = pow(2 , snake_case_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
49
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): lowerCamelCase__ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowerCamelCase__ = np.concatenate(__lowerCAmelCase , axis=0 ) lowerCamelCase__ = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 lowerCamelCase__ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase__ = 2.0 * image - 1.0 lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase__ = torch.cat(__lowerCAmelCase , dim=0 ) return image def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any=0.9995 ): if not isinstance(__lowerCAmelCase , np.ndarray ): lowerCamelCase__ = True lowerCamelCase__ = va.device lowerCamelCase__ = va.cpu().numpy() lowerCamelCase__ = va.cpu().numpy() lowerCamelCase__ = np.sum(va * va / (np.linalg.norm(__lowerCAmelCase ) * np.linalg.norm(__lowerCAmelCase )) ) if np.abs(__lowerCAmelCase ) > DOT_THRESHOLD: lowerCamelCase__ = (1 - t) * va + t * va else: lowerCamelCase__ = np.arccos(__lowerCAmelCase ) lowerCamelCase__ = np.sin(__lowerCAmelCase ) lowerCamelCase__ = theta_a * t lowerCamelCase__ = np.sin(__lowerCAmelCase ) lowerCamelCase__ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase__ = sin_theta_t / sin_theta_a lowerCamelCase__ = sa * va + sa * va if inputs_are_torch: lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) return va def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): lowerCamelCase__ = F.normalize(__lowerCAmelCase , dim=-1 ) lowerCamelCase__ = F.normalize(__lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ): for param in model.parameters(): lowerCamelCase__ = value class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,): super().__init__() self.register_modules( vae=_lowerCAmelCase ,text_encoder=_lowerCAmelCase ,clip_model=_lowerCAmelCase ,tokenizer=_lowerCAmelCase ,unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,coca_model=_lowerCAmelCase ,coca_tokenizer=_lowerCAmelCase ,coca_transform=_lowerCAmelCase ,) lowerCamelCase__ = ( feature_extractor.size if isinstance(feature_extractor.size ,_lowerCAmelCase ) else feature_extractor.size["""shortest_edge"""] ) lowerCamelCase__ = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,_lowerCAmelCase ) set_requires_grad(self.clip_model ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.enable_attention_slicing(_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.vae ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.vae ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.unet ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.unet ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # get the original timestep using init_timestep lowerCamelCase__ = min(int(num_inference_steps * strength ) ,_lowerCAmelCase ) lowerCamelCase__ = max(num_inference_steps - init_timestep ,0 ) lowerCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ): if not isinstance(_lowerCAmelCase ,torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(_lowerCAmelCase )}''' ) lowerCamelCase__ = image.to(device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowerCAmelCase ) ] lowerCamelCase__ = torch.cat(_lowerCAmelCase ,dim=0 ) else: lowerCamelCase__ = self.vae.encode(_lowerCAmelCase ).latent_dist.sample(_lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 0.1_8215 * init_latents lowerCamelCase__ = init_latents.repeat_interleave(_lowerCAmelCase ,dim=0 ) lowerCamelCase__ = randn_tensor(init_latents.shape ,generator=_lowerCAmelCase ,device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) # get latents lowerCamelCase__ = self.scheduler.add_noise(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = init_latents return latents def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = self.coca_transform(_lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase__ = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) lowerCamelCase__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" ,"""""" ).rstrip(""" .,""" ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.feature_extractor.preprocess(_lowerCAmelCase ) lowerCamelCase__ = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase__ = self.clip_model.get_image_features(_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip.repeat_interleave(_lowerCAmelCase ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): lowerCamelCase__ = latents.detach().requires_grad_() lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase ) # predict the noise residual lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase__ = self.scheduler.alphas_cumprod[timestep] lowerCamelCase__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase__ = torch.sqrt(_lowerCAmelCase ) lowerCamelCase__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,_lowerCAmelCase ): lowerCamelCase__ = self.scheduler.sigmas[index] lowerCamelCase__ = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 1 / 0.1_8215 * sample lowerCamelCase__ = self.vae.decode(_lowerCAmelCase ).sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = transforms.Resize(self.feature_extractor_size )(_lowerCAmelCase ) lowerCamelCase__ = self.normalize(_lowerCAmelCase ).to(latents.dtype ) lowerCamelCase__ = self.clip_model.get_image_features(_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=_lowerCAmelCase ) lowerCamelCase__ = spherical_dist_loss(_lowerCAmelCase ,_lowerCAmelCase ).mean() * clip_guidance_scale lowerCamelCase__ = -torch.autograd.grad(_lowerCAmelCase ,_lowerCAmelCase )[0] if isinstance(self.scheduler ,_lowerCAmelCase ): lowerCamelCase__ = latents.detach() + grads * (sigma**2) lowerCamelCase__ = noise_pred_original else: lowerCamelCase__ = noise_pred_original - torch.sqrt(_lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 0.6 ,_lowerCAmelCase = 50 ,_lowerCAmelCase = 7.5 ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,_lowerCAmelCase = 0.8 ,_lowerCAmelCase = 0.1 ,_lowerCAmelCase = 0.1 ,): if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(_lowerCAmelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(_lowerCAmelCase ,torch.Generator ) and batch_size > 1: lowerCamelCase__ = [generator] + [None] * (batch_size - 1) lowerCamelCase__ = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowerCamelCase__ = [x[0] for x in coca_is_none if x[1]] lowerCamelCase__ = """, """.join(_lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_lowerCAmelCase ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase__ = self.get_image_description(_lowerCAmelCase ) if style_prompt is None: if len(_lowerCAmelCase ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase__ = self.get_image_description(_lowerCAmelCase ) # get prompt text embeddings for content and style lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase__ = slerp(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # duplicate text embeddings for each generation per prompt lowerCamelCase__ = text_embeddings.repeat_interleave(_lowerCAmelCase ,dim=0 ) # set timesteps lowerCamelCase__ = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase__ = {} if accepts_offset: lowerCamelCase__ = 1 self.scheduler.set_timesteps(_lowerCAmelCase ,**_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase__ , lowerCamelCase__ = self.get_timesteps(_lowerCAmelCase ,_lowerCAmelCase ,self.device ) lowerCamelCase__ = timesteps[:1].repeat(_lowerCAmelCase ) # Preprocess image lowerCamelCase__ = preprocess(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.prepare_latents( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,text_embeddings.dtype ,self.device ,_lowerCAmelCase ) lowerCamelCase__ = preprocess(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.prepare_latents( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,text_embeddings.dtype ,self.device ,_lowerCAmelCase ) lowerCamelCase__ = slerp(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if clip_guidance_scale > 0: lowerCamelCase__ = self.get_clip_image_embeddings(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.get_clip_image_embeddings(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = slerp( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ = content_text_input.input_ids.shape[-1] lowerCamelCase__ = self.tokenizer([""""""] ,padding="""max_length""" ,max_length=_lowerCAmelCase ,return_tensors="""pt""" ) lowerCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase__ = uncond_embeddings.repeat_interleave(_lowerCAmelCase ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device="""cpu""" ,dtype=_lowerCAmelCase ).to( self.device ) else: lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase__ = {} if accepts_eta: lowerCamelCase__ = eta # check if the scheduler accepts generator lowerCamelCase__ = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase__ = generator with self.progress_bar(total=_lowerCAmelCase ): for i, t in enumerate(_lowerCAmelCase ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase ) # predict the noise residual lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase__ , lowerCamelCase__ = self.cond_fn( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 1 / 0.1_8215 * latents lowerCamelCase__ = self.vae.decode(_lowerCAmelCase ).sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_lowerCAmelCase ,nsfw_content_detected=_lowerCAmelCase )
50
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , a__ : str , ): UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = 2 UpperCAmelCase = 99 UpperCAmelCase = 0 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = '''last''' UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = 0 def __snake_case ( self : str ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCAmelCase = None if self.use_input_lengths: UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __snake_case ( self : Dict , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Optional[int] , a__ : int , a__ : Tuple , a__ : Optional[Any] , a__ : Union[str, Any] , ): UpperCAmelCase = TFFlaubertModel(config=a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase = model(a__ ) UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : str , a__ : Tuple , a__ : Tuple , a__ : Optional[int] , a__ : str , a__ : Any , a__ : List[str] , a__ : str , a__ : List[str] , a__ : int , ): UpperCAmelCase = TFFlaubertWithLMHeadModel(a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : List[Any] , a__ : Optional[int] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : int , a__ : int , ): UpperCAmelCase = TFFlaubertForQuestionAnsweringSimple(a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Optional[Any] , a__ : Tuple , a__ : Dict , a__ : Dict , a__ : List[Any] , a__ : List[Any] , a__ : List[str] , a__ : Union[str, Any] , ): UpperCAmelCase = TFFlaubertForSequenceClassification(a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self : Any , a__ : Optional[int] , a__ : Dict , a__ : Any , a__ : Optional[Any] , a__ : str , a__ : Optional[int] , a__ : Any , a__ : Any , a__ : List[Any] , ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFFlaubertForTokenClassification(config=a__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[Any] , a__ : Any , a__ : Any , a__ : Optional[int] , a__ : str , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Tuple , a__ : Tuple , ): UpperCAmelCase = self.num_choices UpperCAmelCase = TFFlaubertForMultipleChoice(config=a__ ) UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : int ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ) = config_and_inputs UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase =( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Union[str, Any] , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : str , a__ : Optional[int] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __snake_case ( self : int ): UpperCAmelCase = TFFlaubertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , emb_dim=37 ) def __snake_case ( self : Optional[int] ): self.config_tester.run_common_tests() def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a__ ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*a__ ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*a__ ) @slow def __snake_case ( self : Dict ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFFlaubertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) UpperCAmelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCAmelCase = model(a__ )[0] UpperCAmelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , a__ ) # compare the actual values for a slice. UpperCAmelCase = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
51
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __lowerCAmelCase = Features({'''audio''': Audio()} ) __lowerCAmelCase = Features({'''labels''': ClassLabel} ) __lowerCAmelCase = "audio" __lowerCAmelCase = "labels" def _lowerCamelCase ( self , _UpperCAmelCase ): if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _UpperCAmelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __a : int = copy.deepcopy(self ) __a : Any = self.label_schema.copy() __a : Tuple = features[self.label_column] __a : List[str] = label_schema return task_template @property def _lowerCamelCase ( self ): return { self.audio_column: "audio", self.label_column: "labels", }
52
'''simple docstring''' from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = None def lowercase__( ): """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = left_node q.put(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = right_node q.put(__UpperCamelCase ) raise def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : List[Any] = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : Any = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : int = node while n or stack: while n: stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = n.left SCREAMING_SNAKE_CASE : Tuple = stack.pop() print(n.data ,end=',' ) SCREAMING_SNAKE_CASE : str = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ): """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
28
0
from math import isclose, sqrt def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float ): __lowerCAmelCase = point_y / 4 / point_x __lowerCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCAmelCase = outgoing_gradient**2 + 4 __lowerCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 __lowerCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCAmelCase = x_minus if isclose(lowerCAmelCase_, lowerCAmelCase_ ) else x_plus __lowerCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( lowerCAmelCase_ : float = 1.4, lowerCAmelCase_ : float = -9.6 ): __lowerCAmelCase = 0 __lowerCAmelCase = first_x_coord __lowerCAmelCase = first_y_coord __lowerCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = next_point(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
53
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
0
def a__ ( lowercase__ ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ =head.next, head while fast and fast.next: UpperCAmelCase_ =fast.next.next UpperCAmelCase_ =slow.next UpperCAmelCase_ =slow.next UpperCAmelCase_ =None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ =None while second: UpperCAmelCase_ =second.next UpperCAmelCase_ =node UpperCAmelCase_ =second UpperCAmelCase_ =nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ =node.next UpperCAmelCase_ =head.next return True def a__ ( lowercase__ ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ =UpperCAmelCase_ =UpperCAmelCase_ =head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ =fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ =[slow.val] while slow.next: UpperCAmelCase_ =slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ =cur.next return True def a__ ( lowercase__ ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ ={} UpperCAmelCase_ =0 while head: if head.val in d: d[head.val].append(lowercase__ ) else: UpperCAmelCase_ =[pos] UpperCAmelCase_ =head.next pos += 1 UpperCAmelCase_ =pos - 1 UpperCAmelCase_ =0 for v in d.values(): if len(lowercase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ =0 for i in range(0 , len(lowercase__ ) ): if v[i] + v[len(lowercase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
54
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = torch.nn.Linear(2 , 4 ) __A = torch.optim.AdamW(model.parameters() , lr=1.0 ) __A = torch.optim.lr_scheduler.OneCycleLR(a_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __A = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __A = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" __A = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(a_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_cuda def UpperCamelCase_ ( self : Dict ): __A = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(A ): __A = Accelerator(cpu=A ) def UpperCamelCase_ ( self : Dict ): __A = Accelerator() __A = GradientState() assert state.num_steps == 1 __A = 4 assert state.num_steps == 4 assert state.sync_gradients is True __A = False assert state.sync_gradients is False GradientState._reset_state() def UpperCamelCase_ ( self : str ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = accelerator.prepare(A ,A ,A ,A ,A ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCamelCase_ ( self : Optional[int] ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() accelerator.prepare(A ,A ,A ,A ,A ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCamelCase_ ( self : str ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*A : int ,**A : List[str] ): pass with patch("torch.cuda.set_device" ,A ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): __A = Accelerator() self.assertEqual(str(accelerator.state.device ) ,"cuda:64" ) def UpperCamelCase_ ( self : Tuple ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() accelerator.prepare(A ,A ,A ,A ,A ) __A = get_signature(A ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A ) # make sure random weights don't match load_random_weights(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 ) def UpperCamelCase_ ( self : Dict ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() accelerator.prepare(A ,A ,A ,A ,A ) __A = get_signature(A ) # saving hook def save_config(A : Optional[int] ,A : List[Any] ,A : int ): __A = {"class_name": models[0].__class__.__name__} with open(os.path.join(A ,"data.json" ) ,"w" ) as f: json.dump(A ,A ) # loading hook def load_config(A : List[Any] ,A : Any ): with open(os.path.join(A ,"data.json" ) ,"r" ) as f: __A = json.load(A ) __A = config["class_name"] __A = accelerator.register_save_state_pre_hook(A ) __A = accelerator.register_load_state_pre_hook(A ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A ) # make sure random weights don't match with hooks load_random_weights(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 ) # random class name to verify correct one is loaded __A = "random" # make sure loaded weights match with hooks accelerator.load_state(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A ) # make sure random weights don't match with hooks removed load_random_weights(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 ) # random class name to verify correct one is loaded __A = "random" # make sure loaded weights match with hooks removed accelerator.load_state(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() __A = None # This should work __A , __A , __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ,A ,A ) self.assertTrue(dummy_obj is None ) def UpperCamelCase_ ( self : Optional[int] ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() __A = [1, 2, 3] # This should work __A , __A , __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ,A ,A ) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Dummy object should have `_is_accelerate_prepared` set to `True`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Model is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Optimizer is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Scheduler is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" ,) @slow @require_bnb def UpperCamelCase_ ( self : Tuple ): from transformers import AutoModelForCausalLM __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map={"": 0} ,) __A = Accelerator() # This should work __A = accelerator.prepare(A ) @slow @require_bnb def UpperCamelCase_ ( self : Any ): from transformers import AutoModelForCausalLM __A = Accelerator() with init_empty_weights(): __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) model.tie_weights() __A = infer_auto_device_map(A ) __A = "cpu" __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,device_map=A ,load_in_abit=A ,llm_inta_enable_fpaa_cpu_offload=A ) # This should not work and get value error with self.assertRaises(A ): __A = accelerator.prepare(A ) @slow @require_bnb @require_multi_gpu def UpperCamelCase_ ( self : int ): from transformers import AutoModelForCausalLM __A = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) model.tie_weights() __A = infer_auto_device_map(A ) __A = 1 __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map=A ,) __A = Accelerator() # This should not work and get value error with self.assertRaises(A ): __A = accelerator.prepare(A ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCamelCase_ ( self : Dict ): from transformers import AutoModelForCausalLM with init_empty_weights(): __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) __A = infer_auto_device_map(A ) __A = 1 __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map=A ,) __A = Accelerator() # This should work __A = accelerator.prepare(A ) @require_cuda def UpperCamelCase_ ( self : Optional[Any] ): __A = torch.nn.Linear(10 ,10 ) __A = torch.optim.SGD(model.parameters() ,lr=0.01 ) __A = Accelerator(cpu=A ) __A = accelerator.prepare(A )
55
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _a (lowercase__ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: """simple docstring""" __snake_case = [] if isinstance(lowercase__ , lowercase__ ): for v in tree.values(): shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def _a (lowercase__ : int , lowercase__ : Tuple[int, ...] ) -> Tuple[int, ...]: """simple docstring""" __snake_case = [] for d in reversed(lowercase__ ): idx.append(flat_idx % d ) __snake_case = flat_idx // d return tuple(reversed(lowercase__ ) ) @torch.jit.ignore def _a (lowercase__ : Sequence[int] , lowercase__ : Sequence[int] , lowercase__ : Sequence[int] , lowercase__ : Optional[Sequence[bool]] = None , lowercase__ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: """simple docstring""" # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowercase__ : List[bool] ) -> None: __snake_case = True for i in range(len(lowercase__ ) ): __snake_case = -1 * (i + 1) l[reversed_idx] &= tally __snake_case = l[reversed_idx] if start_edges is None: __snake_case = [s == 0 for s in start] reduce_edge_list(lowercase__ ) if end_edges is None: __snake_case = [e == (d - 1) for e, d in zip(lowercase__ , lowercase__ )] reduce_edge_list(lowercase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowercase__ ) == 0: return [()] elif len(lowercase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __snake_case = [] __snake_case = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowercase__ , lowercase__ ): if s == e: path_list.append(slice(lowercase__ , s + 1 ) ) else: break __snake_case = tuple(lowercase__ ) __snake_case = len(lowercase__ ) # start == end, and we're done if divergence_idx == len(lowercase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = start[divergence_idx] return tuple( path + (slice(lowercase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = end[divergence_idx] return tuple( path + (slice(lowercase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __snake_case = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _a (lowercase__ : torch.Tensor , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> torch.Tensor: """simple docstring""" __snake_case = t.shape[:no_batch_dims] __snake_case = list(_flat_idx_to_idx(lowercase__ , lowercase__ ) ) # _get_minimal_slice_set is inclusive __snake_case = list(_flat_idx_to_idx(flat_end - 1 , lowercase__ ) ) # Get an ordered list of slices to perform __snake_case = _get_minimal_slice_set( lowercase__ , lowercase__ , lowercase__ , ) __snake_case = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _a (lowercase__ : Callable , lowercase__ : Dict[str, Any] , lowercase__ : int , lowercase__ : int , lowercase__ : bool = False , lowercase__ : Any = None , lowercase__ : bool = False , ) -> Any: """simple docstring""" if not (len(lowercase__ ) > 0): raise ValueError('Must provide at least one input' ) __snake_case = [shape[:no_batch_dims] for shape in _fetch_dims(lowercase__ )] __snake_case = tuple([max(lowercase__ ) for s in zip(*lowercase__ )] ) def _prep_inputs(lowercase__ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __snake_case = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __snake_case = tensor_tree_map(_prep_inputs , lowercase__ ) __snake_case = None if _out is not None: __snake_case = tensor_tree_map(lambda lowercase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __snake_case = 1 for d in orig_batch_dims: flat_batch_dim *= d __snake_case = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase__ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __snake_case = 0 __snake_case = prepped_outputs for _ in range(lowercase__ ): # Chunk the input if not low_mem: __snake_case = _select_chunk else: __snake_case = partial( _chunk_slice , flat_start=lowercase__ , flat_end=min(lowercase__ , i + chunk_size ) , no_batch_dims=len(lowercase__ ) , ) __snake_case = tensor_tree_map(lowercase__ , lowercase__ ) # Run the layer on the chunk __snake_case = layer(**lowercase__ ) # Allocate space for the output if out is None: __snake_case = tensor_tree_map(lambda lowercase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowercase__ ) # Put the chunk in its pre-allocated space if isinstance(lowercase__ , lowercase__ ): def assign(lowercase__ : dict , lowercase__ : dict ) -> None: for k, v in da.items(): if isinstance(lowercase__ , lowercase__ ): assign(lowercase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __snake_case = da[k] assign(lowercase__ , lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): for xa, xa in zip(lowercase__ , lowercase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __snake_case = xa elif isinstance(lowercase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __snake_case = output_chunk else: raise ValueError('Not supported' ) i += chunk_size __snake_case = tensor_tree_map(lambda lowercase__ : t.view(orig_batch_dims + t.shape[1:] ) , lowercase__ ) return out class _lowercase : def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 512 , ) -> Union[str, Any]: __snake_case = max_chunk_size __snake_case = None __snake_case = None def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : int ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __snake_case = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __snake_case = [c for c in candidates if c > min_chunk_size] __snake_case = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(SCREAMING_SNAKE_CASE_ : int ) -> bool: try: with torch.no_grad(): fn(*SCREAMING_SNAKE_CASE_ , chunk_size=SCREAMING_SNAKE_CASE_ ) return True except RuntimeError: return False __snake_case = 0 __snake_case = len(SCREAMING_SNAKE_CASE_ ) - 1 while i > min_viable_chunk_size_index: __snake_case = test_chunk_size(candidates[i] ) if not viable: __snake_case = (min_viable_chunk_size_index + i) // 2 else: __snake_case = i __snake_case = (i + len(SCREAMING_SNAKE_CASE_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def a ( self : Any , SCREAMING_SNAKE_CASE_ : Iterable , SCREAMING_SNAKE_CASE_ : Iterable ) -> bool: __snake_case = True for aa, aa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert type(SCREAMING_SNAKE_CASE_ ) == type(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] __snake_case = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: consistent &= aa == aa return consistent def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : int , ) -> int: __snake_case = True __snake_case = tree_map(lambda SCREAMING_SNAKE_CASE_ : a.shape if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) else a , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE_ ) __snake_case = self._compare_arg_caches(self.cached_arg_data , SCREAMING_SNAKE_CASE_ ) else: # Otherwise, we can reuse the precomputed value __snake_case = False if not consistent: __snake_case = self._determine_favorable_chunk_size( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
56
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
28
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput A_ : Tuple = 'scheduler_config.json' class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any =1 a : Union[str, Any] =2 a : List[str] =3 a : List[str] =4 a : Dict =5 a : List[str] =6 a : str =7 a : int =8 a : Dict =9 a : int =10 a : int =11 a : int =12 a : str =13 a : List[str] =14 @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : torch.FloatTensor class _lowerCAmelCase: """simple docstring""" a : Any =SCHEDULER_CONFIG_NAME a : Optional[int] =[] a : int =True @classmethod def _a ( cls , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=False , **_lowerCamelCase , ): UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Any = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase , subfolder=_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , return_commit_hash=_lowerCamelCase , **_lowerCamelCase , ) return cls.from_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = False , **_lowerCamelCase ): self.save_config(save_directory=_lowerCamelCase , push_to_hub=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self ): return self._get_compatibles() @classmethod def _a ( cls ): UpperCamelCase_: Any = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase_: int = importlib.import_module(__name__.split('.' )[0] ) UpperCamelCase_: str = [ getattr(_lowerCamelCase , _lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase , _lowerCamelCase ) ] return compatible_classes
57
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=1_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Dict: '''simple docstring''' snake_case_ : Any = parent snake_case_ : str = batch_size snake_case_ : Dict = seq_length snake_case_ : List[str] = is_training snake_case_ : Tuple = use_input_mask snake_case_ : str = use_token_type_ids snake_case_ : Any = use_labels snake_case_ : Any = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : List[str] = hidden_act snake_case_ : Any = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Optional[Any] = type_vocab_size snake_case_ : List[str] = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : List[str] = num_labels snake_case_ : Optional[Any] = num_choices snake_case_ : str = scope def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : int = None if self.use_input_mask: snake_case_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[Any] = None snake_case_ : Optional[Any] = None snake_case_ : Optional[int] = None if self.use_labels: snake_case_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : str = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Dict = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_lowercase , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = EsmForProteinFolding(config=_lowercase ).float() model.to(_lowercase ) model.eval() snake_case_ : Tuple = model(_lowercase , attention_mask=_lowercase ) snake_case_ : int = model(_lowercase ) snake_case_ : Any = model(_lowercase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : Dict = config_and_inputs snake_case_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = False _lowerCamelCase = (EsmForProteinFolding,) if is_torch_available() else () _lowerCamelCase = () _lowerCamelCase = {} if is_torch_available() else {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : str = EsmFoldModelTester(self ) snake_case_ : Union[str, Any] = ConfigTester(self , config_class=_lowercase , hidden_size=3_7 ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) @unittest.skip("""Does not support attention outputs""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""ESMFold only has one output format.""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""ESMFold does not support input chunking.""" ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() snake_case_ : Any = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) snake_case_ : Tuple = model(_lowercase )["""positions"""] snake_case_ : Any = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _lowercase , atol=1E-4 ) )
58
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "roc_bert" def __init__(self : Dict , UpperCAmelCase_ : Optional[int]=30_522 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Union[str, Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=1E-1_2 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int="absolute" , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : int=910 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Any=24_858 , UpperCAmelCase_ : List[str]=True , **UpperCAmelCase_ : str , ) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =vocab_size lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: str =hidden_size lowerCamelCase__: int =num_hidden_layers lowerCamelCase__: Optional[int] =num_attention_heads lowerCamelCase__: Optional[Any] =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Optional[Any] =hidden_dropout_prob lowerCamelCase__: Optional[Any] =attention_probs_dropout_prob lowerCamelCase__: List[Any] =initializer_range lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Tuple =use_cache lowerCamelCase__: int =enable_pronunciation lowerCamelCase__: str =enable_shape lowerCamelCase__: List[Any] =pronunciation_embed_dim lowerCamelCase__: int =pronunciation_vocab_size lowerCamelCase__: Union[str, Any] =shape_embed_dim lowerCamelCase__: Union[str, Any] =shape_vocab_size lowerCamelCase__: int =concat_input lowerCamelCase__: str =position_embedding_type lowerCamelCase__: str =classifier_dropout super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
59
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] lowerCAmelCase_ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] lowerCAmelCase_ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase_ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase_ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" for tf_name, hf_name in patterns: snake_case_ : Optional[int] = k.replace(_UpperCamelCase , _UpperCamelCase ) return k def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" snake_case_ : Tuple = BigBirdPegasusConfig(**_UpperCamelCase ) snake_case_ : List[str] = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) snake_case_ : Tuple = torch_model.state_dict() snake_case_ : Tuple = {} # separating decoder weights snake_case_ : Dict = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} snake_case_ : Dict = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): snake_case_ : Optional[int] = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue snake_case_ : str = DECODER_PATTERNS snake_case_ : Optional[int] = rename_state_dict_key(_UpperCamelCase , _UpperCamelCase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ : List[str] = v.T snake_case_ : Dict = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): snake_case_ : Union[str, Any] = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue snake_case_ : Optional[Any] = REMAINING_PATTERNS snake_case_ : int = rename_state_dict_key(_UpperCamelCase , _UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ : List[str] = v.T snake_case_ : Dict = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' snake_case_ : Dict = mapping['''model.embed_positions.weight'''] snake_case_ : Tuple = mapping.pop('''model.embed_positions.weight''' ) snake_case_ , snake_case_ : Union[str, Any] = torch_model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) snake_case_ : Union[str, Any] = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : str = tf.train.list_variables(_UpperCamelCase ) snake_case_ : List[str] = {} snake_case_ : int = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase , desc='''converting tf checkpoint to dict''' ): snake_case_ : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case_ : Any = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) snake_case_ : int = array return tf_weights def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : List[Any] = get_tf_weights_as_numpy(_UpperCamelCase ) snake_case_ : Optional[Any] = convert_bigbird_pegasus(_UpperCamelCase , _UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
60
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
0