code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : List[Any] = {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A__ ( __snake_case ):
A__ = 'roformer'
def __init__( self : Tuple , _a : List[Any]=5_0000 , _a : List[Any]=None , _a : Any=768 , _a : Dict=12 , _a : int=12 , _a : List[Any]=3072 , _a : Any="gelu" , _a : Dict=0.1 , _a : Dict=0.1 , _a : Optional[Any]=1536 , _a : Optional[int]=2 , _a : Optional[int]=0.02 , _a : str=1e-12 , _a : Union[str, Any]=0 , _a : Optional[Any]=False , _a : Optional[int]=True , **_a : Tuple , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=snake_case_ , **snake_case_ )
_SCREAMING_SNAKE_CASE =vocab_size
_SCREAMING_SNAKE_CASE =hidden_size if embedding_size is None else embedding_size
_SCREAMING_SNAKE_CASE =hidden_size
_SCREAMING_SNAKE_CASE =num_hidden_layers
_SCREAMING_SNAKE_CASE =num_attention_heads
_SCREAMING_SNAKE_CASE =hidden_act
_SCREAMING_SNAKE_CASE =intermediate_size
_SCREAMING_SNAKE_CASE =hidden_dropout_prob
_SCREAMING_SNAKE_CASE =attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE =max_position_embeddings
_SCREAMING_SNAKE_CASE =type_vocab_size
_SCREAMING_SNAKE_CASE =initializer_range
_SCREAMING_SNAKE_CASE =layer_norm_eps
_SCREAMING_SNAKE_CASE =rotary_value
_SCREAMING_SNAKE_CASE =use_cache
class A__ ( __snake_case ):
@property
def A ( self : Dict ) -> Dict:
'''simple docstring'''
if self.task == "multiple-choice":
_SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'sequence'}
_SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 405 |
from collections.abc import Callable
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
_A = a
_A = b
if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function
return a
elif function(_SCREAMING_SNAKE_CASE ) == 0:
return b
elif (
function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_SCREAMING_SNAKE_CASE ) == 0:
return mid
elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 27 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase_ ( __snake_case ,unittest.TestCase ):
__lowerCamelCase : str = BioGptTokenizer
__lowerCamelCase : Tuple = False
def _snake_case ( self ) -> Tuple:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_lowerCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
_lowerCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) )
_lowerCAmelCase = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(snake_case_ ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(snake_case_ ) )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = "lower newer"
_lowerCAmelCase = "lower newer"
return input_text, output_text
def _snake_case ( self ) -> Any:
_lowerCAmelCase = BioGptTokenizer(self.vocab_file , self.merges_file )
_lowerCAmelCase = "lower"
_lowerCAmelCase = ["low", "er</w>"]
_lowerCAmelCase = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
_lowerCAmelCase = tokens + ["<unk>"]
_lowerCAmelCase = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
@slow
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
_lowerCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ )
_lowerCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ )
_lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ )
_lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 18 |
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase:
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_token_type_ids
_A = use_labels
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = type_sequence_label_size
_A = initializer_range
_A = num_labels
_A = num_choices
_A = scope
def lowerCAmelCase__ ( self ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
if self.use_token_type_ids:
_A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase__ ( self ):
return NystromformerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = NystromformerModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
_A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )
_A = model(snake_case_ , token_type_ids=snake_case_ )
_A = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = NystromformerForMaskedLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
_A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = NystromformerForQuestionAnswering(config=snake_case_ )
model.to(snake_case_ )
model.eval()
_A = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = self.num_labels
_A = NystromformerForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
_A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = self.num_labels
_A = NystromformerForTokenClassification(config=snake_case_ )
model.to(snake_case_ )
model.eval()
_A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = self.num_choices
_A = NystromformerForMultipleChoice(config=snake_case_ )
model.to(snake_case_ )
model.eval()
_A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase__ ( self ):
_A = self.prepare_config_and_inputs()
(
(
_A
), (
_A
), (
_A
), (
_A
), (
_A
), (
_A
), (
_A
),
) = config_and_inputs
_A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
__magic_name__ = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
__magic_name__ = (
{
'feature-extraction': NystromformerModel,
'fill-mask': NystromformerForMaskedLM,
'question-answering': NystromformerForQuestionAnswering,
'text-classification': NystromformerForSequenceClassification,
'token-classification': NystromformerForTokenClassification,
'zero-shot': NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
def lowerCAmelCase__ ( self ):
_A = NystromformerModelTester(self )
_A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def lowerCAmelCase__ ( self ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_A = type
self.model_tester.create_and_check_model(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def lowerCAmelCase__ ( self ):
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = NystromformerModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@require_torch
class lowerCamelCase( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase__ ( self ):
_A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' )
_A = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
_A = model(snake_case_ )[0]
_A = torch.Size((1, 6, 768) )
self.assertEqual(output.shape , snake_case_ )
_A = torch.tensor(
[[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) )
@slow
def lowerCAmelCase__ ( self ):
_A = 'the [MASK] of Belgium is Brussels'
_A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' )
_A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' )
_A = tokenizer(snake_case_ , return_tensors='pt' )
with torch.no_grad():
_A = model(encoding.input_ids ).logits
_A = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
| 27 | 0 |
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE: Tuple = (boundary[1] - boundary[0]) / steps
__SCREAMING_SNAKE_CASE: str = boundary[0]
__SCREAMING_SNAKE_CASE: Tuple = boundary[1]
__SCREAMING_SNAKE_CASE: Any = make_points(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE: List[Any] = 0.0
y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE )
for i in x_i:
# print(i)
y += h * f(_SCREAMING_SNAKE_CASE )
y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE )
return y
def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE: Optional[int] = a + h
while x < (b - h):
yield x
__SCREAMING_SNAKE_CASE: Tuple = x + h
def lowerCAmelCase ( UpperCamelCase__ : Tuple ) -> Any: # enter your function here
"""simple docstring"""
__SCREAMING_SNAKE_CASE: Union[str, Any] = (x - 0) * (x - 0)
return y
def lowerCAmelCase ( ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE: List[str] = 0.0 # Lower bound of integration
__SCREAMING_SNAKE_CASE: Any = 1.0 # Upper bound of integration
__SCREAMING_SNAKE_CASE: List[Any] = 10.0 # define number of steps or resolution
__SCREAMING_SNAKE_CASE: List[str] = [a, b] # define boundary of integration
__SCREAMING_SNAKE_CASE: Optional[Any] = method_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(F"""y = {y}""" )
if __name__ == "__main__":
main()
| 202 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : Dict = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 27 | 0 |
'''simple docstring'''
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO
)
__snake_case = logging.getLogger(__name__)
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Optional[Any]:
lowercase_ = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 )
return np.sum(outputs == labels )
def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[Any]:
with open(_SCREAMING_SNAKE_CASE , encoding="""utf_8""" ) as f:
lowercase_ = csv.reader(_SCREAMING_SNAKE_CASE )
lowercase_ = []
next(_SCREAMING_SNAKE_CASE ) # skip the first line
for line in tqdm(_SCREAMING_SNAKE_CASE ):
output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->List[str]:
lowercase_ = []
for dataset in encoded_datasets:
lowercase_ = len(_SCREAMING_SNAKE_CASE )
lowercase_ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
lowercase_ = np.zeros((n_batch, 2) , dtype=np.intaa )
lowercase_ = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa )
lowercase_ = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(_SCREAMING_SNAKE_CASE ):
lowercase_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
lowercase_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
lowercase_ = with_conta
lowercase_ = with_conta
lowercase_ = len(_SCREAMING_SNAKE_CASE ) - 1
lowercase_ = len(_SCREAMING_SNAKE_CASE ) - 1
lowercase_ = with_conta
lowercase_ = with_conta
lowercase_ = mc_label
lowercase_ = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(_SCREAMING_SNAKE_CASE ) for t in all_inputs ) )
return tensor_datasets
def A_ ( ) ->List[str]:
lowercase_ = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=_SCREAMING_SNAKE_CASE , default="""openai-gpt""" , help="""pretrained model name""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" )
parser.add_argument(
"""--output_dir""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument("""--train_dataset""" , type=_SCREAMING_SNAKE_CASE , default="""""" )
parser.add_argument("""--eval_dataset""" , type=_SCREAMING_SNAKE_CASE , default="""""" )
parser.add_argument("""--seed""" , type=_SCREAMING_SNAKE_CASE , default=42 )
parser.add_argument("""--num_train_epochs""" , type=_SCREAMING_SNAKE_CASE , default=3 )
parser.add_argument("""--train_batch_size""" , type=_SCREAMING_SNAKE_CASE , default=8 )
parser.add_argument("""--eval_batch_size""" , type=_SCREAMING_SNAKE_CASE , default=16 )
parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=_SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , type=_SCREAMING_SNAKE_CASE , default=1 )
parser.add_argument(
"""--max_steps""" , default=-1 , type=_SCREAMING_SNAKE_CASE , help=(
"""If > 0: set total number of training steps to perform. Override num_train_epochs."""
) , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=_SCREAMING_SNAKE_CASE , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--learning_rate""" , type=_SCREAMING_SNAKE_CASE , default=6.25e-5 )
parser.add_argument("""--warmup_steps""" , default=0 , type=_SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--lr_schedule""" , type=_SCREAMING_SNAKE_CASE , default="""warmup_linear""" )
parser.add_argument("""--weight_decay""" , type=_SCREAMING_SNAKE_CASE , default=0.01 )
parser.add_argument("""--lm_coef""" , type=_SCREAMING_SNAKE_CASE , default=0.9 )
parser.add_argument("""--n_valid""" , type=_SCREAMING_SNAKE_CASE , default=3_74 )
parser.add_argument("""--server_ip""" , type=_SCREAMING_SNAKE_CASE , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=_SCREAMING_SNAKE_CASE , default="""""" , help="""Can be used for distant debugging.""" )
lowercase_ = parser.parse_args()
print(_SCREAMING_SNAKE_CASE )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
lowercase_ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
lowercase_ = torch.cuda.device_count()
logger.info("""device: {}, n_gpu {}""".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
if not args.do_train and not args.do_eval:
raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
lowercase_ = ["""_start_""", """_delimiter_""", """_classify_"""]
lowercase_ = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(_SCREAMING_SNAKE_CASE )
lowercase_ = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
lowercase_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(_SCREAMING_SNAKE_CASE ) )
model.to(_SCREAMING_SNAKE_CASE )
# Load and encode the datasets
def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ):
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return obj
return [tokenize_and_encode(_SCREAMING_SNAKE_CASE ) for o in obj]
logger.info("""Encoding dataset...""" )
lowercase_ = load_rocstories_dataset(args.train_dataset )
lowercase_ = load_rocstories_dataset(args.eval_dataset )
lowercase_ = (train_dataset, eval_dataset)
lowercase_ = tokenize_and_encode(_SCREAMING_SNAKE_CASE )
# Compute the max input length for the Transformer
lowercase_ = model.config.n_positions // 2 - 2
lowercase_ = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
lowercase_ = min(_SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
lowercase_ = pre_process_datasets(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )
lowercase_ , lowercase_ = tensor_datasets[0], tensor_datasets[1]
lowercase_ = TensorDataset(*_SCREAMING_SNAKE_CASE )
lowercase_ = RandomSampler(_SCREAMING_SNAKE_CASE )
lowercase_ = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size )
lowercase_ = TensorDataset(*_SCREAMING_SNAKE_CASE )
lowercase_ = SequentialSampler(_SCREAMING_SNAKE_CASE )
lowercase_ = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
lowercase_ = args.max_steps
lowercase_ = args.max_steps // (len(_SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1
else:
lowercase_ = len(_SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs
lowercase_ = list(model.named_parameters() )
lowercase_ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""]
lowercase_ = [
{
"""params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"""weight_decay""": args.weight_decay,
},
{"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0},
]
lowercase_ = AdamW(_SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon )
lowercase_ = get_linear_schedule_with_warmup(
_SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=_SCREAMING_SNAKE_CASE )
if args.do_train:
lowercase_ , lowercase_ , lowercase_ = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ):
lowercase_ = 0
lowercase_ = 0
lowercase_ = tqdm(_SCREAMING_SNAKE_CASE , desc="""Training""" )
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
lowercase_ = tuple(t.to(_SCREAMING_SNAKE_CASE ) for t in batch )
lowercase_ , lowercase_ , lowercase_ , lowercase_ = batch
lowercase_ = model(_SCREAMING_SNAKE_CASE , mc_token_ids=_SCREAMING_SNAKE_CASE , lm_labels=_SCREAMING_SNAKE_CASE , mc_labels=_SCREAMING_SNAKE_CASE )
lowercase_ = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
lowercase_ = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
lowercase_ = """Training loss: {:.2e} lr: {:.2e}""".format(_SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
lowercase_ = model.module if hasattr(_SCREAMING_SNAKE_CASE , """module""" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
lowercase_ = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE )
lowercase_ = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE )
torch.save(model_to_save.state_dict() , _SCREAMING_SNAKE_CASE )
model_to_save.config.to_json_file(_SCREAMING_SNAKE_CASE )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
lowercase_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
lowercase_ = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(_SCREAMING_SNAKE_CASE )
if args.do_eval:
model.eval()
lowercase_ , lowercase_ = 0, 0
lowercase_ , lowercase_ = 0, 0
for batch in tqdm(_SCREAMING_SNAKE_CASE , desc="""Evaluating""" ):
lowercase_ = tuple(t.to(_SCREAMING_SNAKE_CASE ) for t in batch )
lowercase_ , lowercase_ , lowercase_ , lowercase_ = batch
with torch.no_grad():
lowercase_ , lowercase_ , lowercase_ , lowercase_ = model(
_SCREAMING_SNAKE_CASE , mc_token_ids=_SCREAMING_SNAKE_CASE , lm_labels=_SCREAMING_SNAKE_CASE , mc_labels=_SCREAMING_SNAKE_CASE )
lowercase_ = mc_logits.detach().cpu().numpy()
lowercase_ = mc_labels.to("""cpu""" ).numpy()
lowercase_ = accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
lowercase_ = eval_loss / nb_eval_steps
lowercase_ = eval_accuracy / nb_eval_examples
lowercase_ = tr_loss / nb_tr_steps if args.do_train else None
lowercase_ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss}
lowercase_ = os.path.join(args.output_dir , """eval_results.txt""" )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , _SCREAMING_SNAKE_CASE , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 451 |
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
"""simple docstring"""
require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
| 27 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __snake_case ( metaclass=__snake_case ):
"""simple docstring"""
lowerCAmelCase_ : int = ['torch', 'torchsde']
def __init__( self :Dict , *UpperCamelCase__ :Dict , **UpperCamelCase__ :List[str] ):
requires_backends(self , ["torch", "torchsde"] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls :Any , *UpperCamelCase__ :List[str] , **UpperCamelCase__ :Dict ):
requires_backends(cls , ["torch", "torchsde"] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls :str , *UpperCamelCase__ :Any , **UpperCamelCase__ :int ):
requires_backends(cls , ["torch", "torchsde"] )
| 388 |
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def __lowerCAmelCase( ) -> None:
"""simple docstring"""
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 27 | 0 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def _lowercase ( lowercase__ ):
if (
(cp >= 0X4e_00 and cp <= 0X9f_ff)
or (cp >= 0X34_00 and cp <= 0X4d_bf) #
or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) #
or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) #
or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) #
or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) #
or (cp >= 0Xf9_00 and cp <= 0Xfa_ff)
or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) #
): #
return True
return False
def _lowercase ( lowercase__ ):
for char in word:
__lowerCAmelCase : List[Any] = ord(_SCREAMING_SNAKE_CASE )
if not _is_chinese_char(_SCREAMING_SNAKE_CASE ):
return 0
return 1
def _lowercase ( lowercase__ ):
__lowerCAmelCase : Union[str, Any] = set()
for token in tokens:
__lowerCAmelCase : str = len(_SCREAMING_SNAKE_CASE ) > 1 and is_chinese(_SCREAMING_SNAKE_CASE )
if chinese_word:
word_set.add(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : int = list(_SCREAMING_SNAKE_CASE )
return word_list
def _lowercase ( lowercase__ , lowercase__ ):
if not chinese_word_set:
return bert_tokens
__lowerCAmelCase : Optional[int] = max([len(_SCREAMING_SNAKE_CASE ) for w in chinese_word_set] )
__lowerCAmelCase : Optional[Any] = bert_tokens
__lowerCAmelCase, __lowerCAmelCase : Optional[int] = 0, len(_SCREAMING_SNAKE_CASE )
while start < end:
__lowerCAmelCase : Optional[Any] = True
if is_chinese(bert_word[start] ):
__lowerCAmelCase : Dict = min(end - start , _SCREAMING_SNAKE_CASE )
for i in range(_SCREAMING_SNAKE_CASE , 1 , -1 ):
__lowerCAmelCase : List[Any] = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
__lowerCAmelCase : int = '''##''' + bert_word[j]
__lowerCAmelCase : int = start + i
__lowerCAmelCase : Dict = False
break
if single_word:
start += 1
return bert_word
def _lowercase ( lowercase__ , lowercase__ , lowercase__ ):
__lowerCAmelCase : List[Any] = []
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 1_0_0 ):
__lowerCAmelCase : List[str] = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['''cws'''] ).cws
__lowerCAmelCase : Optional[Any] = [get_chinese_word(_SCREAMING_SNAKE_CASE ) for r in res]
ltp_res.extend(_SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Tuple = []
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 1_0_0 ):
__lowerCAmelCase : Optional[int] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=5_1_2 )
bert_res.extend(res['''input_ids'''] )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowerCAmelCase : str = []
for id in input_ids:
__lowerCAmelCase : Any = bert_tokenizer._convert_id_to_token(_SCREAMING_SNAKE_CASE )
input_tokens.append(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Optional[Any] = add_sub_symbol(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Dict = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_SCREAMING_SNAKE_CASE ):
if token[:2] == "##":
__lowerCAmelCase : Dict = token[2:]
# save chinese tokens' pos
if len(_SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(_SCREAMING_SNAKE_CASE ) ):
ref_id.append(_SCREAMING_SNAKE_CASE )
ref_ids.append(_SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
return ref_ids
def _lowercase ( lowercase__ ):
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
__lowerCAmelCase : List[str] = f.readlines()
__lowerCAmelCase : List[Any] = [line.strip() for line in data if len(_SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
__lowerCAmelCase : int = LTP(args.ltp ) # faster in GPU device
__lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained(args.bert )
__lowerCAmelCase : List[Any] = prepare_ref(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
__lowerCAmelCase : List[str] = [json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids]
f.writelines(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
required=False,
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp",
required=False,
type=str,
default="./resources/ltp",
help="resources for LTP tokenizer, usually a path",
)
parser.add_argument(
"--bert",
required=False,
type=str,
default="./resources/robert",
help="resources for Bert tokenizer",
)
parser.add_argument(
"--save_path",
required=False,
type=str,
default="./resources/ref.txt",
help="path to save res",
)
_UpperCamelCase = parser.parse_args()
main(args)
| 492 |
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class lowerCamelCase:
'''simple docstring'''
def __init__( self , snake_case_ , ):
_A = parent
_A = 13
_A = 7
_A = True
_A = True
_A = True
_A = 99
_A = 32
_A = 2
_A = 4
_A = 37
_A = 'gelu'
_A = 0.1
_A = 0.1
_A = 512
_A = 16
_A = 2
_A = 0.02
_A = 3
_A = 4
_A = None
def lowerCAmelCase__ ( self ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase__ ( self ):
(
(
_A
), (
_A
), (
_A
), (
_A
), (
_A
), (
_A
),
) = self.prepare_config_and_inputs()
_A = True
_A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = TFEsmModel(config=snake_case_ )
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
_A = model(snake_case_ )
_A = [input_ids, input_mask]
_A = model(snake_case_ )
_A = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ):
_A = True
_A = TFEsmModel(config=snake_case_ )
_A = {
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
_A = model(snake_case_ )
_A = [input_ids, input_mask]
_A = model(snake_case_ , encoder_hidden_states=snake_case_ )
# Also check the case where encoder outputs are not passed
_A = model(snake_case_ , attention_mask=snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = TFEsmForMaskedLM(config=snake_case_ )
_A = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = self.num_labels
_A = TFEsmForTokenClassification(config=snake_case_ )
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
_A = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase__ ( self ):
_A = self.prepare_config_and_inputs()
(
(
_A
), (
_A
), (
_A
), (
_A
), (
_A
), (
_A
),
) = config_and_inputs
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
__magic_name__ = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'feature-extraction': TFEsmModel,
'fill-mask': TFEsmForMaskedLM,
'text-classification': TFEsmForSequenceClassification,
'token-classification': TFEsmForTokenClassification,
'zero-shot': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
def lowerCAmelCase__ ( self ):
_A = TFEsmModelTester(self )
_A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def lowerCAmelCase__ ( self ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def lowerCAmelCase__ ( self ):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFEsmModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@unittest.skip('Protein models do not support embedding resizing.' )
def lowerCAmelCase__ ( self ):
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def lowerCAmelCase__ ( self ):
pass
def lowerCAmelCase__ ( self ):
_A, _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(snake_case_ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
_A = model.get_bias()
assert isinstance(snake_case_ , snake_case_ )
for k, v in name.items():
assert isinstance(snake_case_ , tf.Variable )
else:
_A = model.get_output_embeddings()
assert x is None
_A = model.get_bias()
assert name is None
@require_tf
class lowerCamelCase( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase__ ( self ):
_A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
_A = tf.constant([[0, 1, 2, 3, 4, 5]] )
_A = model(snake_case_ )[0]
_A = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , snake_case_ )
# compare the actual values for a slice.
_A = tf.constant(
[
[
[8.92_1518, -10.58_9814, -6.467_1307],
[-6.396_7156, -13.91_1377, -1.121_1915],
[-7.78_1247, -13.95_1557, -3.74_0592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def lowerCAmelCase__ ( self ):
_A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
_A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_A = model(snake_case_ )[0]
# compare the actual values for a slice.
_A = tf.constant(
[
[
[0.1444_3092, 0.5412_5327, 0.324_7739],
[0.3034_0484, 0.0052_6676, 0.3107_7722],
[0.3227_8043, -0.2498_7096, 0.341_4628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 27 | 0 |
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int:
if n == 1 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return 0
elif n == 2:
return 1
else:
lowercase : Union[str, Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int:
lowercase : Optional[Any] = 0
lowercase : Any = 2
while digits < n:
index += 1
lowercase : Optional[Any] = len(str(fibonacci(_SCREAMING_SNAKE_CASE ) ) )
return index
def _snake_case( SCREAMING_SNAKE_CASE__ = 1_000 ) -> int:
return fibonacci_digits_index(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 336 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() )
_A = sum([np.prod(p.size() ) for p in model_parameters] )
return params
__A : Union[str, Any] = logging.getLogger(__name__)
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if metric == "rouge2":
_A = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
_A = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
_A = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
_A = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"
' function.' )
_A = ModelCheckpoint(
dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
return EarlyStopping(
monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , )
class lowerCamelCase( pl.Callback ):
'''simple docstring'''
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ):
_A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(snake_case_ )
@rank_zero_only
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ):
logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" )
_A = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
_A = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A = od / 'test_results.txt'
_A = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A = od / F"{type_path}_results/{trainer.global_step:05d}.txt"
_A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt"
results_file.parent.mkdir(exist_ok=snake_case_ )
generations_file.parent.mkdir(exist_ok=snake_case_ )
with open(snake_case_ , 'a+' ) as writer:
for key in sorted(snake_case_ ):
if key in ["log", "progress_bar", "preds"]:
continue
_A = metrics[key]
if isinstance(snake_case_ , torch.Tensor ):
_A = val.item()
_A = F"{key}: {val:.6f}\n"
writer.write(snake_case_ )
if not save_generations:
return
if "preds" in metrics:
_A = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(snake_case_ )
@rank_zero_only
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ):
try:
_A = pl_module.model.model.num_parameters()
except AttributeError:
_A = pl_module.model.num_parameters()
_A = count_trainable_parameters(snake_case_ )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(snake_case_ , snake_case_ , 'test' )
@rank_zero_only
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ):
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 27 | 0 |
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__ : int = logging.get_logger(__name__)
set_seed(770)
UpperCamelCase__ : Dict = {
"c_attn": "att_proj",
"c_proj": "out_proj",
"c_fc": "in_proj",
"transformer.": "",
"h.": "layers.",
"ln_1": "layernorm_1",
"ln_2": "layernorm_2",
"ln_f": "layernorm_final",
"wpe": "position_embeds_layer",
"wte": "input_embeds_layer",
}
UpperCamelCase__ : str = {
"text_small": {
"repo_id": "suno/bark",
"file_name": "text.pt",
},
"coarse_small": {
"repo_id": "suno/bark",
"file_name": "coarse.pt",
},
"fine_small": {
"repo_id": "suno/bark",
"file_name": "fine.pt",
},
"text": {
"repo_id": "suno/bark",
"file_name": "text_2.pt",
},
"coarse": {
"repo_id": "suno/bark",
"file_name": "coarse_2.pt",
},
"fine": {
"repo_id": "suno/bark",
"file_name": "fine_2.pt",
},
}
UpperCamelCase__ : Optional[int] = os.path.dirname(os.path.abspath(__file__))
UpperCamelCase__ : int = os.path.join(os.path.expanduser("""~"""), """.cache""")
UpperCamelCase__ : Union[str, Any] = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""")
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=False ) -> Dict:
"""simple docstring"""
a = model_type
if use_small:
key += "_small"
return os.path.join(_SCREAMING_SNAKE_CASE, REMOTE_MODEL_PATHS[key]['''file_name'''] )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
os.makedirs(_SCREAMING_SNAKE_CASE, exist_ok=_SCREAMING_SNAKE_CASE )
hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE, filename=_SCREAMING_SNAKE_CASE, local_dir=_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=False, snake_case_="text" ) -> int:
"""simple docstring"""
if model_type == "text":
a = BarkSemanticModel
a = BarkSemanticConfig
a = BarkSemanticGenerationConfig
elif model_type == "coarse":
a = BarkCoarseModel
a = BarkCoarseConfig
a = BarkCoarseGenerationConfig
elif model_type == "fine":
a = BarkFineModel
a = BarkFineConfig
a = BarkFineGenerationConfig
else:
raise NotImplementedError()
a = f"""{model_type}_small""" if use_small else model_type
a = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(_SCREAMING_SNAKE_CASE ):
logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" )
_download(model_info['''repo_id'''], model_info['''file_name'''] )
a = torch.load(_SCREAMING_SNAKE_CASE, map_location=_SCREAMING_SNAKE_CASE )
# this is a hack
a = checkpoint['''model_args''']
if "input_vocab_size" not in model_args:
a = model_args['''vocab_size''']
a = model_args['''vocab_size''']
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
a = model_args.pop('''n_head''' )
a = model_args.pop('''n_embd''' )
a = model_args.pop('''n_layer''' )
a = ConfigClass(**checkpoint['''model_args'''] )
a = ModelClass(config=_SCREAMING_SNAKE_CASE )
a = GenerationConfigClass()
a = model_generation_config
a = checkpoint['''model''']
# fixup checkpoint
a = '''_orig_mod.'''
for k, v in list(state_dict.items() ):
if k.startswith(_SCREAMING_SNAKE_CASE ):
# replace part of the key with corresponding layer name in HF implementation
a = k[len(_SCREAMING_SNAKE_CASE ) :]
for old_layer_name in new_layer_name_dict:
a = new_k.replace(_SCREAMING_SNAKE_CASE, new_layer_name_dict[old_layer_name] )
a = state_dict.pop(_SCREAMING_SNAKE_CASE )
a = set(state_dict.keys() ) - set(model.state_dict().keys() )
a = {k for k in extra_keys if not k.endswith('''.attn.bias''' )}
a = set(model.state_dict().keys() ) - set(state_dict.keys() )
a = {k for k in missing_keys if not k.endswith('''.attn.bias''' )}
if len(_SCREAMING_SNAKE_CASE ) != 0:
raise ValueError(f"""extra keys found: {extra_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) != 0:
raise ValueError(f"""missing keys: {missing_keys}""" )
model.load_state_dict(_SCREAMING_SNAKE_CASE, strict=_SCREAMING_SNAKE_CASE )
a = model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE )
a = checkpoint['''best_val_loss'''].item()
logger.info(f"""model loaded: {round(n_params/1e6, 1 )}M params, {round(_SCREAMING_SNAKE_CASE, 3 )} loss""" )
model.eval()
model.to(_SCREAMING_SNAKE_CASE )
del checkpoint, state_dict
return model
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=False, snake_case_="text" ) -> List[str]:
"""simple docstring"""
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
a = '''cpu''' # do conversion on cpu
a = _get_ckpt_path(_SCREAMING_SNAKE_CASE, use_small=_SCREAMING_SNAKE_CASE )
a = _load_model(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, model_type=_SCREAMING_SNAKE_CASE, use_small=_SCREAMING_SNAKE_CASE )
# load bark initial model
a = _bark_load_model(_SCREAMING_SNAKE_CASE, '''cpu''', model_type=_SCREAMING_SNAKE_CASE, use_small=_SCREAMING_SNAKE_CASE )
if model_type == "text":
a = bark_model['''model''']
if model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) != bark_model.get_num_params():
raise ValueError('''initial and new models don\'t have the same number of parameters''' )
# check if same output as the bark model
a = 5
a = 1_0
if model_type in ["text", "coarse"]:
a = torch.randint(2_5_6, (batch_size, sequence_length), dtype=torch.int )
a = bark_model(_SCREAMING_SNAKE_CASE )[0]
a = model(_SCREAMING_SNAKE_CASE )
# take last logits
a = output_new_model_total.logits[:, [-1], :]
else:
a = 3
a = 8
a = torch.randint(2_5_6, (batch_size, sequence_length, n_codes_total), dtype=torch.int )
a = model(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )
a = bark_model(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )
a = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError('''initial and new outputs don\'t have the same shape''' )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError('''initial and new outputs are not equal''' )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, ) -> Dict:
"""simple docstring"""
a = os.path.join(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )
a = BarkSemanticConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE, '''config.json''' ) )
a = BarkCoarseConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE, '''config.json''' ) )
a = BarkFineConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE, '''config.json''' ) )
a = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' )
a = BarkSemanticModel.from_pretrained(_SCREAMING_SNAKE_CASE )
a = BarkCoarseModel.from_pretrained(_SCREAMING_SNAKE_CASE )
a = BarkFineModel.from_pretrained(_SCREAMING_SNAKE_CASE )
a = EncodecModel.from_pretrained('''facebook/encodec_24khz''' )
a = BarkConfig.from_sub_model_configs(
_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )
a = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config )
a = BarkModel(_SCREAMING_SNAKE_CASE )
a = semantic
a = coarseAcoustic
a = fineAcoustic
a = codec
a = bark_generation_config
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
bark.save_pretrained(_SCREAMING_SNAKE_CASE, repo_id=_SCREAMING_SNAKE_CASE, push_to_hub=_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""")
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""")
UpperCamelCase__ : Optional[int] = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 387 |
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
print('\nThe shortest path matrix using Floyd Warshall algorithm\n' )
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
if dist[i][j] != float('inf' ):
print(int(dist[i][j] ) , end='\t' )
else:
print('INF' , end='\t' )
print()
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
_A = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(_SCREAMING_SNAKE_CASE ):
# looping through rows of graph array
for i in range(_SCREAMING_SNAKE_CASE ):
# looping through columns of graph array
for j in range(_SCREAMING_SNAKE_CASE ):
if (
dist[i][k] != float('inf' )
and dist[k][j] != float('inf' )
and dist[i][k] + dist[k][j] < dist[i][j]
):
_A = dist[i][k] + dist[k][j]
_print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return dist, v
if __name__ == "__main__":
__A : Dict = int(input("Enter number of vertices: "))
__A : Union[str, Any] = int(input("Enter number of edges: "))
__A : List[str] = [[float("inf") for i in range(v)] for j in range(v)]
for i in range(v):
__A : List[Any] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print("\nEdge ", i + 1)
__A : Union[str, Any] = int(input("Enter source:"))
__A : List[str] = int(input("Enter destination:"))
__A : Union[str, Any] = float(input("Enter weight:"))
__A : Any = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 27 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class _a ( __snake_case):
"""simple docstring"""
UpperCamelCase__ = """deberta-v2"""
def __init__( self : Dict , __UpperCamelCase : Dict=1_2_8_1_0_0 , __UpperCamelCase : Any=1_5_3_6 , __UpperCamelCase : Optional[Any]=2_4 , __UpperCamelCase : int=2_4 , __UpperCamelCase : int=6_1_4_4 , __UpperCamelCase : Union[str, Any]="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : List[Any]=5_1_2 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Dict=0.0_2 , __UpperCamelCase : Union[str, Any]=1e-7 , __UpperCamelCase : Tuple=False , __UpperCamelCase : Any=-1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Dict=True , __UpperCamelCase : str=None , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Dict="gelu" , **__UpperCamelCase : Optional[Any] , )->Optional[Any]:
super().__init__(**snake_case_ )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = relative_attention
_UpperCAmelCase = max_relative_positions
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = position_biased_input
# Backwards compatibility
if type(snake_case_ ) == str:
_UpperCAmelCase = [x.strip() for x in pos_att_type.lower().split('''|''' )]
_UpperCAmelCase = pos_att_type
_UpperCAmelCase = vocab_size
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = kwargs.get('''pooler_hidden_size''' , snake_case_ )
_UpperCAmelCase = pooler_dropout
_UpperCAmelCase = pooler_hidden_act
class _a ( __snake_case):
"""simple docstring"""
@property
def lowercase__ ( self : Any )->Tuple:
if self.task == "multiple-choice":
_UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def lowercase__ ( self : List[str] )->int:
return 1_2
def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] = -1 , __UpperCamelCase : Union[str, Any] = -1 , __UpperCamelCase : Optional[Any] = -1 , __UpperCamelCase : Tuple = False , __UpperCamelCase : Any = None , __UpperCamelCase : Union[str, Any] = 3 , __UpperCamelCase : Tuple = 4_0 , __UpperCamelCase : List[str] = 4_0 , __UpperCamelCase : List[str] = None , )->int:
_UpperCAmelCase = super().generate_dummy_inputs(preprocessor=snake_case_ , framework=snake_case_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 602 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
__A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str:
"""simple docstring"""
if subparsers is not None:
_A = subparsers.add_parser('tpu-config' , description=_description )
else:
_A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
_A = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
_A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_A = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ):
_A = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
_A = defaults.command_file
if not args.command and defaults.commands is not None:
_A = defaults.commands
if not args.tpu_name:
_A = defaults.tpu_name
if not args.tpu_zone:
_A = defaults.tpu_zone
if args.accelerate_version == "dev":
_A = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
_A = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ):
_A = F"accelerate=={args.accelerate_version}"
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
_A = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ):
_A = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
_A = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [F"pip install {args.accelerate_version}"]
new_cmd += args.command
_A = '; '.join(_SCREAMING_SNAKE_CASE )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
_A = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" )
return
subprocess.run(_SCREAMING_SNAKE_CASE )
print('Successfully setup pod.' )
def __lowerCAmelCase( ) -> Tuple:
"""simple docstring"""
_A = tpu_command_parser()
_A = parser.parse_args()
tpu_command_launcher(_SCREAMING_SNAKE_CASE )
| 27 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
UpperCAmelCase__ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def _UpperCAmelCase ( ) -> Any:
_snake_case = _ask_options(
'''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_snake_case = get_sagemaker_input()
else:
_snake_case = get_cluster_input()
return config
def _UpperCAmelCase ( __lowerCamelCase : Optional[Any]=None ) -> Dict:
if subparsers is not None:
_snake_case = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE )
else:
_snake_case = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE )
parser.add_argument(
'''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def _UpperCAmelCase ( __lowerCamelCase : int ) -> Optional[Any]:
_snake_case = get_user_input()
if args.config_file is not None:
_snake_case = args.config_file
else:
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
_snake_case = default_yaml_config_file
if config_file.endswith('''.json''' ):
config.to_json_file(_SCREAMING_SNAKE_CASE )
else:
config.to_yaml_file(_SCREAMING_SNAKE_CASE )
print(f'''accelerate configuration saved at {config_file}''' )
def _UpperCAmelCase ( ) -> Union[str, Any]:
_snake_case = config_command_parser()
_snake_case = parser.parse_args()
config_command(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 224 |
from ... import PretrainedConfig
__A : Optional[Any] = {
"sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json",
}
class lowerCamelCase( __snake_case ):
'''simple docstring'''
__magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
__magic_name__ = 'nezha'
def __init__( self , snake_case_=2_1128 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=64 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=0 , snake_case_=2 , snake_case_=3 , snake_case_=True , **snake_case_ , ):
super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = max_relative_position
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = classifier_dropout
_A = use_cache
| 27 | 0 |
from ... import PretrainedConfig
a_ = {
"sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json",
}
class _UpperCamelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
lowerCamelCase__ ='nezha'
def __init__( self : Any , a : Union[str, Any]=2_1128 , a : Optional[Any]=768 , a : Any=12 , a : int=12 , a : Dict=3072 , a : List[str]="gelu" , a : List[str]=0.1 , a : Any=0.1 , a : Tuple=512 , a : int=64 , a : Optional[int]=2 , a : List[str]=0.02 , a : Optional[int]=1e-12 , a : int=0.1 , a : Optional[Any]=0 , a : List[Any]=2 , a : List[Any]=3 , a : str=True , **a : Optional[int] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ )
SCREAMING_SNAKE_CASE : Any = vocab_size
SCREAMING_SNAKE_CASE : Optional[int] = hidden_size
SCREAMING_SNAKE_CASE : Dict = num_hidden_layers
SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE : List[str] = hidden_act
SCREAMING_SNAKE_CASE : List[str] = intermediate_size
SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings
SCREAMING_SNAKE_CASE : str = max_relative_position
SCREAMING_SNAKE_CASE : int = type_vocab_size
SCREAMING_SNAKE_CASE : Optional[int] = initializer_range
SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout
SCREAMING_SNAKE_CASE : Tuple = use_cache | 25 |
from collections import defaultdict
from math import ceil, sqrt
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 1_000_000 , _SCREAMING_SNAKE_CASE = 10 ) -> int:
"""simple docstring"""
_A = defaultdict(_SCREAMING_SNAKE_CASE )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
_A = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
_A = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f"{solution() = }")
| 27 | 0 |
'''simple docstring'''
from __future__ import annotations
def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , ) -> None:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =len(_SCREAMING_SNAKE_CASE )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_SCREAMING_SNAKE_CASE ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
def _lowerCAmelCase ( _UpperCamelCase : Any ) -> None:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =[]
depth_first_search([] , [] , [] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Print all the boards
for board in boards:
for column in board:
print(_SCREAMING_SNAKE_CASE )
print('' )
print(len(_SCREAMING_SNAKE_CASE ) , 'solutions were found.' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 405 |
from math import pi, sqrt, tan
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if side_length < 0:
raise ValueError('surface_area_cube() only accepts non-negative values' )
return 6 * side_length**2
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if length < 0 or breadth < 0 or height < 0:
raise ValueError('surface_area_cuboid() only accepts non-negative values' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if radius < 0:
raise ValueError('surface_area_sphere() only accepts non-negative values' )
return 4 * pi * radius**2
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if radius < 0:
raise ValueError('surface_area_hemisphere() only accepts non-negative values' )
return 3 * pi * radius**2
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('surface_area_cone() only accepts non-negative values' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'surface_area_conical_frustum() only accepts non-negative values' )
_A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('surface_area_cylinder() only accepts non-negative values' )
return 2 * pi * radius * (height + radius)
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if torus_radius < 0 or tube_radius < 0:
raise ValueError('surface_area_torus() only accepts non-negative values' )
if torus_radius < tube_radius:
raise ValueError(
'surface_area_torus() does not support spindle or self intersecting tori' )
return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if length < 0 or width < 0:
raise ValueError('area_rectangle() only accepts non-negative values' )
return length * width
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if side_length < 0:
raise ValueError('area_square() only accepts non-negative values' )
return side_length**2
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('area_triangle() only accepts non-negative values' )
return (base * height) / 2
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('area_triangle_three_sides() only accepts non-negative values' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('Given three sides do not form a triangle' )
_A = (sidea + sidea + sidea) / 2
_A = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('area_parallelogram() only accepts non-negative values' )
return base * height
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if basea < 0 or basea < 0 or height < 0:
raise ValueError('area_trapezium() only accepts non-negative values' )
return 1 / 2 * (basea + basea) * height
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if radius < 0:
raise ValueError('area_circle() only accepts non-negative values' )
return pi * radius**2
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if radius_x < 0 or radius_y < 0:
raise ValueError('area_ellipse() only accepts non-negative values' )
return pi * radius_x * radius_y
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('area_rhombus() only accepts non-negative values' )
return 1 / 2 * diagonal_a * diagonal_a
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3:
raise ValueError(
'area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides' )
elif length < 0:
raise ValueError(
'area_reg_polygon() only accepts non-negative values as \
length of a side' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("[DEMO] Areas of various geometric shapes: \n")
print(f"Rectangle: {area_rectangle(10, 20) = }")
print(f"Square: {area_square(10) = }")
print(f"Triangle: {area_triangle(10, 10) = }")
print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(f"Parallelogram: {area_parallelogram(10, 20) = }")
print(f"Rhombus: {area_rhombus(10, 20) = }")
print(f"Trapezium: {area_trapezium(10, 20, 30) = }")
print(f"Circle: {area_circle(20) = }")
print(f"Ellipse: {area_ellipse(10, 20) = }")
print("\nSurface Areas of various geometric shapes: \n")
print(f"Cube: {surface_area_cube(20) = }")
print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(f"Sphere: {surface_area_sphere(20) = }")
print(f"Hemisphere: {surface_area_hemisphere(20) = }")
print(f"Cone: {surface_area_cone(10, 20) = }")
print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(f"Cylinder: {surface_area_cylinder(10, 20) = }")
print(f"Torus: {surface_area_torus(20, 10) = }")
print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(f"Square: {area_reg_polygon(4, 10) = }")
print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 27 | 0 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
] )
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> List[str]:
if self.framework == "pytorch":
subprocess.run(
f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=snake_case_ , )
assert hasattr(self , "env" )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}'''
# distributed data settings
_lowerCAmelCase = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=snake_case_ , instance_count=snake_case_ , instance_type=self.instance_type , debugger_hook_config=snake_case_ , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=snake_case_ , py_version="py36" , )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
TrainingJobAnalytics(snake_case_ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(2,)] )
def _snake_case ( self , _lowerCAmelCase ) -> List[Any]:
# create estimator
_lowerCAmelCase = self.create_estimator(snake_case_ )
# run training
estimator.fit()
# result dataframe
_lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
_lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
_lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_lowerCAmelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case_ )
| 18 |
import numpy as np
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array:
"""simple docstring"""
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
lowerCAmelCase : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase : Any = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
lowerCAmelCase : Optional[int] = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
lowerCAmelCase : Dict = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class a ( __snake_case ):
SCREAMING_SNAKE_CASE__ : List[Any] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ElectraTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
__SCREAMING_SNAKE_CASE: Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars
):
__SCREAMING_SNAKE_CASE: str = getattr(snake_case_ , normalizer_state.pop('''type''' ) )
__SCREAMING_SNAKE_CASE: List[str] = do_lower_case
__SCREAMING_SNAKE_CASE: List[Any] = strip_accents
__SCREAMING_SNAKE_CASE: Any = tokenize_chinese_chars
__SCREAMING_SNAKE_CASE: int = normalizer_class(**snake_case_ )
__SCREAMING_SNAKE_CASE: Any = do_lower_case
def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE: Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE: Dict = [self.sep_token_id]
__SCREAMING_SNAKE_CASE: Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE: Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
| 202 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__A : Optional[Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[int] = ["MLukeTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
__A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 27 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
__snake_case = logging.get_logger(__name__)
def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[List[ImageInput]]:
if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(_SCREAMING_SNAKE_CASE ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class _a ( __snake_case ):
"""simple docstring"""
A_ = ['''pixel_values''']
def __init__( self : List[str] , lowercase_ : List[Any] = True , lowercase_ : Dict = None , lowercase_ : Optional[Any] = PILImageResampling.BILINEAR , lowercase_ : Optional[int] = True , lowercase_ : List[Any] = None , lowercase_ : Union[str, Any] = True , lowercase_ : Tuple = 1 / 255 , lowercase_ : Union[str, Any] = True , lowercase_ : List[Any] = True , lowercase_ : str = None , lowercase_ : Tuple = None , **lowercase_ : str , ):
'''simple docstring'''
super().__init__(**snake_case_ )
lowercase_ = size if size is not None else {"""shortest_edge""": 256}
lowercase_ = get_size_dict(snake_case_ , default_to_square=snake_case_ )
lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
lowercase_ = get_size_dict(snake_case_ , param_name="""crop_size""" )
lowercase_ = do_resize
lowercase_ = size
lowercase_ = do_center_crop
lowercase_ = crop_size
lowercase_ = resample
lowercase_ = do_rescale
lowercase_ = rescale_factor
lowercase_ = offset
lowercase_ = do_normalize
lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCamelCase__ ( self : Tuple , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : List[str] = PILImageResampling.BILINEAR , lowercase_ : int = None , **lowercase_ : Union[str, Any] , ):
'''simple docstring'''
lowercase_ = get_size_dict(snake_case_ , default_to_square=snake_case_ )
if "shortest_edge" in size:
lowercase_ = get_resize_output_image_size(snake_case_ , size["""shortest_edge"""] , default_to_square=snake_case_ )
elif "height" in size and "width" in size:
lowercase_ = (size["""height"""], size["""width"""])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ )
def lowerCamelCase__ ( self : List[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : int = None , **lowercase_ : int , ):
'''simple docstring'''
lowercase_ = get_size_dict(snake_case_ )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(snake_case_ , size=(size["""height"""], size["""width"""]) , data_format=snake_case_ , **snake_case_ )
def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] = True , lowercase_ : List[str] = None , **lowercase_ : str , ):
'''simple docstring'''
lowercase_ = image.astype(np.floataa )
if offset:
lowercase_ = image - (scale / 2)
return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ )
def lowerCamelCase__ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Any = None , **lowercase_ : Dict , ):
'''simple docstring'''
return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ )
def lowerCamelCase__ ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] = None , lowercase_ : List[str] = None , lowercase_ : Union[str, Any] = None , lowercase_ : Dict = None , lowercase_ : Tuple = None , lowercase_ : str = None , lowercase_ : int = None , lowercase_ : int = None , lowercase_ : Optional[Any] = None , lowercase_ : Tuple = None , lowercase_ : Any = None , lowercase_ : Optional[Any] = ChannelDimension.FIRST , ):
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
lowercase_ = to_numpy_array(snake_case_ )
if do_resize:
lowercase_ = self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ )
if do_center_crop:
lowercase_ = self.center_crop(snake_case_ , size=snake_case_ )
if do_rescale:
lowercase_ = self.rescale(image=snake_case_ , scale=snake_case_ , offset=snake_case_ )
if do_normalize:
lowercase_ = self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ )
lowercase_ = to_channel_dimension_format(snake_case_ , snake_case_ )
return image
def lowerCamelCase__ ( self : Dict , lowercase_ : Dict , lowercase_ : Any = None , lowercase_ : List[str] = None , lowercase_ : str = None , lowercase_ : str = None , lowercase_ : Dict = None , lowercase_ : Dict = None , lowercase_ : Optional[Any] = None , lowercase_ : List[Any] = None , lowercase_ : Tuple = None , lowercase_ : str = None , lowercase_ : Any = None , lowercase_ : Optional[Any] = None , lowercase_ : int = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ):
'''simple docstring'''
lowercase_ = do_resize if do_resize is not None else self.do_resize
lowercase_ = resample if resample is not None else self.resample
lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase_ = do_rescale if do_rescale is not None else self.do_rescale
lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase_ = offset if offset is not None else self.offset
lowercase_ = do_normalize if do_normalize is not None else self.do_normalize
lowercase_ = image_mean if image_mean is not None else self.image_mean
lowercase_ = image_std if image_std is not None else self.image_std
lowercase_ = size if size is not None else self.size
lowercase_ = get_size_dict(snake_case_ , default_to_square=snake_case_ )
lowercase_ = crop_size if crop_size is not None else self.crop_size
lowercase_ = get_size_dict(snake_case_ , param_name="""crop_size""" )
if not valid_images(snake_case_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
lowercase_ = make_batched(snake_case_ )
lowercase_ = [
[
self._preprocess_image(
image=snake_case_ , do_resize=snake_case_ , size=snake_case_ , resample=snake_case_ , do_center_crop=snake_case_ , crop_size=snake_case_ , do_rescale=snake_case_ , rescale_factor=snake_case_ , offset=snake_case_ , do_normalize=snake_case_ , image_mean=snake_case_ , image_std=snake_case_ , data_format=snake_case_ , )
for img in video
]
for video in videos
]
lowercase_ = {"""pixel_values""": videos}
return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
| 451 |
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
__A : List[Any] = "http://www.mocksite.com/file1.txt"
__A : List[Any] = "\"text\": [\"foo\", \"foo\"]"
__A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8"
class lowerCamelCase:
'''simple docstring'''
__magic_name__ = 200
__magic_name__ = {'Content-Length': '100'}
__magic_name__ = {}
def lowerCAmelCase__ ( self , **snake_case_ ):
return [bytes(snake_case_ , 'utf-8' )]
def __lowerCAmelCase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return MockResponse()
@pytest.mark.parametrize('urls_type' , [str, list, dict] )
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
import requests
monkeypatch.setattr(_SCREAMING_SNAKE_CASE , 'request' , _SCREAMING_SNAKE_CASE )
_A = URL
if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_A = url
elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_A = [url]
elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_A = {'train': url}
_A = 'dummy'
_A = 'downloads'
_A = tmp_path
_A = DownloadConfig(
cache_dir=os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , use_etag=_SCREAMING_SNAKE_CASE , )
_A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE )
_A = dl_manager.download(_SCREAMING_SNAKE_CASE )
_A = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_A = [downloaded_paths]
_A = [urls]
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert "train" in downloaded_paths.keys()
_A = downloaded_paths.values()
_A = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
_A = Path(_SCREAMING_SNAKE_CASE )
_A = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
_A = downloaded_path.read_text()
assert content == CONTENT
_A = downloaded_path.with_suffix('.json' )
assert metadata_downloaded_path.exists()
_A = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize('paths_type' , [str, list, dict] )
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
_A = str(_SCREAMING_SNAKE_CASE )
if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_A = filename
elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_A = [filename]
elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_A = {'train': filename}
_A = 'dummy'
_A = xz_file.parent
_A = 'extracted'
_A = DownloadConfig(
cache_dir=_SCREAMING_SNAKE_CASE , use_etag=_SCREAMING_SNAKE_CASE , )
_A = DownloadManager(dataset_name=_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE )
_A = dl_manager.extract(_SCREAMING_SNAKE_CASE )
_A = paths
for extracted_paths in [extracted_paths]:
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_A = [extracted_paths]
_A = [paths]
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert "train" in extracted_paths.keys()
_A = extracted_paths.values()
_A = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert extracted_path == dl_manager.extracted_paths[input_path]
_A = Path(_SCREAMING_SNAKE_CASE )
_A = extracted_path.parts
assert parts[-1] == hash_url_to_filename(_SCREAMING_SNAKE_CASE , etag=_SCREAMING_SNAKE_CASE )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
_A = extracted_path.read_text()
_A = text_file.read_text()
assert extracted_file_content == expected_file_content
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
assert path.endswith('.jsonl' )
for num_items, line in enumerate(_SCREAMING_SNAKE_CASE , start=1 ):
_A = json.loads(line.decode('utf-8' ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] )
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_A = request.getfixturevalue(_SCREAMING_SNAKE_CASE )
_A = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ):
_test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert num_jsonl == 2
@pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] )
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_A = request.getfixturevalue(_SCREAMING_SNAKE_CASE )
_A = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_SCREAMING_SNAKE_CASE ) , start=1 ):
_test_jsonl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert num_tar == 1
assert num_jsonl == 2
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_A = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) , start=1 ):
assert os.path.basename(_SCREAMING_SNAKE_CASE ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 27 | 0 |
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class __snake_case ( __snake_case ):
"""simple docstring"""
lowerCAmelCase_ : List[Any] = 't5'
lowerCAmelCase_ : List[str] = ['past_key_values']
lowerCAmelCase_ : List[str] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self :Union[str, Any] , UpperCamelCase__ :Tuple=32_128 , UpperCamelCase__ :Dict=512 , UpperCamelCase__ :Dict=64 , UpperCamelCase__ :Union[str, Any]=2_048 , UpperCamelCase__ :List[str]=6 , UpperCamelCase__ :Tuple=None , UpperCamelCase__ :List[str]=8 , UpperCamelCase__ :List[Any]=32 , UpperCamelCase__ :int=128 , UpperCamelCase__ :List[Any]=0.1 , UpperCamelCase__ :Optional[Any]=1E-6 , UpperCamelCase__ :Optional[Any]=1.0 , UpperCamelCase__ :Any="relu" , UpperCamelCase__ :Union[str, Any]=True , UpperCamelCase__ :Optional[int]=True , UpperCamelCase__ :Optional[Any]=0 , UpperCamelCase__ :Any=1 , **UpperCamelCase__ :Optional[int] , ):
_a = vocab_size
_a = d_model
_a = d_kv
_a = d_ff
_a = num_layers
_a = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
_a = num_heads
_a = relative_attention_num_buckets
_a = relative_attention_max_distance
_a = dropout_rate
_a = layer_norm_epsilon
_a = initializer_factor
_a = feed_forward_proj
_a = use_cache
_a = self.feed_forward_proj.split("-" )
_a = act_info[-1]
_a = act_info[0] == "gated"
if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2:
raise ValueError(
f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"\'gated-gelu\' or \'relu\'" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
_a = "gelu_new"
super().__init__(
pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , )
class __snake_case ( __snake_case ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self :List[str] ):
_a = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
_a = "past_encoder_sequence + sequence"
_a = {0: "batch"}
_a = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
_a = {0: "batch", 1: "decoder_sequence"}
_a = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(snake_case_ , direction="inputs" )
return common_inputs
@property
def SCREAMING_SNAKE_CASE_ ( self :Dict ):
return 13
| 388 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
_A = int(number**0.5 )
return number == sq * sq
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]:
"""simple docstring"""
_A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
_A = x_den * y_den * z_den
_A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
top //= hcf
bottom //= hcf
return top, bottom
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int:
"""simple docstring"""
_A = set()
_A = 42
_A = Fraction(0 )
_A = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
_A = x_num * y_den + x_den * y_num
_A = x_den * y_den
_A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_A = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
_A = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
_A = x_den * x_den * y_den * y_den
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
_A = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_A = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_A = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=-1
_A = x_num * y_num
_A = x_den * y_num + x_num * y_den
_A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_A = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
_A = x_num * x_num * y_num * y_num
_A = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
_A = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_A = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_A = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
for num, den in unique_s:
total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return total.denominator + total.numerator
if __name__ == "__main__":
print(f"{solution() = }")
| 27 | 0 |
from __future__ import annotations
import time
import numpy as np
_UpperCamelCase = [8, 5, 9, 7]
_UpperCamelCase = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
_UpperCamelCase = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class __lowercase :
def __init__( self , A_ , A_ , A_ , ) ->List[Any]:
'''simple docstring'''
__lowerCAmelCase : Tuple = claim_vector
__lowerCAmelCase : List[str] = allocated_resources_table
__lowerCAmelCase : Optional[Any] = maximum_claim_table
def UpperCamelCase__ ( self ) ->List[Any]:
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def UpperCamelCase__ ( self ) ->Dict:
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(snake_case_ ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def UpperCamelCase__ ( self ) ->Dict:
'''simple docstring'''
return {self.__need().index(snake_case_ ): i for i in self.__need()}
def UpperCamelCase__ ( self , **A_ ) ->Optional[Any]:
'''simple docstring'''
__lowerCAmelCase : str = self.__need()
__lowerCAmelCase : Tuple = self.__allocated_resources_table
__lowerCAmelCase : str = self.__available_resources()
__lowerCAmelCase : List[str] = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
__lowerCAmelCase : List[str] = False
for each_need in need_list:
__lowerCAmelCase : Tuple = True
for index, need in enumerate(snake_case_ ):
if need > available_resources[index]:
__lowerCAmelCase : str = False
break
if execution:
__lowerCAmelCase : List[str] = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
__lowerCAmelCase : List[Any] = original_need_index
print(f"""Process {process_number + 1} is executing.""" )
# remove the process run from stack
need_list.remove(snake_case_ )
# update available/freed resources stack
__lowerCAmelCase : Tuple = np.array(snake_case_ ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(snake_case_ ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def UpperCamelCase__ ( self ) ->str:
'''simple docstring'''
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
f"""P{self.__allocated_resources_table.index(snake_case_ ) + 1}"""
+ ''' '''.join(f"""{it:>8}""" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
f"""P{self.__maximum_claim_table.index(snake_case_ ) + 1}"""
+ ''' '''.join(f"""{it:>8}""" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(snake_case_ ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(snake_case_ ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 492 |
from __future__ import annotations
import math
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[int]:
"""simple docstring"""
if num <= 0:
_A = F"{num}: Invalid input, please enter a positive integer."
raise ValueError(_SCREAMING_SNAKE_CASE )
_A = [True] * (num + 1)
_A = []
_A = 2
_A = int(math.sqrt(_SCREAMING_SNAKE_CASE ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(_SCREAMING_SNAKE_CASE )
# Set multiples of start be False
for i in range(start * start , num + 1 , _SCREAMING_SNAKE_CASE ):
if sieve[i] is True:
_A = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(_SCREAMING_SNAKE_CASE )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input("Enter a positive integer: ").strip())))
| 27 | 0 |
def _snake_case( ) -> Union[str, Any]:
for n in range(1 , 1_000_000 ):
yield n * (n + 1) // 2
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]:
lowercase : Optional[int] = 1
lowercase : List[Any] = 2
while i * i <= n:
lowercase : Union[str, Any] = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def _snake_case( ) -> Any:
return next(i for i in triangle_number_generator() if count_divisors(_SCREAMING_SNAKE_CASE ) > 500 )
if __name__ == "__main__":
print(solution())
| 336 |
__A : Dict = "Alexander Joslin"
import operator as op
from .stack import Stack
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
_A = Stack()
_A = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(_SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
_A = operator_stack.peek()
operator_stack.pop()
_A = operand_stack.peek()
operand_stack.pop()
_A = operand_stack.peek()
operand_stack.pop()
_A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
operand_stack.push(_SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
__A : Any = "(5 + ((4 * 2) * (2 + 3)))"
# answer = 45
print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
| 27 | 0 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase__ : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase__ : Tuple = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase__ : List[str] = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase__ : List[Any] = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase__ : Optional[Any] = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
UpperCamelCase__ : Any = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
UpperCamelCase__ : int = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
UpperCamelCase__ : Union[str, Any] = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
UpperCamelCase__ : List[Any] = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
UpperCamelCase__ : List[Any] = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowerCamelCase_ ( __snake_case ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE_ = DPRContextEncoderTokenizer
class lowerCamelCase_ ( __snake_case ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE_ = DPRQuestionEncoderTokenizer
UpperCamelCase__ : List[str] = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
UpperCamelCase__ : Optional[int] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
UpperCamelCase__ : Union[str, Any] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(__snake_case )
class lowerCamelCase_ :
def __call__( self : Union[str, Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Dict = None ,__lowerCamelCase : Union[str, Any] = None ,__lowerCamelCase : Optional[Any] = False ,__lowerCamelCase : Dict = False ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : List[str] = None ,__lowerCamelCase : Any = None ,**__lowerCamelCase : Any ,):
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
snake_case_ ,padding=snake_case_ ,truncation=snake_case_ ,max_length=snake_case_ ,return_tensors=snake_case_ ,return_attention_mask=snake_case_ ,**snake_case_ ,)
elif titles is None or texts is None:
a = titles if texts is None else texts
return super().__call__(
snake_case_ ,snake_case_ ,padding=snake_case_ ,truncation=snake_case_ ,max_length=snake_case_ ,return_tensors=snake_case_ ,return_attention_mask=snake_case_ ,**snake_case_ ,)
a = titles if not isinstance(snake_case_ ,snake_case_ ) else [titles]
a = texts if not isinstance(snake_case_ ,snake_case_ ) else [texts]
a = len(snake_case_ )
a = questions if not isinstance(snake_case_ ,snake_case_ ) else [questions] * n_passages
assert len(snake_case_ ) == len(
snake_case_ ), F"""There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts."""
a = super().__call__(snake_case_ ,snake_case_ ,padding=snake_case_ ,truncation=snake_case_ )['''input_ids''']
a = super().__call__(snake_case_ ,add_special_tokens=snake_case_ ,padding=snake_case_ ,truncation=snake_case_ )['''input_ids''']
a = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(snake_case_ ,snake_case_ )
]
}
if return_attention_mask is not False:
a = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
a = attention_mask
return self.pad(snake_case_ ,padding=snake_case_ ,max_length=snake_case_ ,return_tensors=snake_case_ )
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[Any] = 16 ,__lowerCamelCase : Optional[Any] = 64 ,__lowerCamelCase : Optional[Any] = 4 ,):
'''simple docstring'''
a = reader_input['''input_ids''']
a , a , a = reader_output[:3]
a = len(snake_case_ )
a = sorted(range(snake_case_ ) ,reverse=snake_case_ ,key=relevance_logits.__getitem__ )
a = []
for doc_id in sorted_docs:
a = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
a = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
a = sequence_ids.index(self.pad_token_id )
else:
a = len(snake_case_ )
a = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=snake_case_ ,top_spans=snake_case_ ,)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=snake_case_ ,start_index=snake_case_ ,end_index=snake_case_ ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) )
if len(snake_case_ ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Dict ,):
'''simple docstring'''
a = []
for start_index, start_score in enumerate(snake_case_ ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
a = sorted(snake_case_ ,key=lambda __lowerCamelCase : x[1] ,reverse=snake_case_ )
a = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]"""
a = end_index - start_index + 1
assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(snake_case_ ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__snake_case )
class lowerCamelCase_ ( __snake_case , __snake_case ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = READER_PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ = READER_PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask']
SCREAMING_SNAKE_CASE_ = DPRReaderTokenizer
| 387 |
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCamelCase( unittest.TestCase ):
'''simple docstring'''
@property
def lowerCAmelCase__ ( self ):
torch.manual_seed(0 )
_A = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
def lowerCAmelCase__ ( self ):
_A = self.dummy_uncond_unet
_A = KarrasVeScheduler()
_A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
_A = torch.manual_seed(0 )
_A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images
_A = torch.manual_seed(0 )
_A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0]
_A = image[0, -3:, -3:, -1]
_A = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class lowerCamelCase( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase__ ( self ):
_A = 'google/ncsnpp-celebahq-256'
_A = UNetaDModel.from_pretrained(snake_case_ )
_A = KarrasVeScheduler()
_A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ )
pipe.to(snake_case_ )
pipe.set_progress_bar_config(disable=snake_case_ )
_A = torch.manual_seed(0 )
_A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images
_A = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 27 | 0 |
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class _a ( __snake_case , __snake_case):
"""simple docstring"""
UpperCamelCase__ = 1
@register_to_config
def __init__( self : Dict , __UpperCamelCase : Tuple=2_0_0_0 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : str=2_0 , __UpperCamelCase : Dict=1e-3 )->Union[str, Any]:
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any = None )->List[str]:
_UpperCAmelCase = torch.linspace(1 , self.config.sampling_eps , snake_case_ , device=snake_case_ )
def lowercase__ ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict=None )->Optional[Any]:
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
_UpperCAmelCase = (
-0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
_UpperCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
_UpperCAmelCase = std.flatten()
while len(std.shape ) < len(score.shape ):
_UpperCAmelCase = std.unsqueeze(-1 )
_UpperCAmelCase = -score / std
# compute
_UpperCAmelCase = -1.0 / len(self.timesteps )
_UpperCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
_UpperCAmelCase = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
_UpperCAmelCase = beta_t.unsqueeze(-1 )
_UpperCAmelCase = -0.5 * beta_t * x
_UpperCAmelCase = torch.sqrt(snake_case_ )
_UpperCAmelCase = drift - diffusion**2 * score
_UpperCAmelCase = x + drift * dt
# add noise
_UpperCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=snake_case_ , device=x.device , dtype=x.dtype )
_UpperCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self : Union[str, Any] )->Optional[int]:
return self.config.num_train_timesteps
| 602 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
__A : str = random.Random()
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
"""simple docstring"""
if rng is None:
_A = global_rng
_A = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCamelCase( unittest.TestCase ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ):
_A = parent
_A = batch_size
_A = min_seq_length
_A = max_seq_length
_A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_A = spectrogram_length
_A = feature_size
_A = num_audio_channels
_A = hop_length
_A = chunk_length
_A = sampling_rate
def lowerCAmelCase__ ( self ):
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ):
def _flatten(snake_case_ ):
return list(itertools.chain(*snake_case_ ) )
if equal_length:
_A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
_A = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
_A = [np.asarray(snake_case_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class lowerCamelCase( __snake_case , unittest.TestCase ):
'''simple docstring'''
__magic_name__ = TvltFeatureExtractor
def lowerCAmelCase__ ( self ):
_A = TvltFeatureExtractionTester(self )
def lowerCAmelCase__ ( self ):
_A = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) )
self.assertTrue(hasattr(snake_case_ , 'feature_size' ) )
self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) )
self.assertTrue(hasattr(snake_case_ , 'hop_length' ) )
self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) )
self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) )
def lowerCAmelCase__ ( self ):
_A = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_A = feat_extract_first.save_pretrained(snake_case_ )[0]
check_json_file_has_correct_format(snake_case_ )
_A = self.feature_extraction_class.from_pretrained(snake_case_ )
_A = feat_extract_first.to_dict()
_A = feat_extract_second.to_dict()
_A = dict_first.pop('mel_filters' )
_A = dict_second.pop('mel_filters' )
self.assertTrue(np.allclose(snake_case_ , snake_case_ ) )
self.assertEqual(snake_case_ , snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(snake_case_ , 'feat_extract.json' )
feat_extract_first.to_json_file(snake_case_ )
_A = self.feature_extraction_class.from_json_file(snake_case_ )
_A = feat_extract_first.to_dict()
_A = feat_extract_second.to_dict()
_A = dict_first.pop('mel_filters' )
_A = dict_second.pop('mel_filters' )
self.assertTrue(np.allclose(snake_case_ , snake_case_ ) )
self.assertEqual(snake_case_ , snake_case_ )
def lowerCAmelCase__ ( self ):
# Initialize feature_extractor
_A = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
_A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
_A = [np.asarray(snake_case_ ) for speech_input in speech_inputs]
# Test not batched input
_A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
_A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
_A = feature_extractor(
snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
_A = [floats_list((1, x) )[0] for x in (800, 800, 800)]
_A = np.asarray(snake_case_ )
_A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def lowerCAmelCase__ ( self , snake_case_ ):
_A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
_A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def lowerCAmelCase__ ( self ):
_A = self._load_datasamples(1 )
_A = TvltFeatureExtractor()
_A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 192, 128) )
_A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
| 27 | 0 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
UpperCamelCase_ = "."
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
UpperCamelCase_ = [
"Assert",
"AssignVariableOp",
"EmptyTensorList",
"MergeV2Checkpoints",
"ReadVariableOp",
"ResourceGather",
"RestoreV2",
"SaveV2",
"ShardedFilename",
"StatefulPartitionedCall",
"StaticRegexFullMatch",
"VarHandleOp",
]
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Dict ,__UpperCamelCase: Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = SavedModel()
SCREAMING_SNAKE_CASE : str = []
with open(os.path.join(__UpperCamelCase ,'utils' ,'tf_ops' ,'onnx.json' ) ) as f:
SCREAMING_SNAKE_CASE : List[Any] = json.load(__UpperCamelCase )['opsets']
for i in range(1 ,opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__UpperCamelCase )] )
with open(__UpperCamelCase ,'rb' ) as f:
saved_model.ParseFromString(f.read() )
SCREAMING_SNAKE_CASE : Dict = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
SCREAMING_SNAKE_CASE : Optional[int] = sorted(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__UpperCamelCase )
if strict and len(__UpperCamelCase ) > 0:
raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops )
elif len(__UpperCamelCase ) > 0:
print(f"Found the following incompatible ops for the opset {opset}:" )
print(*__UpperCamelCase ,sep='\n' )
else:
print(f"The saved model {saved_model_path} can properly be converted with ONNX." )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).")
parser.add_argument(
"--opset", default=1_2, type=int, help="The ONNX opset against which the model has to be tested."
)
parser.add_argument(
"--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model."
)
parser.add_argument(
"--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)"
)
UpperCamelCase_ = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
SCREAMING_SNAKE_CASE : Optional[Any] = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@register_to_config
def __init__( self, *,
A = 4, A = 768, A, A, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.zeros(A ) )
# parameters for additional clip time embeddings
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(A, A )
SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(A, A )
# parameters for encoder hidden states
SCREAMING_SNAKE_CASE : List[Any] = clip_extra_context_tokens
SCREAMING_SNAKE_CASE : str = nn.Linear(
A, self.clip_extra_context_tokens * cross_attention_dim )
SCREAMING_SNAKE_CASE : int = nn.Linear(A, A )
SCREAMING_SNAKE_CASE : int = nn.LayerNorm(A )
def UpperCamelCase_ ( self, *, A, A, A, A ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
SCREAMING_SNAKE_CASE : Optional[Any] = image_embeddings.shape[0]
SCREAMING_SNAKE_CASE : Union[str, Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
SCREAMING_SNAKE_CASE : Dict = classifier_free_guidance_embeddings.expand(
A, -1 )
SCREAMING_SNAKE_CASE : List[str] = torch.cat([classifier_free_guidance_embeddings, image_embeddings], dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
SCREAMING_SNAKE_CASE : Union[str, Any] = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
SCREAMING_SNAKE_CASE : Any = self.embedding_proj(A )
SCREAMING_SNAKE_CASE : List[Any] = self.clip_image_embeddings_project_to_time_embeddings(A )
SCREAMING_SNAKE_CASE : List[Any] = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
SCREAMING_SNAKE_CASE : Tuple = self.clip_extra_context_tokens_proj(A )
SCREAMING_SNAKE_CASE : Optional[int] = clip_extra_context_tokens.reshape(A, -1, self.clip_extra_context_tokens )
SCREAMING_SNAKE_CASE : int = clip_extra_context_tokens.permute(0, 2, 1 )
SCREAMING_SNAKE_CASE : Dict = self.encoder_hidden_states_proj(A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.text_encoder_hidden_states_norm(A )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states], dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
'''simple docstring'''
from typing import Any
def lowercase__( __UpperCamelCase: list ):
"""simple docstring"""
if not input_list:
return []
SCREAMING_SNAKE_CASE : Union[str, Any] = [input_list.count(__UpperCamelCase ) for value in input_list]
SCREAMING_SNAKE_CASE : Any = max(__UpperCamelCase ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(__UpperCamelCase ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = 2
SCREAMING_SNAKE_CASE : Tuple = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(__UpperCamelCase )
if n > 1:
factors.append(__UpperCamelCase )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase__( __UpperCamelCase: list[int] ): # This function is recursive
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = len(__UpperCamelCase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
SCREAMING_SNAKE_CASE : Optional[Any] = array[0]
SCREAMING_SNAKE_CASE : List[str] = False
SCREAMING_SNAKE_CASE : Any = 1
SCREAMING_SNAKE_CASE : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
SCREAMING_SNAKE_CASE : int = True
SCREAMING_SNAKE_CASE : Optional[int] = [element for element in array[i:] if element >= array[i]]
SCREAMING_SNAKE_CASE : List[str] = longest_subsequence(__UpperCamelCase )
if len(__UpperCamelCase ) > len(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = temp_array
else:
i += 1
SCREAMING_SNAKE_CASE : Tuple = [element for element in array[1:] if element >= pivot]
SCREAMING_SNAKE_CASE : Optional[Any] = [pivot, *longest_subsequence(__UpperCamelCase )]
if len(__UpperCamelCase ) > len(__UpperCamelCase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 | 1 |
'''simple docstring'''
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: List[Any] ):
"""simple docstring"""
try:
with open(__UpperCamelCase ,'rb' ) as flax_state_f:
SCREAMING_SNAKE_CASE : Any = from_bytes(__UpperCamelCase ,flax_state_f.read() )
except UnpicklingError as e:
try:
with open(__UpperCamelCase ) as f:
if f.read().startswith('version' ):
raise OSError(
'You seem to have cloned a repository without having git-lfs installed. Please'
' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'
' folder you cloned.' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. " )
return load_flax_weights_in_pytorch_model(__UpperCamelCase ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: Optional[int] ):
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
SCREAMING_SNAKE_CASE : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda __UpperCamelCase : x.dtype == jnp.bfloataa ,__UpperCamelCase ) ).values()
if any(__UpperCamelCase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
SCREAMING_SNAKE_CASE : List[str] = jax.tree_util.tree_map(
lambda __UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = ''
SCREAMING_SNAKE_CASE : List[Any] = flatten_dict(__UpperCamelCase ,sep='.' )
SCREAMING_SNAKE_CASE : int = pt_model.state_dict()
# keep track of unexpected & missing keys
SCREAMING_SNAKE_CASE : int = []
SCREAMING_SNAKE_CASE : str = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
SCREAMING_SNAKE_CASE : Tuple = flax_key_tuple.split('.' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
SCREAMING_SNAKE_CASE : Any = flax_key_tuple_array[:-1] + ['weight']
SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(__UpperCamelCase ,(3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
SCREAMING_SNAKE_CASE : int = flax_key_tuple_array[:-1] + ['weight']
SCREAMING_SNAKE_CASE : List[Any] = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
SCREAMING_SNAKE_CASE : Tuple = flax_key_tuple_array[:-1] + ['weight']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = (
flax_key_tuple_string.replace('_0' ,'.0' )
.replace('_1' ,'.1' )
.replace('_2' ,'.2' )
.replace('_3' ,'.3' )
.replace('_4' ,'.4' )
.replace('_5' ,'.5' )
.replace('_6' ,'.6' )
.replace('_7' ,'.7' )
.replace('_8' ,'.8' )
.replace('_9' ,'.9' )
)
SCREAMING_SNAKE_CASE : List[str] = '.'.join(__UpperCamelCase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." )
else:
# add weight to pytorch dict
SCREAMING_SNAKE_CASE : Tuple = np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase ,np.ndarray ) else flax_tensor
SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(__UpperCamelCase )
# remove from missing keys
missing_keys.remove(__UpperCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__UpperCamelCase )
pt_model.load_state_dict(__UpperCamelCase )
# re-transform missing_keys to list
SCREAMING_SNAKE_CASE : List[Any] = list(__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
if len(__UpperCamelCase ) > 0:
logger.warning(
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
' use it for predictions and inference.' )
return pt_model
| 28 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, *A, **A ):
'''simple docstring'''
warnings.warn(
'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DeiTImageProcessor instead.', A, )
super().__init__(*A, **A )
| 28 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
'''simple docstring'''
import copy
import random
from transformers import CLIPTokenizer
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, *A, **A ):
'''simple docstring'''
super().__init__(*A, **A )
SCREAMING_SNAKE_CASE : Tuple = {}
def UpperCamelCase_ ( self, A, *A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = super().add_tokens(A, *A, **A )
if num_added_tokens == 0:
raise ValueError(
F"The tokenizer already contains the token {placeholder_token}. Please pass a different"
' `placeholder_token` that is not already in the tokenizer.' )
def UpperCamelCase_ ( self, A, *A, A=1, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = []
if num_vec_per_token == 1:
self.try_adding_tokens(A, *A, **A )
output.append(A )
else:
SCREAMING_SNAKE_CASE : Dict = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = placeholder_token + F"_{i}"
self.try_adding_tokens(A, *A, **A )
output.append(A )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F"The tokenizer already has placeholder token {token} that can get confused with"
F" {placeholder_token}keep placeholder tokens independent" )
SCREAMING_SNAKE_CASE : Dict = output
def UpperCamelCase_ ( self, A, A=False, A=1.0 ):
'''simple docstring'''
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : List[Any] = []
for i in range(len(A ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=A ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
SCREAMING_SNAKE_CASE : Tuple = self.token_map[placeholder_token]
SCREAMING_SNAKE_CASE : int = tokens[: 1 + int(len(A ) * prop_tokens_to_load )]
if vector_shuffle:
SCREAMING_SNAKE_CASE : Union[str, Any] = copy.copy(A )
random.shuffle(A )
SCREAMING_SNAKE_CASE : Dict = text.replace(A, ' '.join(A ) )
return text
def __call__( self, A, *A, A=False, A=1.0, **A ):
'''simple docstring'''
return super().__call__(
self.replace_placeholder_tokens_in_text(
A, vector_shuffle=A, prop_tokens_to_load=A ), *A, **A, )
def UpperCamelCase_ ( self, A, *A, A=False, A=1.0, **A ):
'''simple docstring'''
return super().encode(
self.replace_placeholder_tokens_in_text(
A, vector_shuffle=A, prop_tokens_to_load=A ), *A, **A, )
| 28 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 | 1 |
'''simple docstring'''
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
UpperCamelCase_ = ""
UpperCamelCase_ = ""
UpperCamelCase_ = ""
UpperCamelCase_ = 1 # (0 is vertical, 1 is horizontal)
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = get_dataset(__UpperCamelCase ,__UpperCamelCase )
print('Processing...' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = update_image_and_anno(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
for index, image in enumerate(__UpperCamelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
SCREAMING_SNAKE_CASE : Tuple = random_chars(32 )
SCREAMING_SNAKE_CASE : Union[str, Any] = paths[index].split(os.sep )[-1].rsplit('.' ,1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(f"/{file_root}.jpg" ,__UpperCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"Success {index+1}/{len(__UpperCamelCase )} with {file_name}" )
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for anno in new_annos[index]:
SCREAMING_SNAKE_CASE : Optional[Any] = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__UpperCamelCase )
with open(f"/{file_root}.txt" ,'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : Optional[int] = []
for label_file in glob.glob(os.path.join(__UpperCamelCase ,'*.txt' ) ):
SCREAMING_SNAKE_CASE : Optional[Any] = label_file.split(os.sep )[-1].rsplit('.' ,1 )[0]
with open(__UpperCamelCase ) as in_file:
SCREAMING_SNAKE_CASE : List[Any] = in_file.readlines()
SCREAMING_SNAKE_CASE : Dict = os.path.join(__UpperCamelCase ,f"{label_name}.jpg" )
SCREAMING_SNAKE_CASE : str = []
for obj_list in obj_lists:
SCREAMING_SNAKE_CASE : str = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__UpperCamelCase )
labels.append(__UpperCamelCase )
return img_paths, labels
def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: list ,__UpperCamelCase: int = 1 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = []
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : Any = []
for idx in range(len(__UpperCamelCase ) ):
SCREAMING_SNAKE_CASE : int = []
SCREAMING_SNAKE_CASE : Tuple = img_list[idx]
path_list.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = anno_list[idx]
SCREAMING_SNAKE_CASE : List[str] = cva.imread(__UpperCamelCase )
if flip_type == 1:
SCREAMING_SNAKE_CASE : Union[str, Any] = cva.flip(__UpperCamelCase ,__UpperCamelCase )
for bbox in img_annos:
SCREAMING_SNAKE_CASE : Dict = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
SCREAMING_SNAKE_CASE : Optional[Any] = cva.flip(__UpperCamelCase ,__UpperCamelCase )
for bbox in img_annos:
SCREAMING_SNAKE_CASE : int = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__UpperCamelCase )
new_imgs_list.append(__UpperCamelCase )
return new_imgs_list, new_annos_lists, path_list
def lowercase__( __UpperCamelCase: int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
SCREAMING_SNAKE_CASE : Optional[Any] = ascii_lowercase + digits
return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 28 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
"SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''deformable_detr'''
A : List[str] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self, A=True, A=None, A=3, A=300, A=1_024, A=6, A=1_024, A=8, A=6, A=1_024, A=8, A=0.0, A=True, A="relu", A=256, A=0.1, A=0.0, A=0.0, A=0.02, A=1.0, A=True, A=False, A="sine", A="resnet50", A=True, A=False, A=4, A=4, A=4, A=False, A=300, A=False, A=1, A=5, A=2, A=1, A=1, A=5, A=2, A=0.1, A=0.25, A=False, **A, ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4'] )
elif isinstance(A, A ):
SCREAMING_SNAKE_CASE : Any = backbone_config.get('model_type' )
SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING[backbone_model_type]
SCREAMING_SNAKE_CASE : Optional[Any] = config_class.from_dict(A )
SCREAMING_SNAKE_CASE : List[Any] = use_timm_backbone
SCREAMING_SNAKE_CASE : Dict = backbone_config
SCREAMING_SNAKE_CASE : List[str] = num_channels
SCREAMING_SNAKE_CASE : Optional[Any] = num_queries
SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings
SCREAMING_SNAKE_CASE : int = d_model
SCREAMING_SNAKE_CASE : List[str] = encoder_ffn_dim
SCREAMING_SNAKE_CASE : List[str] = encoder_layers
SCREAMING_SNAKE_CASE : Tuple = encoder_attention_heads
SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_ffn_dim
SCREAMING_SNAKE_CASE : Tuple = decoder_layers
SCREAMING_SNAKE_CASE : Dict = decoder_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = dropout
SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout
SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout
SCREAMING_SNAKE_CASE : int = activation_function
SCREAMING_SNAKE_CASE : Optional[int] = init_std
SCREAMING_SNAKE_CASE : List[str] = init_xavier_std
SCREAMING_SNAKE_CASE : str = encoder_layerdrop
SCREAMING_SNAKE_CASE : Dict = auxiliary_loss
SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type
SCREAMING_SNAKE_CASE : List[str] = backbone
SCREAMING_SNAKE_CASE : Any = use_pretrained_backbone
SCREAMING_SNAKE_CASE : Dict = dilation
# deformable attributes
SCREAMING_SNAKE_CASE : List[str] = num_feature_levels
SCREAMING_SNAKE_CASE : Dict = encoder_n_points
SCREAMING_SNAKE_CASE : Optional[int] = decoder_n_points
SCREAMING_SNAKE_CASE : List[str] = two_stage
SCREAMING_SNAKE_CASE : Optional[int] = two_stage_num_proposals
SCREAMING_SNAKE_CASE : Any = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('If two_stage is True, with_box_refine must be True.' )
# Hungarian matcher
SCREAMING_SNAKE_CASE : Optional[Any] = class_cost
SCREAMING_SNAKE_CASE : Any = bbox_cost
SCREAMING_SNAKE_CASE : Tuple = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE : Optional[int] = mask_loss_coefficient
SCREAMING_SNAKE_CASE : List[str] = dice_loss_coefficient
SCREAMING_SNAKE_CASE : Optional[int] = bbox_loss_coefficient
SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient
SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient
SCREAMING_SNAKE_CASE : Tuple = focal_alpha
SCREAMING_SNAKE_CASE : Optional[Any] = disable_custom_kernels
super().__init__(is_encoder_decoder=A, **A )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.d_model
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE : Optional[Any] = self.__class__.model_type
return output
| 28 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[str] = GPTSanJapaneseTokenizer
A : Optional[Any] = False
A : List[Any] = {'''do_clean_text''': False, '''add_prefix_space''': False}
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
SCREAMING_SNAKE_CASE : Union[str, Any] = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>']
# fmt: on
SCREAMING_SNAKE_CASE : Optional[Any] = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['emoji_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
with open(self.emoji_file, 'w' ) as emoji_writer:
emoji_writer.write(json.dumps(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 'こんにちは、世界。 \nこんばんは、㔺界。😀'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'こんにちは、世界。 \nこんばんは、世界。😀'
return input_text, output_text
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.get_input_output_texts(A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(A, clean_up_tokenization_spaces=A )
return text, ids
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer()
# Testing tokenization
SCREAMING_SNAKE_CASE : int = 'こんにちは、世界。 こんばんは、㔺界。'
SCREAMING_SNAKE_CASE : str = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。']
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(A )
self.assertListEqual(A, A )
# Testing conversion to ids without special tokens
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(A, A )
# Testing conversion to ids with special tokens
SCREAMING_SNAKE_CASE : Union[str, Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.get_tokenizer()
# Testing tokenization
SCREAMING_SNAKE_CASE : int = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'
SCREAMING_SNAKE_CASE : List[str] = 'こんにちは、、、、世界。こんばんは、、、、世界。'
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : str = tokenizer.decode(A )
self.assertEqual(A, A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
SCREAMING_SNAKE_CASE : List[Any] = 'こんにちは、世界。'
SCREAMING_SNAKE_CASE : Dict = 'こんばんは、㔺界。😀'
SCREAMING_SNAKE_CASE : List[Any] = 'こんにちは、世界。こんばんは、世界。😀'
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(prefix_text + input_text )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode('', prefix_text=prefix_text + input_text )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(A, prefix_text=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(A )
SCREAMING_SNAKE_CASE : Any = tokenizer.decode(A )
SCREAMING_SNAKE_CASE : Any = tokenizer.decode(A )
self.assertEqual(A, A )
self.assertEqual(A, A )
self.assertEqual(A, A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
SCREAMING_SNAKE_CASE : Optional[Any] = 'こんにちは、世界。'
SCREAMING_SNAKE_CASE : Dict = 'こんばんは、㔺界。😀'
SCREAMING_SNAKE_CASE : str = len(tokenizer.encode(A ) ) - 2
SCREAMING_SNAKE_CASE : Optional[Any] = len(tokenizer.encode(A ) ) - 2
SCREAMING_SNAKE_CASE : Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1)
SCREAMING_SNAKE_CASE : Optional[Any] = [1] * (len_prefix + len_text + 1) + [0]
SCREAMING_SNAKE_CASE : List[str] = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
SCREAMING_SNAKE_CASE : List[Any] = tokenizer(prefix_text + input_text ).token_type_ids
SCREAMING_SNAKE_CASE : Tuple = tokenizer('', prefix_text=prefix_text + input_text ).token_type_ids
SCREAMING_SNAKE_CASE : List[str] = tokenizer(A, prefix_text=A ).token_type_ids
self.assertListEqual(A, A )
self.assertListEqual(A, A )
self.assertListEqual(A, A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
SCREAMING_SNAKE_CASE : str = tokenizer.encode('あンいワ' )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode('', prefix_text='あンいワ' )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('いワ', prefix_text='あン' )
self.assertEqual(tokenizer.decode(A ), tokenizer.decode(A ) )
self.assertEqual(tokenizer.decode(A ), tokenizer.decode(A ) )
self.assertNotEqual(A, A )
self.assertNotEqual(A, A )
self.assertEqual(x_token_a[1], x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1], x_token_a[3] ) # SEG token
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
SCREAMING_SNAKE_CASE : Any = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']]
SCREAMING_SNAKE_CASE : Any = tokenizer(A, padding=A )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.batch_encode_plus(A, padding=A )
# fmt: off
SCREAMING_SNAKE_CASE : int = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]]
SCREAMING_SNAKE_CASE : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
SCREAMING_SNAKE_CASE : List[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids, A )
self.assertListEqual(x_token.token_type_ids, A )
self.assertListEqual(x_token.attention_mask, A )
self.assertListEqual(x_token_a.input_ids, A )
self.assertListEqual(x_token_a.token_type_ids, A )
self.assertListEqual(x_token_a.attention_mask, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
| 28 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Any ,__UpperCamelCase: Optional[Any] ):
"""simple docstring"""
if openai_config_file == "":
SCREAMING_SNAKE_CASE : Tuple = OpenAIGPTConfig()
else:
SCREAMING_SNAKE_CASE : int = OpenAIGPTConfig.from_json_file(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTModel(__UpperCamelCase )
# Load weights from numpy
load_tf_weights_in_openai_gpt(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# Save pytorch-model
SCREAMING_SNAKE_CASE : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
SCREAMING_SNAKE_CASE : Tuple = pytorch_dump_folder_path + '/' + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(model.state_dict() ,__UpperCamelCase )
print(f"Save configuration file to {pytorch_config_dump_path}" )
with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--openai_checkpoint_folder_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--openai_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
UpperCamelCase_ = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__UpperCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 28 | 1 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def lowercase__( __UpperCamelCase: Callable ,__UpperCamelCase: float ,__UpperCamelCase: float ,__UpperCamelCase: float ,__UpperCamelCase: float ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = int(np.ceil((x_end - xa) / step_size ) )
SCREAMING_SNAKE_CASE : Any = np.zeros((n + 1,) )
SCREAMING_SNAKE_CASE : Tuple = ya
SCREAMING_SNAKE_CASE : str = xa
for k in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Tuple = y[k] + step_size * ode_func(__UpperCamelCase ,y[k] )
SCREAMING_SNAKE_CASE : Optional[int] = y[k] + (
(step_size / 2) * (ode_func(__UpperCamelCase ,y[k] ) + ode_func(x + step_size ,__UpperCamelCase ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 | 1 |
'''simple docstring'''
UpperCamelCase_ = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
def lowercase__( __UpperCamelCase: dict ,__UpperCamelCase: Dict ,__UpperCamelCase: List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = set()
# keep track of all the paths to be checked
SCREAMING_SNAKE_CASE : Any = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
SCREAMING_SNAKE_CASE : List[Any] = queue.pop(0 )
# get the last node from the path
SCREAMING_SNAKE_CASE : Optional[Any] = path[-1]
if node not in explored:
SCREAMING_SNAKE_CASE : int = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
SCREAMING_SNAKE_CASE : Tuple = list(__UpperCamelCase )
new_path.append(__UpperCamelCase )
queue.append(__UpperCamelCase )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(__UpperCamelCase )
# in case there's no path between the 2 nodes
return []
def lowercase__( __UpperCamelCase: dict ,__UpperCamelCase: Dict ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
SCREAMING_SNAKE_CASE : str = [start]
SCREAMING_SNAKE_CASE : List[Any] = set(__UpperCamelCase )
# Keep tab on distances from `start` node.
SCREAMING_SNAKE_CASE : int = {start: 0, target: -1}
while queue:
SCREAMING_SNAKE_CASE : Optional[Any] = queue.pop(0 )
if node == target:
SCREAMING_SNAKE_CASE : Optional[Any] = (
dist[node] if dist[target] == -1 else min(dist[target] ,dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(__UpperCamelCase )
queue.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
| 28 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionXLImgaImgPipeline
A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
A : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, )
SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A )
SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : str = sd_pipe.to(A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
# forward without prompt embeds
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt
SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']]
SCREAMING_SNAKE_CASE : int = sd_pipe(**A )
SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )]
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(
**A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, )
SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A )
SCREAMING_SNAKE_CASE : str = pipe(**A ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 28 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase_ = {
"configuration_efficientnet": [
"EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientNetConfig",
"EfficientNetOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["EfficientNetImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientNetForImageClassification",
"EfficientNetModel",
"EfficientNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 28 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 | 1 |
'''simple docstring'''
UpperCamelCase_ = [
"Audio",
"Array2D",
"Array3D",
"Array4D",
"Array5D",
"ClassLabel",
"Features",
"Sequence",
"Value",
"Image",
"Translation",
"TranslationVariableLanguages",
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 28 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
'''simple docstring'''
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: int=0.9_9_9 ,__UpperCamelCase: List[Any]="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase: Optional[int] ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase: List[str] ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" )
SCREAMING_SNAKE_CASE : Optional[int] = []
for i in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps
SCREAMING_SNAKE_CASE : Tuple = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = [e.name for e in KarrasDiffusionSchedulers]
A : Any = 2
@register_to_config
def __init__( self, A = 1_000, A = 0.0_00_85, A = 0.0_12, A = "linear", A = None, A = "epsilon", A = "linspace", A = 0, ):
'''simple docstring'''
if trained_betas is not None:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(A, dtype=torch.floataa )
elif beta_schedule == "linear":
SCREAMING_SNAKE_CASE : Dict = torch.linspace(A, A, A, dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
SCREAMING_SNAKE_CASE : Any = (
torch.linspace(beta_start**0.5, beta_end**0.5, A, dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
SCREAMING_SNAKE_CASE : Union[str, Any] = betas_for_alpha_bar(A )
else:
raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" )
SCREAMING_SNAKE_CASE : List[Any] = 1.0 - self.betas
SCREAMING_SNAKE_CASE : Optional[Any] = torch.cumprod(self.alphas, dim=0 )
# set all values
self.set_timesteps(A, A, A )
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
if schedule_timesteps is None:
SCREAMING_SNAKE_CASE : List[str] = self.timesteps
SCREAMING_SNAKE_CASE : Tuple = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = 1 if len(A ) > 1 else 0
else:
SCREAMING_SNAKE_CASE : Optional[int] = timestep.cpu().item() if torch.is_tensor(A ) else timestep
SCREAMING_SNAKE_CASE : List[Any] = self._index_counter[timestep_int]
return indices[pos].item()
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def UpperCamelCase_ ( self, A, A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.index_for_timestep(A )
if self.state_in_first_order:
SCREAMING_SNAKE_CASE : List[Any] = self.sigmas[step_index]
else:
SCREAMING_SNAKE_CASE : List[str] = self.sigmas_interpol[step_index]
SCREAMING_SNAKE_CASE : Any = sample / ((sigma**2 + 1) ** 0.5)
return sample
def UpperCamelCase_ ( self, A, A = None, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = num_inference_steps
SCREAMING_SNAKE_CASE : Dict = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
SCREAMING_SNAKE_CASE : Dict = np.linspace(0, num_train_timesteps - 1, A, dtype=A )[::-1].copy()
elif self.config.timestep_spacing == "leading":
SCREAMING_SNAKE_CASE : Tuple = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
SCREAMING_SNAKE_CASE : List[str] = (np.arange(0, A ) * step_ratio).round()[::-1].copy().astype(A )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
SCREAMING_SNAKE_CASE : List[Any] = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(A, 0, -step_ratio )).round().copy().astype(A )
timesteps -= 1
else:
raise ValueError(
F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
SCREAMING_SNAKE_CASE : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.log(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = np.interp(A, np.arange(0, len(A ) ), A )
SCREAMING_SNAKE_CASE : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : int = torch.from_numpy(A ).to(device=A )
# interpolate sigmas
SCREAMING_SNAKE_CASE : str = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp()
SCREAMING_SNAKE_CASE : int = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
SCREAMING_SNAKE_CASE : List[Any] = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(A ).startswith('mps' ):
# mps does not support float64
SCREAMING_SNAKE_CASE : int = torch.from_numpy(A ).to(A, dtype=torch.floataa )
else:
SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(A ).to(A )
# interpolate timesteps
SCREAMING_SNAKE_CASE : Tuple = self.sigma_to_t(A ).to(A, dtype=timesteps.dtype )
SCREAMING_SNAKE_CASE : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten()
SCREAMING_SNAKE_CASE : int = torch.cat([timesteps[:1], interleaved_timesteps] )
SCREAMING_SNAKE_CASE : Any = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = sigma.log()
# get distribution
SCREAMING_SNAKE_CASE : Dict = log_sigma - self.log_sigmas[:, None]
# get sigmas range
SCREAMING_SNAKE_CASE : Union[str, Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
SCREAMING_SNAKE_CASE : Dict = low_idx + 1
SCREAMING_SNAKE_CASE : List[str] = self.log_sigmas[low_idx]
SCREAMING_SNAKE_CASE : Tuple = self.log_sigmas[high_idx]
# interpolate sigmas
SCREAMING_SNAKE_CASE : List[str] = (low - log_sigma) / (low - high)
SCREAMING_SNAKE_CASE : Union[str, Any] = w.clamp(0, 1 )
# transform interpolation to time range
SCREAMING_SNAKE_CASE : Tuple = (1 - w) * low_idx + w * high_idx
SCREAMING_SNAKE_CASE : Tuple = t.view(sigma.shape )
return t
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.sample is None
def UpperCamelCase_ ( self, A, A, A, A = True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.index_for_timestep(A )
# advance index counter by 1
SCREAMING_SNAKE_CASE : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(A ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
SCREAMING_SNAKE_CASE : List[str] = self.sigmas[step_index]
SCREAMING_SNAKE_CASE : Tuple = self.sigmas_interpol[step_index + 1]
SCREAMING_SNAKE_CASE : str = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
SCREAMING_SNAKE_CASE : Dict = self.sigmas[step_index - 1]
SCREAMING_SNAKE_CASE : Optional[int] = self.sigmas_interpol[step_index]
SCREAMING_SNAKE_CASE : List[Any] = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
SCREAMING_SNAKE_CASE : Optional[Any] = 0
SCREAMING_SNAKE_CASE : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
SCREAMING_SNAKE_CASE : str = sigma_hat if self.state_in_first_order else sigma_interpol
SCREAMING_SNAKE_CASE : Tuple = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
SCREAMING_SNAKE_CASE : Any = sigma_hat if self.state_in_first_order else sigma_interpol
SCREAMING_SNAKE_CASE : Union[str, Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError('prediction_type not implemented yet: sample' )
else:
raise ValueError(
F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
SCREAMING_SNAKE_CASE : int = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
SCREAMING_SNAKE_CASE : Union[str, Any] = sigma_interpol - sigma_hat
# store for 2nd order step
SCREAMING_SNAKE_CASE : List[str] = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
SCREAMING_SNAKE_CASE : List[str] = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
SCREAMING_SNAKE_CASE : Any = sigma_next - sigma_hat
SCREAMING_SNAKE_CASE : Tuple = self.sample
SCREAMING_SNAKE_CASE : Union[str, Any] = None
SCREAMING_SNAKE_CASE : List[Any] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=A )
def UpperCamelCase_ ( self, A, A, A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(A ):
# mps does not support float64
SCREAMING_SNAKE_CASE : Optional[int] = self.timesteps.to(original_samples.device, dtype=torch.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = timesteps.to(original_samples.device, dtype=torch.floataa )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = self.timesteps.to(original_samples.device )
SCREAMING_SNAKE_CASE : Union[str, Any] = timesteps.to(original_samples.device )
SCREAMING_SNAKE_CASE : List[str] = [self.index_for_timestep(A, A ) for t in timesteps]
SCREAMING_SNAKE_CASE : Tuple = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
SCREAMING_SNAKE_CASE : Union[str, Any] = sigma.unsqueeze(-1 )
SCREAMING_SNAKE_CASE : Optional[int] = original_samples + noise * sigma
return noisy_samples
def __len__( self ):
'''simple docstring'''
return self.config.num_train_timesteps
| 28 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = data
SCREAMING_SNAKE_CASE : Any = None
def __repr__( self ):
'''simple docstring'''
return F"Node({self.data})"
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(A ) for item in self] )
def __getitem__( self, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, A, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = current.next
SCREAMING_SNAKE_CASE : Any = data
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(len(self ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(0, A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : Tuple = new_node
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : str = temp.next
SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = new_node
def UpperCamelCase_ ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCamelCase_ ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next
return delete_node.data
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.head is None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Any = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Optional[int] = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : int = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : int = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : List[Any] = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : List[Any] = prev
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__UpperCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__UpperCamelCase ) == i
linked_list.insert_nth(__UpperCamelCase ,i + 1 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__UpperCamelCase ) == 9
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
SCREAMING_SNAKE_CASE : Any = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_9_2.5_5_5_5_5,
'Hello, world!',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(__UpperCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : str = linked_list.delete_head()
assert result == -9
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__UpperCamelCase )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__UpperCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowercase__( ):
"""simple docstring"""
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Dict = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(__UpperCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f"Element at Position 1: {linked_list[1]}" )
SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip()
print('New list:' )
print(__UpperCamelCase )
print(f"length of linked_list is : {len(__UpperCamelCase )}" )
if __name__ == "__main__":
main()
| 28 | 1 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
UpperCamelCase_ = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self, A, A, A = None, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : str = os.path.abspath(os.path.join('examples', 'by_feature' ) )
SCREAMING_SNAKE_CASE : str = os.path.abspath('examples' )
for item in os.listdir(A ):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(A, A )
if os.path.isfile(A ) and ".py" in item_path:
with self.subTest(
tested_script=A, feature_script=A, tested_section='main()' if parser_only else 'training_function()', ):
SCREAMING_SNAKE_CASE : str = compare_against_test(
os.path.join(A, A ), A, A, A )
SCREAMING_SNAKE_CASE : Union[str, Any] = '\n'.join(A )
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE : int = diff.replace(A, '' )
self.assertEqual(A, '' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.one_complete_example('complete_nlp_example.py', A )
self.one_complete_example('complete_nlp_example.py', A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = os.path.abspath(os.path.join('examples', 'cv_example.py' ) )
SCREAMING_SNAKE_CASE : Dict = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py', A, A, A )
self.one_complete_example('complete_cv_example.py', A, A, A )
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = False
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
super().setUpClass()
SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(cls._tmpdir, 'default_config.yml' )
write_basic_config(save_location=cls.configPath )
SCREAMING_SNAKE_CASE : Any = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'epoch_0' ) ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split()
SCREAMING_SNAKE_CASE : Tuple = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'step_2' ) ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'epoch_0' )}\n ".split()
SCREAMING_SNAKE_CASE : List[str] = run_command(self._launch_args + testargs, return_stdout=A )
self.assertNotIn('epoch 0:', A )
self.assertIn('epoch 1:', A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'step_2' )}\n ".split()
SCREAMING_SNAKE_CASE : Optional[Any] = run_command(self._launch_args + testargs, return_stdout=A )
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE : Optional[Any] = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE : Any = 1
if num_processes > 1:
self.assertNotIn('epoch 0:', A )
self.assertIn('epoch 1:', A )
else:
self.assertIn('epoch 0:', A )
self.assertIn('epoch 1:', A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ, {'TESTING_MOCKED_DATALOADERS': '0'} ):
SCREAMING_SNAKE_CASE : Union[str, Any] = run_command(self._launch_args + testargs, return_stdout=A )
SCREAMING_SNAKE_CASE : Optional[int] = re.findall('({.+})', A )
SCREAMING_SNAKE_CASE : Dict = [r for r in results if 'accuracy' in r][-1]
SCREAMING_SNAKE_CASE : Optional[int] = ast.literal_eval(A )
self.assertGreaterEqual(results['accuracy'], 0.75 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE : Optional[Any] = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(A, 'tracking' ) ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs )
| 28 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
"studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json",
"studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json",
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = '''luke'''
def __init__( self, A=50_267, A=500_000, A=768, A=256, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=512, A=2, A=0.02, A=1E-12, A=True, A=None, A=1, A=0, A=2, **A, ):
'''simple docstring'''
super().__init__(pad_token_id=A, bos_token_id=A, eos_token_id=A, **A )
SCREAMING_SNAKE_CASE : Tuple = vocab_size
SCREAMING_SNAKE_CASE : Optional[int] = entity_vocab_size
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE : List[str] = entity_emb_size
SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act
SCREAMING_SNAKE_CASE : List[Any] = intermediate_size
SCREAMING_SNAKE_CASE : str = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps
SCREAMING_SNAKE_CASE : List[Any] = use_entity_aware_attention
SCREAMING_SNAKE_CASE : Tuple = classifier_dropout
| 28 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset)
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,):
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
else:
return _interleave_iterable_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,):
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
else:
return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
| 28 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Union[str, Any] = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Any = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Any = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[str] = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Tuple = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Optional[int] = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Optional[int] = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
class _a ( metaclass=SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : int = ['''flax''']
def __init__( self, *A, **A ):
'''simple docstring'''
requires_backends(self, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
@classmethod
def UpperCamelCase_ ( cls, *A, **A ):
'''simple docstring'''
requires_backends(cls, ['flax'] )
| 28 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 | 1 |
'''simple docstring'''
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A="", A="train" ):
'''simple docstring'''
assert os.path.isdir(A )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : str = os.listdir(A )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
SCREAMING_SNAKE_CASE : Tuple = os.path.join(A, A )
if not os.path.isfile(A ):
continue
self.documents.append(A )
def __len__( self ):
'''simple docstring'''
return len(self.documents )
def __getitem__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.documents[idx]
SCREAMING_SNAKE_CASE : List[str] = document_path.split('/' )[-1]
with open(A, encoding='utf-8' ) as source:
SCREAMING_SNAKE_CASE : Union[str, Any] = source.read()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = process_story(A )
return document_name, story_lines, summary_lines
def lowercase__( __UpperCamelCase: Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = list(filter(lambda __UpperCamelCase : len(__UpperCamelCase ) != 0 ,[line.strip() for line in raw_story.split('\n' )] ) )
# for some unknown reason some lines miss a period, add it
SCREAMING_SNAKE_CASE : List[str] = [_add_missing_period(__UpperCamelCase ) for line in nonempty_lines]
# gather article lines
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : int = deque(__UpperCamelCase )
while True:
try:
SCREAMING_SNAKE_CASE : Optional[Any] = lines.popleft()
if element.startswith('@highlight' ):
break
story_lines.append(__UpperCamelCase )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
SCREAMING_SNAKE_CASE : int = list(filter(lambda __UpperCamelCase : not t.startswith('@highlight' ) ,__UpperCamelCase ) )
return story_lines, summary_lines
def lowercase__( __UpperCamelCase: Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')']
if line.startswith('@highlight' ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: Any ,__UpperCamelCase: Optional[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(__UpperCamelCase )) )
return sequence
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = torch.ones_like(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = sequence == pad_token_id
SCREAMING_SNAKE_CASE : List[Any] = 0
return mask
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = [tokenizer.encode(__UpperCamelCase ) for line in story_lines]
SCREAMING_SNAKE_CASE : Optional[int] = [token for sentence in story_lines_token_ids for token in sentence]
SCREAMING_SNAKE_CASE : str = [tokenizer.encode(__UpperCamelCase ) for line in summary_lines]
SCREAMING_SNAKE_CASE : Dict = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for sequence in batch:
SCREAMING_SNAKE_CASE : Dict = -1
SCREAMING_SNAKE_CASE : List[Any] = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(__UpperCamelCase )
return torch.tensor(__UpperCamelCase )
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Optional[int] = XLMProphetNetTokenizer
A : List[str] = False
A : Union[str, Any] = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE : List[str] = XLMProphetNetTokenizer(A, keep_accents=A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = '[PAD]'
SCREAMING_SNAKE_CASE : Any = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ), A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], '[PAD]' )
self.assertEqual(vocab_keys[1], '[CLS]' )
self.assertEqual(vocab_keys[-1], 'j' )
self.assertEqual(len(A ), 1_012 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size, 1_012 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = XLMProphetNetTokenizer(A, keep_accents=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('This is a test' )
self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], )
SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
A, [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
], )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(
A, [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
], )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(A )
self.assertListEqual(
A, [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'[UNK]',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'[UNK]',
'.',
], )
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = 'Hello World!'
SCREAMING_SNAKE_CASE : int = [35_389, 6_672, 49, 2]
self.assertListEqual(A, self.big_tokenizer.encode(A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = {'input_ids': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A, model_name='microsoft/xprophetnet-large-wiki100-cased', revision='1acad1643ddd54a44df6a1b797ada8373685d90e', )
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser(
description=(
"Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned"
" Distillation"
)
)
parser.add_argument("--model_type", default="bert", choices=["bert"])
parser.add_argument("--model_name", default="bert-base-uncased", type=str)
parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str)
parser.add_argument("--vocab_transform", action="store_true")
UpperCamelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCamelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCamelCase_ = "bert"
else:
raise ValueError("args.model_type should be \"bert\".")
UpperCamelCase_ = model.state_dict()
UpperCamelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCamelCase_ = state_dict[F"""{prefix}.embeddings.{w}.weight"""]
for w in ["weight", "bias"]:
UpperCamelCase_ = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""]
UpperCamelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCamelCase_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"""
]
UpperCamelCase_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"""
]
UpperCamelCase_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"""
]
UpperCamelCase_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"""
]
UpperCamelCase_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"""
]
UpperCamelCase_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"""
]
UpperCamelCase_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"""
]
UpperCamelCase_ = state_dict[
F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"""
]
std_idx += 1
UpperCamelCase_ = state_dict["cls.predictions.decoder.weight"]
UpperCamelCase_ = state_dict["cls.predictions.bias"]
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCamelCase_ = state_dict[F"""cls.predictions.transform.dense.{w}"""]
UpperCamelCase_ = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""]
print(F"""N layers selected for distillation: {std_idx}""")
print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A = 6 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Node | None = None
SCREAMING_SNAKE_CASE : Node | None = None
self.create_linked_list(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Node()
SCREAMING_SNAKE_CASE : List[str] = current_node
SCREAMING_SNAKE_CASE : Any = current_node
SCREAMING_SNAKE_CASE : Dict = current_node
for _ in range(1, A ):
SCREAMING_SNAKE_CASE : Dict = Node()
SCREAMING_SNAKE_CASE : List[str] = current_node
SCREAMING_SNAKE_CASE : Optional[Any] = previous_node
SCREAMING_SNAKE_CASE : Optional[int] = current_node
SCREAMING_SNAKE_CASE : str = self.front
SCREAMING_SNAKE_CASE : Optional[int] = previous_node
def UpperCamelCase_ ( self ):
'''simple docstring'''
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.check_can_perform_operation()
return self.front.data if self.front else None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
SCREAMING_SNAKE_CASE : List[str] = self.rear.next
if self.rear:
SCREAMING_SNAKE_CASE : List[str] = data
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
SCREAMING_SNAKE_CASE : List[Any] = self.front.data
SCREAMING_SNAKE_CASE : Optional[Any] = None
return data
SCREAMING_SNAKE_CASE : Dict = self.front
SCREAMING_SNAKE_CASE : List[str] = old_front.next
SCREAMING_SNAKE_CASE : List[str] = old_front.data
SCREAMING_SNAKE_CASE : str = None
return data
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self.is_empty():
raise Exception('Empty Queue' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
if self.rear and self.rear.next == self.front:
raise Exception('Full Queue' )
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any | None = None
SCREAMING_SNAKE_CASE : Node | None = None
SCREAMING_SNAKE_CASE : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: List[str] ,__UpperCamelCase: Tuple ,__UpperCamelCase: str ,__UpperCamelCase: Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = f"{file}_{class_name}_{test_name}"
done_test[_id] += 1
with open(__UpperCamelCase ,'r' ) as f:
SCREAMING_SNAKE_CASE : Union[str, Any] = f.readlines()
SCREAMING_SNAKE_CASE : Optional[int] = f"class {class_name}("
SCREAMING_SNAKE_CASE : Union[str, Any] = f"{4 * ' '}def {test_name}("
SCREAMING_SNAKE_CASE : int = f"{8 * ' '}{correct_line.split()[0]}"
SCREAMING_SNAKE_CASE : Optional[Any] = f"{16 * ' '}{correct_line.split()[0]}"
SCREAMING_SNAKE_CASE : Any = False
SCREAMING_SNAKE_CASE : Dict = False
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : List[Any] = False
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : Tuple = 0
SCREAMING_SNAKE_CASE : List[Any] = []
for line in lines:
if line.startswith(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Tuple = True
elif in_class and line.startswith(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : str = True
elif in_class and in_func and (line.startswith(__UpperCamelCase ) or line.startswith(__UpperCamelCase )):
SCREAMING_SNAKE_CASE : Any = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
SCREAMING_SNAKE_CASE : Union[str, Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
SCREAMING_SNAKE_CASE : str = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f"{spaces * ' '}{correct_line}" )
SCREAMING_SNAKE_CASE : Optional[Any] = False
else:
new_lines.append(__UpperCamelCase )
with open(__UpperCamelCase ,'w' ) as f:
for line in new_lines:
f.write(__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: List[Any]=None ):
"""simple docstring"""
if fail is not None:
with open(__UpperCamelCase ,'r' ) as f:
SCREAMING_SNAKE_CASE : Union[str, Any] = {l.strip() for l in f.readlines()}
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = None
with open(__UpperCamelCase ,'r' ) as f:
SCREAMING_SNAKE_CASE : List[Any] = f.readlines()
SCREAMING_SNAKE_CASE : Union[str, Any] = defaultdict(__UpperCamelCase )
for line in correct_lines:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--correct_filename", help="filename of tests with expected result")
parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None)
UpperCamelCase_ = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 28 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
UpperCamelCase_ = [
"openmmlab/upernet-convnext-tiny",
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
UpperCamelCase_ = "UperNetConfig"
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A, A, A, A = 0, A = False, A = 1, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad(
in_channels=A, out_channels=A, kernel_size=A, padding=A, bias=A, dilation=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.BatchNormad(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ReLU()
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.conv(A )
SCREAMING_SNAKE_CASE : List[str] = self.batch_norm(A )
SCREAMING_SNAKE_CASE : Tuple = self.activation(A )
return output
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A, A, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : str = [
nn.AdaptiveAvgPoolad(A ),
UperNetConvModule(A, A, kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(A ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = input
for layer in self.layers:
SCREAMING_SNAKE_CASE : Dict = layer(A )
return hidden_state
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A, A, A, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[Any] = pool_scales
SCREAMING_SNAKE_CASE : List[str] = align_corners
SCREAMING_SNAKE_CASE : List[Any] = in_channels
SCREAMING_SNAKE_CASE : Optional[Any] = channels
SCREAMING_SNAKE_CASE : int = []
for i, pool_scale in enumerate(A ):
SCREAMING_SNAKE_CASE : str = UperNetPyramidPoolingBlock(pool_scale=A, in_channels=A, channels=A )
self.blocks.append(A )
self.add_module(str(A ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for ppm in self.blocks:
SCREAMING_SNAKE_CASE : Tuple = ppm(A )
SCREAMING_SNAKE_CASE : str = nn.functional.interpolate(
A, size=x.size()[2:], mode='bilinear', align_corners=self.align_corners )
ppm_outs.append(A )
return ppm_outs
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[Any] = config
SCREAMING_SNAKE_CASE : Any = config.pool_scales # e.g. (1, 2, 3, 6)
SCREAMING_SNAKE_CASE : List[str] = in_channels
SCREAMING_SNAKE_CASE : int = config.hidden_size
SCREAMING_SNAKE_CASE : Optional[Any] = False
SCREAMING_SNAKE_CASE : Tuple = nn.Convad(self.channels, config.num_labels, kernel_size=1 )
# PSP Module
SCREAMING_SNAKE_CASE : Dict = UperNetPyramidPoolingModule(
self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, )
SCREAMING_SNAKE_CASE : int = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels, self.channels, kernel_size=3, padding=1, )
# FPN Module
SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList()
SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
SCREAMING_SNAKE_CASE : List[str] = UperNetConvModule(A, self.channels, kernel_size=1 )
SCREAMING_SNAKE_CASE : Optional[Any] = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1 )
self.lateral_convs.append(A )
self.fpn_convs.append(A )
SCREAMING_SNAKE_CASE : Dict = UperNetConvModule(
len(self.in_channels ) * self.channels, self.channels, kernel_size=3, padding=1, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.apply(self._init_weights )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if isinstance(A, nn.Convad ):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = inputs[-1]
SCREAMING_SNAKE_CASE : List[Any] = [x]
psp_outs.extend(self.psp_modules(A ) )
SCREAMING_SNAKE_CASE : str = torch.cat(A, dim=1 )
SCREAMING_SNAKE_CASE : int = self.bottleneck(A )
return output
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(A ) )
# build top-down path
SCREAMING_SNAKE_CASE : Tuple = len(A )
for i in range(used_backbone_levels - 1, 0, -1 ):
SCREAMING_SNAKE_CASE : Optional[int] = laterals[i - 1].shape[2:]
SCREAMING_SNAKE_CASE : Dict = laterals[i - 1] + nn.functional.interpolate(
laterals[i], size=A, mode='bilinear', align_corners=self.align_corners )
# build outputs
SCREAMING_SNAKE_CASE : Optional[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1, 0, -1 ):
SCREAMING_SNAKE_CASE : List[Any] = nn.functional.interpolate(
fpn_outs[i], size=fpn_outs[0].shape[2:], mode='bilinear', align_corners=self.align_corners )
SCREAMING_SNAKE_CASE : Dict = torch.cat(A, dim=1 )
SCREAMING_SNAKE_CASE : Optional[int] = self.fpn_bottleneck(A )
SCREAMING_SNAKE_CASE : int = self.classifier(A )
return output
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A, A = 2, A = 3, A = 1 ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Tuple = config
SCREAMING_SNAKE_CASE : Tuple = config.auxiliary_in_channels
SCREAMING_SNAKE_CASE : int = config.auxiliary_channels
SCREAMING_SNAKE_CASE : Optional[int] = config.auxiliary_num_convs
SCREAMING_SNAKE_CASE : int = config.auxiliary_concat_input
SCREAMING_SNAKE_CASE : Union[str, Any] = in_index
SCREAMING_SNAKE_CASE : List[str] = (kernel_size // 2) * dilation
SCREAMING_SNAKE_CASE : str = []
convs.append(
UperNetConvModule(
self.in_channels, self.channels, kernel_size=A, padding=A, dilation=A ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels, self.channels, kernel_size=A, padding=A, dilation=A ) )
if self.num_convs == 0:
SCREAMING_SNAKE_CASE : List[str] = nn.Identity()
else:
SCREAMING_SNAKE_CASE : List[Any] = nn.Sequential(*A )
if self.concat_input:
SCREAMING_SNAKE_CASE : List[Any] = UperNetConvModule(
self.in_channels + self.channels, self.channels, kernel_size=A, padding=kernel_size // 2 )
SCREAMING_SNAKE_CASE : List[str] = nn.Convad(self.channels, config.num_labels, kernel_size=1 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.apply(self._init_weights )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if isinstance(A, nn.Convad ):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = encoder_hidden_states[self.in_index]
SCREAMING_SNAKE_CASE : Any = self.convs(A )
if self.concat_input:
SCREAMING_SNAKE_CASE : List[str] = self.conv_cat(torch.cat([hidden_states, output], dim=1 ) )
SCREAMING_SNAKE_CASE : Optional[int] = self.classifier(A )
return output
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = UperNetConfig
A : Optional[Any] = '''pixel_values'''
A : Optional[int] = True
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if isinstance(A, A ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Tuple = value
UpperCamelCase_ = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCamelCase_ = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , SCREAMING_SNAKE_CASE , )
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__(A )
SCREAMING_SNAKE_CASE : Optional[int] = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
SCREAMING_SNAKE_CASE : Any = UperNetHead(A, in_channels=self.backbone.channels )
SCREAMING_SNAKE_CASE : Optional[int] = UperNetFCNHead(A ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) )
@replace_return_docstrings(output_type=A, config_class=_CONFIG_FOR_DOC )
def UpperCamelCase_ ( self, A = None, A = None, A = None, A = None, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE : Tuple = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE : int = output_attentions if output_attentions is not None else self.config.output_attentions
SCREAMING_SNAKE_CASE : Optional[Any] = self.backbone.forward_with_filtered_kwargs(
A, output_hidden_states=A, output_attentions=A )
SCREAMING_SNAKE_CASE : Dict = outputs.feature_maps
SCREAMING_SNAKE_CASE : List[str] = self.decode_head(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.functional.interpolate(A, size=pixel_values.shape[2:], mode='bilinear', align_corners=A )
SCREAMING_SNAKE_CASE : Optional[int] = None
if self.auxiliary_head is not None:
SCREAMING_SNAKE_CASE : str = self.auxiliary_head(A )
SCREAMING_SNAKE_CASE : Optional[Any] = nn.functional.interpolate(
A, size=pixel_values.shape[2:], mode='bilinear', align_corners=A )
SCREAMING_SNAKE_CASE : List[Any] = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('The number of labels should be greater than one' )
else:
# compute weighted loss
SCREAMING_SNAKE_CASE : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(A, A )
SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(A, A )
SCREAMING_SNAKE_CASE : List[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
SCREAMING_SNAKE_CASE : Dict = (logits,) + outputs[1:]
else:
SCREAMING_SNAKE_CASE : Optional[int] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=A, logits=A, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( *A, **A ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = pipeline(
model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification', )
SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
SCREAMING_SNAKE_CASE : Optional[int] = image_classifier(A, candidate_labels=['a', 'b', 'c'] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(A ), [
[{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}],
[{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}],
], )
SCREAMING_SNAKE_CASE : Union[str, Any] = image_classifier([image] * 5, candidate_labels=['A', 'B', 'C'], batch_size=2 )
self.assertEqual(
nested_simplify(A ), [
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
], )
@require_tf
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = pipeline(
model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification', framework='tf' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
SCREAMING_SNAKE_CASE : Optional[int] = image_classifier(A, candidate_labels=['a', 'b', 'c'] )
self.assertEqual(
nested_simplify(A ), [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], )
SCREAMING_SNAKE_CASE : Any = image_classifier([image] * 5, candidate_labels=['A', 'B', 'C'], batch_size=2 )
self.assertEqual(
nested_simplify(A ), [
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
[
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
{'score': 0.3_33, 'label': ANY(A )},
],
], )
@slow
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = pipeline(
task='zero-shot-image-classification', model='openai/clip-vit-base-patch32', )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
SCREAMING_SNAKE_CASE : List[str] = image_classifier(A, candidate_labels=['cat', 'plane', 'remote'] )
self.assertEqual(
nested_simplify(A ), [
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
], )
SCREAMING_SNAKE_CASE : List[Any] = image_classifier([image] * 5, candidate_labels=['cat', 'plane', 'remote'], batch_size=2 )
self.assertEqual(
nested_simplify(A ), [
[
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
],
]
* 5, )
@slow
@require_tf
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = pipeline(
task='zero-shot-image-classification', model='openai/clip-vit-base-patch32', framework='tf' )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
SCREAMING_SNAKE_CASE : List[Any] = image_classifier(A, candidate_labels=['cat', 'plane', 'remote'] )
self.assertEqual(
nested_simplify(A ), [
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
], )
SCREAMING_SNAKE_CASE : Tuple = image_classifier([image] * 5, candidate_labels=['cat', 'plane', 'remote'], batch_size=2 )
self.assertEqual(
nested_simplify(A ), [
[
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
],
]
* 5, )
| 28 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
"BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json",
"BridgeTower/bridgetower-base-itm-mlm": (
"https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json"
),
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Any = '''bridgetower_vision_model'''
def __init__( self, A=768, A=12, A=3, A=16, A=288, A=1, A=1E-05, A=False, A=True, A=False, **A, ):
'''simple docstring'''
super().__init__(**A )
SCREAMING_SNAKE_CASE : List[str] = hidden_size
SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : int = initializer_factor
SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps
SCREAMING_SNAKE_CASE : Any = stop_gradient
SCREAMING_SNAKE_CASE : Optional[Any] = share_layernorm
SCREAMING_SNAKE_CASE : Optional[int] = remove_last_layer
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = cls.get_config_dict(A, **A )
if config_dict.get('model_type' ) == "bridgetower":
SCREAMING_SNAKE_CASE : Optional[int] = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(A, **A )
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = '''bridgetower_text_model'''
def __init__( self, A=50_265, A=768, A=12, A=12, A=1, A=3_072, A="gelu", A=0.1, A=0.1, A=514, A=1, A=1E-05, A=1, A=0, A=2, A="absolute", A=True, **A, ):
'''simple docstring'''
super().__init__(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE : List[Any] = hidden_size
SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE : Tuple = hidden_act
SCREAMING_SNAKE_CASE : Tuple = initializer_factor
SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size
SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Dict = max_position_embeddings
SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size
SCREAMING_SNAKE_CASE : Any = layer_norm_eps
SCREAMING_SNAKE_CASE : Tuple = position_embedding_type
SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
SCREAMING_SNAKE_CASE : List[Any] = pad_token_id
SCREAMING_SNAKE_CASE : List[str] = bos_token_id
SCREAMING_SNAKE_CASE : List[str] = eos_token_id
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = cls.get_config_dict(A, **A )
if config_dict.get('model_type' ) == "bridgetower":
SCREAMING_SNAKE_CASE : int = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(A, **A )
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Union[str, Any] = '''bridgetower'''
def __init__( self, A=True, A="gelu", A=768, A=1, A=1E-05, A=False, A="add", A=12, A=6, A=False, A=False, A=None, A=None, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('text_config_dict', A )
SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('vision_config_dict', A )
super().__init__(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = share_cross_modal_transformer_layers
SCREAMING_SNAKE_CASE : str = hidden_act
SCREAMING_SNAKE_CASE : Any = hidden_size
SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_factor
SCREAMING_SNAKE_CASE : Any = layer_norm_eps
SCREAMING_SNAKE_CASE : List[str] = share_link_tower_layers
SCREAMING_SNAKE_CASE : int = link_tower_type
SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE : Tuple = tie_word_embeddings
SCREAMING_SNAKE_CASE : str = init_layernorm_from_vision_encoder
if text_config is None:
SCREAMING_SNAKE_CASE : int = {}
logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' )
if vision_config is None:
SCREAMING_SNAKE_CASE : int = {}
logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' )
SCREAMING_SNAKE_CASE : List[str] = BridgeTowerTextConfig(**A )
SCREAMING_SNAKE_CASE : Tuple = BridgeTowerVisionConfig(**A )
@classmethod
def UpperCamelCase_ ( cls, A, A, **A ):
'''simple docstring'''
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE : List[str] = self.text_config.to_dict()
SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE : List[Any] = self.__class__.model_type
return output
| 28 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 | 1 |
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
UpperCamelCase_ = random.Random()
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Tuple=1.0 ,__UpperCamelCase: int=None ,__UpperCamelCase: str=None ):
"""simple docstring"""
if rng is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = global_rng
SCREAMING_SNAKE_CASE : int = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=400, A=2_000, A=1, A=0.0, A=16_000, A=True, A=80, A=16, A=64, A="hann_window", A=80, A=7_600, A=1E-10, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE : Union[str, Any] = min_seq_length
SCREAMING_SNAKE_CASE : List[str] = max_seq_length
SCREAMING_SNAKE_CASE : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE : Union[str, Any] = feature_size
SCREAMING_SNAKE_CASE : Optional[Any] = padding_value
SCREAMING_SNAKE_CASE : Optional[int] = sampling_rate
SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize
SCREAMING_SNAKE_CASE : Tuple = num_mel_bins
SCREAMING_SNAKE_CASE : Dict = hop_length
SCREAMING_SNAKE_CASE : Optional[Any] = win_length
SCREAMING_SNAKE_CASE : Optional[Any] = win_function
SCREAMING_SNAKE_CASE : Optional[int] = fmin
SCREAMING_SNAKE_CASE : List[Any] = fmax
SCREAMING_SNAKE_CASE : str = mel_floor
SCREAMING_SNAKE_CASE : Any = return_attention_mask
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def UpperCamelCase_ ( self, A=False, A=False ):
'''simple docstring'''
def _flatten(A ):
return list(itertools.chain(*A ) )
if equal_length:
SCREAMING_SNAKE_CASE : Tuple = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE : str = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A ) for x in speech_inputs]
return speech_inputs
def UpperCamelCase_ ( self, A=False, A=False ):
'''simple docstring'''
if equal_length:
SCREAMING_SNAKE_CASE : int = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE : int = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE : Tuple = [np.asarray(A ) for x in speech_inputs]
return speech_inputs
@require_torch
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = SpeechTaFeatureExtractor
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = SpeechTaFeatureExtractionTester(self )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.assertTrue(np.all(np.mean(A, axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(A, axis=0 ) - 1 ) < 1E-3 ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE : Dict = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(A ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE : Dict = feat_extract(speech_inputs[0], return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE : Tuple = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values
self.assertTrue(np.allclose(A, A, atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE : List[Any] = feat_extract(A, return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE : Tuple = feat_extract(A, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(A, A ):
self.assertTrue(np.allclose(A, A, atol=1E-3 ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : List[str] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
SCREAMING_SNAKE_CASE : Dict = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE : Dict = [None, 1_600, None]
for max_length, padding in zip(A, A ):
SCREAMING_SNAKE_CASE : Dict = feat_extract(A, padding=A, max_length=A, return_tensors='np' )
SCREAMING_SNAKE_CASE : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : List[str] = range(800, 1_400, 200 )
SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in lengths]
SCREAMING_SNAKE_CASE : str = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE : int = [None, 1_600, None]
for max_length, padding in zip(A, A ):
SCREAMING_SNAKE_CASE : List[str] = feat_extract(A, max_length=A, padding=A )
SCREAMING_SNAKE_CASE : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : List[str] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
SCREAMING_SNAKE_CASE : Dict = feat_extract(
A, truncation=A, max_length=1_000, padding='max_length', return_tensors='np' )
SCREAMING_SNAKE_CASE : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
SCREAMING_SNAKE_CASE : int = feat_extract(
A, truncation=A, max_length=1_000, padding='longest', return_tensors='np' )
SCREAMING_SNAKE_CASE : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
SCREAMING_SNAKE_CASE : Tuple = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
SCREAMING_SNAKE_CASE : Tuple = feat_extract(
A, truncation=A, max_length=2_000, padding='longest', return_tensors='np' )
SCREAMING_SNAKE_CASE : Optional[Any] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.rand(100 ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[Any] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE : List[str] = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
SCREAMING_SNAKE_CASE : int = [np.asarray(A ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE : Any = feature_extractor(audio_target=A, padding=A, return_tensors='np' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
SCREAMING_SNAKE_CASE : str = feature_extractor(speech_inputs[0], return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE : Tuple = feature_extractor(np_speech_inputs[0], return_tensors='np' ).input_values
self.assertTrue(np.allclose(A, A, atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(A, return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE : int = feature_extractor(A, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(A, A ):
self.assertTrue(np.allclose(A, A, atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(A )
SCREAMING_SNAKE_CASE : int = feature_extractor(A, return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE : Tuple = feature_extractor(A, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(A, A ):
self.assertTrue(np.allclose(A, A, atol=1E-3 ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : str = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Any = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(A ) == len(A ) for x, y in zip(A, processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=A )
SCREAMING_SNAKE_CASE : Dict = BatchFeature({input_name: speech_inputs}, tensor_type='np' )
SCREAMING_SNAKE_CASE : Dict = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE : str = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=A )
SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : List[Any] = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Tuple = BatchFeature({input_name: speech_inputs}, tensor_type='pt' )
SCREAMING_SNAKE_CASE : List[Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE : Union[str, Any] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE : Tuple = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE : Dict = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Dict = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE : str = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract.pad(A, padding='longest', return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE : Dict = feat_extract.pad(A, padding='longest', return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.feat_extract_dict
SCREAMING_SNAKE_CASE : str = True
SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**A )
SCREAMING_SNAKE_CASE : Tuple = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE : Optional[Any] = [len(A ) for x in speech_inputs]
SCREAMING_SNAKE_CASE : Any = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : Dict = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE : int = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE : List[Any] = feat_extract.pad(A, padding='longest', return_tensors='np' )
self.assertIn('attention_mask', A )
self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.feat_extract_dict
SCREAMING_SNAKE_CASE : Dict = True
SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**A )
SCREAMING_SNAKE_CASE : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE : Any = [len(A ) for x in speech_inputs]
SCREAMING_SNAKE_CASE : Tuple = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE : int = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE : Union[str, Any] = min(A )
SCREAMING_SNAKE_CASE : str = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE : Tuple = feat_extract.pad(
A, padding='max_length', max_length=A, truncation=A, return_tensors='np' )
self.assertIn('attention_mask', A )
self.assertListEqual(
list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
from datasets import load_dataset
SCREAMING_SNAKE_CASE : str = load_dataset('hf-internal-testing/librispeech_asr_dummy', 'clean', split='validation' )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE : Dict = ds.sort('id' ).select(range(A ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(
[2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03,
3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03,
2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04,
4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03,
7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04,
4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] )
# fmt: on
SCREAMING_SNAKE_CASE : str = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE : Dict = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE : Tuple = feature_extractor(A, return_tensors='pt' ).input_values
self.assertEquals(input_values.shape, (1, 93_680) )
self.assertTrue(torch.allclose(input_values[0, :30], A, atol=1E-6 ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77,
-3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86,
-3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71,
-3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] )
# fmt: on
SCREAMING_SNAKE_CASE : Optional[int] = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(audio_target=A, return_tensors='pt' ).input_values
self.assertEquals(input_values.shape, (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30], A, atol=1E-4 ) )
| 28 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=99, A=32, A=5, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=3, A=4, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = parent
SCREAMING_SNAKE_CASE : str = batch_size
SCREAMING_SNAKE_CASE : Dict = seq_length
SCREAMING_SNAKE_CASE : Tuple = is_training
SCREAMING_SNAKE_CASE : Dict = use_token_type_ids
SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE : Any = vocab_size
SCREAMING_SNAKE_CASE : List[str] = hidden_size
SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : Tuple = intermediate_size
SCREAMING_SNAKE_CASE : Any = hidden_act
SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings
SCREAMING_SNAKE_CASE : Dict = type_vocab_size
SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size
SCREAMING_SNAKE_CASE : Any = initializer_range
SCREAMING_SNAKE_CASE : List[Any] = num_labels
SCREAMING_SNAKE_CASE : Optional[Any] = num_choices
SCREAMING_SNAKE_CASE : Dict = scope
SCREAMING_SNAKE_CASE : Optional[int] = self.vocab_size - 1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
SCREAMING_SNAKE_CASE : List[Any] = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Tuple = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size], self.num_choices )
SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig(
vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase_ ( self, A, A, A, A, *A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = OpenAIGPTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A, token_type_ids=A, head_mask=A )
SCREAMING_SNAKE_CASE : Dict = model(A, token_type_ids=A )
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self, A, A, A, A, *A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = OpenAIGPTLMHeadModel(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Union[str, Any] = model(A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self, A, A, A, A, *A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = OpenAIGPTDoubleHeadsModel(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : int = model(A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self, A, A, A, A, *A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.num_labels
SCREAMING_SNAKE_CASE : int = OpenAIGPTForSequenceClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Tuple = model(A, token_type_ids=A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = config_and_inputs
SCREAMING_SNAKE_CASE : Dict = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A : Dict = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A : Tuple = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self, A, A, A, A, A ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase_ ( self, A, A, A=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = super()._prepare_for_class(A, A, return_labels=A )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
SCREAMING_SNAKE_CASE : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=A, )
SCREAMING_SNAKE_CASE : List[Any] = inputs_dict['labels']
SCREAMING_SNAKE_CASE : List[str] = inputs_dict['labels']
SCREAMING_SNAKE_CASE : int = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=A, )
SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=A )
return inputs_dict
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = OpenAIGPTModelTester(self )
SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self, config_class=A, n_embd=37 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(A )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[481, 4_735, 544]], dtype=torch.long, device=A ) # the president is
SCREAMING_SNAKE_CASE : Dict = [
481,
4_735,
544,
246,
963,
870,
762,
239,
244,
40_477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
SCREAMING_SNAKE_CASE : Dict = model.generate(A, do_sample=A )
self.assertListEqual(output_ids[0].tolist(), A )
| 28 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 | 1 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
UpperCamelCase_ = "pt"
elif is_tf_available():
UpperCamelCase_ = "tf"
else:
UpperCamelCase_ = "jax"
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Optional[int] = ByTaTokenizer
A : Tuple = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : List[Any] = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A, A=False, A=20, A=5 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = []
for i in range(len(A ) ):
try:
SCREAMING_SNAKE_CASE : int = tokenizer.decode([i], clean_up_tokenization_spaces=A )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
SCREAMING_SNAKE_CASE : Tuple = list(filter(lambda A : re.match(r'^[ a-zA-Z]+$', t[1] ), A ) )
SCREAMING_SNAKE_CASE : Any = list(filter(lambda A : [t[0]] == tokenizer.encode(t[1], add_special_tokens=A ), A ) )
if max_length is not None and len(A ) > max_length:
SCREAMING_SNAKE_CASE : List[Any] = toks[:max_length]
if min_length is not None and len(A ) < min_length and len(A ) > 0:
while len(A ) < min_length:
SCREAMING_SNAKE_CASE : str = toks + toks
# toks_str = [t[1] for t in toks]
SCREAMING_SNAKE_CASE : str = [t[0] for t in toks]
# Ensure consistency
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.decode(A, clean_up_tokenization_spaces=A )
if " " not in output_txt and len(A ) > 1:
SCREAMING_SNAKE_CASE : Optional[int] = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=A )
+ ' '
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=A )
)
if with_prefix_space:
SCREAMING_SNAKE_CASE : Dict = ' ' + output_txt
SCREAMING_SNAKE_CASE : Any = tokenizer.encode(A, add_special_tokens=A )
return output_txt, output_ids
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
SCREAMING_SNAKE_CASE : str = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'], batch_without_eos_added['input_ids'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE : Dict = 'Unicode €.'
SCREAMING_SNAKE_CASE : Any = tokenizer(A )
SCREAMING_SNAKE_CASE : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'], A )
# decoding
SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(A )
self.assertEqual(A, 'Unicode €.</s>' )
SCREAMING_SNAKE_CASE : int = tokenizer('e è é ê ë' )
SCREAMING_SNAKE_CASE : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'], A )
# decoding
SCREAMING_SNAKE_CASE : str = tokenizer.decode(A )
self.assertEqual(A, 'e è é ê ë</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), 'e è é ê ë</s>' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE : Tuple = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
SCREAMING_SNAKE_CASE : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
SCREAMING_SNAKE_CASE : Any = tokenizer(A, padding=A, return_tensors=A )
self.assertIsInstance(A, A )
if FRAMEWORK != "jax":
SCREAMING_SNAKE_CASE : List[str] = list(batch.input_ids.numpy()[0] )
else:
SCREAMING_SNAKE_CASE : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(A, A )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(A, padding=A, return_tensors=A )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids', A )
self.assertIn('attention_mask', A )
self.assertNotIn('decoder_input_ids', A )
self.assertNotIn('decoder_attention_mask', A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE : List[Any] = [
'Summary of the text.',
'Another summary.',
]
SCREAMING_SNAKE_CASE : str = tokenizer(
text_target=A, max_length=32, padding='max_length', truncation=A, return_tensors=A )
self.assertEqual(32, targets['input_ids'].shape[1] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE : List[str] = ['A long paragraph for summarization. </s>']
SCREAMING_SNAKE_CASE : Tuple = ['Summary of the text. </s>']
# fmt: off
SCREAMING_SNAKE_CASE : Dict = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
SCREAMING_SNAKE_CASE : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
SCREAMING_SNAKE_CASE : int = tokenizer(A, text_target=A )
self.assertEqual(A, batch['input_ids'][0] )
self.assertEqual(A, batch['labels'][0] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : int = ' He is very happy, UNwant\u00E9d,running'
SCREAMING_SNAKE_CASE : Any = tokenizer.encode(A, add_special_tokens=A )
tokenizer.save_pretrained(A )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.__class__.from_pretrained(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = after_tokenizer.encode(A, add_special_tokens=A )
self.assertListEqual(A, A )
shutil.rmtree(A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE : str = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : int = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A )
tokenizer.save_pretrained(A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.__class__.from_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = after_tokenizer.encode(A, add_special_tokens=A )
self.assertListEqual(A, A )
self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
SCREAMING_SNAKE_CASE : Dict = tokenizer.__class__.from_pretrained(A, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(A )
with open(os.path.join(A, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file:
SCREAMING_SNAKE_CASE : List[Any] = json.load(A )
with open(os.path.join(A, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file:
SCREAMING_SNAKE_CASE : Any = json.load(A )
SCREAMING_SNAKE_CASE : Optional[Any] = [F"<extra_id_{i}>" for i in range(125 )]
SCREAMING_SNAKE_CASE : List[Any] = added_tokens_extra_ids + [
'an_additional_special_token'
]
SCREAMING_SNAKE_CASE : Union[str, Any] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(A, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile:
json.dump(A, A )
with open(os.path.join(A, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile:
json.dump(A, A )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
SCREAMING_SNAKE_CASE : Dict = tokenizer_class.from_pretrained(
A, )
self.assertIn(
'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
SCREAMING_SNAKE_CASE : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=A )]
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_class.from_pretrained(
A, additional_special_tokens=A, )
self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_class.from_pretrained(A )
self.assertTrue(tokenizer.decode([255] ) == '' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizers(fast=A, do_lower_case=A )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE : Optional[Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
SCREAMING_SNAKE_CASE : List[str] = tokenizer.convert_tokens_to_string(A )
self.assertIsInstance(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
SCREAMING_SNAKE_CASE : Any = 0
SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_ids_to_tokens(
A, skip_special_tokens=A )
for attr in attributes_list:
setattr(A, attr + '_id', A )
self.assertEqual(getattr(A, A ), A )
self.assertEqual(getattr(A, attr + '_id' ), A )
setattr(A, attr + '_id', A )
self.assertEqual(getattr(A, A ), A )
self.assertEqual(getattr(A, attr + '_id' ), A )
setattr(A, 'additional_special_tokens_ids', [] )
self.assertListEqual(getattr(A, 'additional_special_tokens' ), [] )
self.assertListEqual(getattr(A, 'additional_special_tokens_ids' ), [] )
setattr(A, 'additional_special_tokens_ids', [token_id_to_test_setters] )
self.assertListEqual(getattr(A, 'additional_special_tokens' ), [token_to_test_setters] )
self.assertListEqual(getattr(A, 'additional_special_tokens_ids' ), [token_id_to_test_setters] )
| 28 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 | 1 |
'''simple docstring'''
UpperCamelCase_ = range(2, 2_0 + 1)
UpperCamelCase_ = [1_0**k for k in range(ks[-1] + 1)]
UpperCamelCase_ = {}
def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = sum(a_i[j] for j in range(__UpperCamelCase ,len(__UpperCamelCase ) ) )
SCREAMING_SNAKE_CASE : Any = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) ,__UpperCamelCase ) ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = 0, 0
SCREAMING_SNAKE_CASE : List[Any] = n - i
SCREAMING_SNAKE_CASE : Optional[int] = memo.get(__UpperCamelCase )
if sub_memo is not None:
SCREAMING_SNAKE_CASE : Any = sub_memo.get(__UpperCamelCase )
if jumps is not None and len(__UpperCamelCase ) > 0:
# find and make the largest jump without going over
SCREAMING_SNAKE_CASE : Any = -1
for _k in range(len(__UpperCamelCase ) - 1 ,-1 ,-1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
SCREAMING_SNAKE_CASE : str = _k
break
if max_jump >= 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = jumps[max_jump]
# since the difference between jumps is cached, add c
SCREAMING_SNAKE_CASE : Optional[Any] = diff + c
for j in range(min(__UpperCamelCase ,len(__UpperCamelCase ) ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = divmod(__UpperCamelCase ,10 )
if new_c > 0:
add(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Any = []
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = {c: []}
SCREAMING_SNAKE_CASE : Optional[int] = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = next_term(__UpperCamelCase ,k - 1 ,i + dn ,__UpperCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = compute(__UpperCamelCase ,__UpperCamelCase ,i + dn ,__UpperCamelCase )
diff += _diff
dn += terms_jumped
SCREAMING_SNAKE_CASE : Optional[int] = sub_memo[c]
# keep jumps sorted by # of terms skipped
SCREAMING_SNAKE_CASE : Optional[Any] = 0
while j < len(__UpperCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(__UpperCamelCase ,(diff, dn, k) )
return (diff, dn)
def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
if i >= n:
return 0, i
if k > len(__UpperCamelCase ):
a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
SCREAMING_SNAKE_CASE : Optional[int] = i
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = 0, 0, 0
for j in range(len(__UpperCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
SCREAMING_SNAKE_CASE : List[Any] = ds_c + ds_b
diff += addend
SCREAMING_SNAKE_CASE : Optional[int] = 0
for j in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Optional[int] = a_i[j] + addend
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = divmod(__UpperCamelCase ,10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
return diff, i - start_i
def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
for j in range(__UpperCamelCase ,len(__UpperCamelCase ) ):
SCREAMING_SNAKE_CASE : List[str] = digits[j] + addend
if s >= 10:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = divmod(__UpperCamelCase ,10 )
SCREAMING_SNAKE_CASE : List[str] = addend // 10 + quotient
else:
SCREAMING_SNAKE_CASE : str = s
SCREAMING_SNAKE_CASE : Dict = addend // 10
if addend == 0:
break
while addend > 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = divmod(__UpperCamelCase ,10 )
digits.append(__UpperCamelCase )
def lowercase__( __UpperCamelCase: int = 10**15 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = [1]
SCREAMING_SNAKE_CASE : Any = 1
SCREAMING_SNAKE_CASE : List[str] = 0
while True:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next_term(__UpperCamelCase ,20 ,i + dn ,__UpperCamelCase )
dn += terms_jumped
if dn == n - i:
break
SCREAMING_SNAKE_CASE : int = 0
for j in range(len(__UpperCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"""{solution() = }""")
| 28 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 | 1 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def lowercase__( ):
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
SCREAMING_SNAKE_CASE : Tuple = '__test_patch_submodule_mock__'
with patch_submodule(_test_patching ,'os.path.join' ,__UpperCamelCase ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os ,_PatchedModuleObj )
assert isinstance(_test_patching.os.path ,_PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path ,_PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os ,_PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path ,_PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path ,_PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def lowercase__( ):
"""simple docstring"""
assert _test_patching.open is open
SCREAMING_SNAKE_CASE : Tuple = '__test_patch_submodule_builtin_mock__'
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching ,'open' ,__UpperCamelCase ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = '__test_patch_submodule_missing_mock__'
with patch_submodule(_test_patching ,'pandas.read_csv' ,__UpperCamelCase ):
pass
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = '__test_patch_submodule_missing_builtin_mock__'
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching ,'len' ,__UpperCamelCase ) is None
with patch_submodule(_test_patching ,'len' ,__UpperCamelCase ):
assert _test_patching.len is mock
assert _test_patching.len is len
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = '__test_patch_submodule_start_and_stop_mock__'
SCREAMING_SNAKE_CASE : Optional[Any] = patch_submodule(_test_patching ,'open' ,__UpperCamelCase )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def lowercase__( ):
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
SCREAMING_SNAKE_CASE : int = '__test_patch_submodule_successive_join__'
SCREAMING_SNAKE_CASE : int = '__test_patch_submodule_successive_dirname__'
SCREAMING_SNAKE_CASE : List[str] = '__test_patch_submodule_successive_rename__'
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching ,'os.path.join' ,__UpperCamelCase ):
with patch_submodule(_test_patching ,'os.rename' ,__UpperCamelCase ):
with patch_submodule(_test_patching ,'os.path.dirname' ,__UpperCamelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching ,'os.rename' ,__UpperCamelCase ):
with patch_submodule(_test_patching ,'os.path.join' ,__UpperCamelCase ):
with patch_submodule(_test_patching ,'os.path.dirname' ,__UpperCamelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = '__test_patch_submodule_doesnt_exist_mock__'
with patch_submodule(_test_patching ,'__module_that_doesn_exist__.__attribute_that_doesn_exist__' ,__UpperCamelCase ):
pass
with patch_submodule(_test_patching ,'os.__attribute_that_doesn_exist__' ,__UpperCamelCase ):
pass
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__UpperCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 28 | 1 |
'''simple docstring'''
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Any = (IPNDMScheduler,)
A : List[Any] = (('''num_inference_steps''', 50),)
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = {'num_train_timesteps': 1_000}
config.update(**A )
return config
def UpperCamelCase_ ( self, A=0, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('num_inference_steps', A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample
SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample
SCREAMING_SNAKE_CASE : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config(**A )
SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**A )
scheduler.set_timesteps(A )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[:]
if time_step is None:
SCREAMING_SNAKE_CASE : List[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A )
SCREAMING_SNAKE_CASE : Any = scheduler_class.from_pretrained(A )
new_scheduler.set_timesteps(A )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE : Any = dummy_past_residuals[:]
SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(A, A, A, **A ).prev_sample
SCREAMING_SNAKE_CASE : Tuple = new_scheduler.step(A, A, A, **A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
SCREAMING_SNAKE_CASE : Dict = scheduler.step(A, A, A, **A ).prev_sample
SCREAMING_SNAKE_CASE : str = new_scheduler.step(A, A, A, **A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self, A=0, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('num_inference_steps', A )
SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample
SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample
SCREAMING_SNAKE_CASE : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**A )
scheduler.set_timesteps(A )
# copy over dummy past residuals (must be after setting timesteps)
SCREAMING_SNAKE_CASE : List[str] = dummy_past_residuals[:]
if time_step is None:
SCREAMING_SNAKE_CASE : Any = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class.from_pretrained(A )
# copy over dummy past residuals
new_scheduler.set_timesteps(A )
# copy over dummy past residual (must be after setting timesteps)
SCREAMING_SNAKE_CASE : List[str] = dummy_past_residuals[:]
SCREAMING_SNAKE_CASE : str = scheduler.step(A, A, A, **A ).prev_sample
SCREAMING_SNAKE_CASE : int = new_scheduler.step(A, A, A, **A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
SCREAMING_SNAKE_CASE : str = scheduler.step(A, A, A, **A ).prev_sample
SCREAMING_SNAKE_CASE : Optional[Any] = new_scheduler.step(A, A, A, **A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config(**A )
SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**A )
SCREAMING_SNAKE_CASE : int = 10
SCREAMING_SNAKE_CASE : List[str] = self.dummy_model()
SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample_deter
scheduler.set_timesteps(A )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE : List[Any] = model(A, A )
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(A, A, A ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE : List[str] = model(A, A )
SCREAMING_SNAKE_CASE : int = scheduler.step(A, A, A ).prev_sample
return sample
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('num_inference_steps', A )
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**A )
SCREAMING_SNAKE_CASE : Any = self.dummy_sample
SCREAMING_SNAKE_CASE : Any = 0.1 * sample
if num_inference_steps is not None and hasattr(A, 'set_timesteps' ):
scheduler.set_timesteps(A )
elif num_inference_steps is not None and not hasattr(A, 'set_timesteps' ):
SCREAMING_SNAKE_CASE : Any = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
SCREAMING_SNAKE_CASE : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
SCREAMING_SNAKE_CASE : List[str] = dummy_past_residuals[:]
SCREAMING_SNAKE_CASE : Any = scheduler.timesteps[5]
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.timesteps[6]
SCREAMING_SNAKE_CASE : int = scheduler.step(A, A, A, **A ).prev_sample
SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(A, A, A, **A ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
SCREAMING_SNAKE_CASE : str = scheduler.step(A, A, A, **A ).prev_sample
SCREAMING_SNAKE_CASE : int = scheduler.step(A, A, A, **A ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=A, time_step=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=A, time_step=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.full_loop()
SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 28 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=18, A=30, A=400, A=True, A=None, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18}
SCREAMING_SNAKE_CASE : List[str] = parent
SCREAMING_SNAKE_CASE : str = batch_size
SCREAMING_SNAKE_CASE : Dict = num_channels
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : str = min_resolution
SCREAMING_SNAKE_CASE : List[Any] = max_resolution
SCREAMING_SNAKE_CASE : int = do_resize
SCREAMING_SNAKE_CASE : str = size
SCREAMING_SNAKE_CASE : Optional[int] = do_normalize
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = ImageGPTImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = ImageGPTImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'clusters' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'height': 18, 'width': 18} )
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict, size=42 )
self.assertEqual(image_processor.size, {'height': 42, 'width': 42} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(A, obj[key] ) )
else:
self.assertEqual(obj[key], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(A, 'image_processor.json' )
image_processor_first.to_json_file(A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_json_file(A ).to_dict()
SCREAMING_SNAKE_CASE : List[str] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(A, image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_pretrained(A ).to_dict()
SCREAMING_SNAKE_CASE : List[str] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(A, image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key], A )
@unittest.skip('ImageGPT requires clusters at initialization' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = load_dataset('hf-internal-testing/fixtures_image_utils' ,split='test' )
SCREAMING_SNAKE_CASE : Dict = Image.open(dataset[4]['file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(dataset[5]['file'] )
SCREAMING_SNAKE_CASE : str = [imagea, imagea]
return images
@require_vision
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' )
SCREAMING_SNAKE_CASE : List[str] = prepare_images()
# test non-batched
SCREAMING_SNAKE_CASE : Dict = image_processing(images[0], return_tensors='pt' )
self.assertIsInstance(encoding.input_ids, torch.LongTensor )
self.assertEqual(encoding.input_ids.shape, (1, 1_024) )
SCREAMING_SNAKE_CASE : List[str] = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist(), A )
# test batched
SCREAMING_SNAKE_CASE : List[Any] = image_processing(A, return_tensors='pt' )
self.assertIsInstance(encoding.input_ids, torch.LongTensor )
self.assertEqual(encoding.input_ids.shape, (2, 1_024) )
SCREAMING_SNAKE_CASE : int = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist(), A )
| 28 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionXLImgaImgPipeline
A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
A : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, )
SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A )
SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : str = sd_pipe.to(A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
# forward without prompt embeds
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt
SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']]
SCREAMING_SNAKE_CASE : int = sd_pipe(**A )
SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )]
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(
**A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, )
SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A )
SCREAMING_SNAKE_CASE : str = pipe(**A ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 28 | 1 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase_ = {
"configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["BloomTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
"BloomForCausalLM",
"BloomModel",
"BloomPreTrainedModel",
"BloomForSequenceClassification",
"BloomForTokenClassification",
"BloomForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
'''simple docstring'''
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
UpperCamelCase_ = getLogger(__name__)
UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu"
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: str ,__UpperCamelCase: str ,__UpperCamelCase: int = 8 ,__UpperCamelCase: str = DEFAULT_DEVICE ,__UpperCamelCase: Optional[int]=False ,__UpperCamelCase: Tuple="summarization" ,__UpperCamelCase: Tuple=None ,**__UpperCamelCase: List[str] ,):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = Path(__UpperCamelCase ).open('w' ,encoding='utf-8' )
SCREAMING_SNAKE_CASE : int = str(__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = AutoModelForSeqaSeqLM.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase )
if fpaa:
SCREAMING_SNAKE_CASE : Any = model.half()
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained(__UpperCamelCase )
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
SCREAMING_SNAKE_CASE : Dict = time.time()
# update config with task specific params
use_task_specific_params(__UpperCamelCase ,__UpperCamelCase )
if prefix is None:
SCREAMING_SNAKE_CASE : int = prefix or getattr(model.config ,'prefix' ,'' ) or ''
for examples_chunk in tqdm(list(chunks(__UpperCamelCase ,__UpperCamelCase ) ) ):
SCREAMING_SNAKE_CASE : Any = [prefix + text for text in examples_chunk]
SCREAMING_SNAKE_CASE : Tuple = tokenizer(__UpperCamelCase ,return_tensors='pt' ,truncation=__UpperCamelCase ,padding='longest' ).to(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = model.generate(
input_ids=batch.input_ids ,attention_mask=batch.attention_mask ,**__UpperCamelCase ,)
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase )
for hypothesis in dec:
fout.write(hypothesis + '\n' )
fout.flush()
fout.close()
SCREAMING_SNAKE_CASE : Tuple = int(time.time() - start_time ) # seconds
SCREAMING_SNAKE_CASE : Union[str, Any] = len(__UpperCamelCase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs ,4 )}
def lowercase__( ):
"""simple docstring"""
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )
def lowercase__( __UpperCamelCase: List[str]=True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument('model_name' ,type=__UpperCamelCase ,help='like facebook/bart-large-cnn,t5-base, etc.' )
parser.add_argument('input_path' ,type=__UpperCamelCase ,help='like cnn_dm/test.source' )
parser.add_argument('save_path' ,type=__UpperCamelCase ,help='where to save summaries' )
parser.add_argument('--reference_path' ,type=__UpperCamelCase ,required=__UpperCamelCase ,help='like cnn_dm/test.target' )
parser.add_argument('--score_path' ,type=__UpperCamelCase ,required=__UpperCamelCase ,default='metrics.json' ,help='where to save metrics' )
parser.add_argument('--device' ,type=__UpperCamelCase ,required=__UpperCamelCase ,default=__UpperCamelCase ,help='cuda, cuda:1, cpu etc.' )
parser.add_argument(
'--prefix' ,type=__UpperCamelCase ,required=__UpperCamelCase ,default=__UpperCamelCase ,help='will be added to the begininng of src examples' )
parser.add_argument('--task' ,type=__UpperCamelCase ,default='summarization' ,help='used for task_specific_params + metrics' )
parser.add_argument('--bs' ,type=__UpperCamelCase ,default=8 ,required=__UpperCamelCase ,help='batch size' )
parser.add_argument(
'--n_obs' ,type=__UpperCamelCase ,default=-1 ,required=__UpperCamelCase ,help='How many observations. Defaults to all.' )
parser.add_argument('--fp16' ,action='store_true' )
parser.add_argument('--dump-args' ,action='store_true' ,help='print the custom hparams with the results' )
parser.add_argument(
'--info' ,nargs='?' ,type=__UpperCamelCase ,const=datetime_now() ,help=(
'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'
' lang=en-ru. If no value is passed, the current datetime string will be used.'
) ,)
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = parser.parse_known_args()
SCREAMING_SNAKE_CASE : int = parse_numeric_n_bool_cl_kwargs(__UpperCamelCase )
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}" )
SCREAMING_SNAKE_CASE : Optional[int] = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
SCREAMING_SNAKE_CASE : str = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=__UpperCamelCase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('Can\'t mix --fp16 and --device cpu' )
SCREAMING_SNAKE_CASE : int = generate_summaries_or_translations(
__UpperCamelCase ,args.save_path ,args.model_name ,batch_size=args.bs ,device=args.device ,fpaa=args.fpaa ,task=args.task ,prefix=args.prefix ,**__UpperCamelCase ,)
if args.reference_path is None:
return {}
# Compute scores
SCREAMING_SNAKE_CASE : Tuple = calculate_bleu if 'translation' in args.task else calculate_rouge
SCREAMING_SNAKE_CASE : int = [x.rstrip() for x in open(args.save_path ).readlines()]
SCREAMING_SNAKE_CASE : Optional[Any] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__UpperCamelCase )]
SCREAMING_SNAKE_CASE : dict = score_fn(__UpperCamelCase ,__UpperCamelCase )
scores.update(__UpperCamelCase )
if args.dump_args:
scores.update(__UpperCamelCase )
if args.info:
SCREAMING_SNAKE_CASE : Optional[int] = args.info
if verbose:
print(__UpperCamelCase )
if args.score_path is not None:
json.dump(__UpperCamelCase ,open(args.score_path ,'w' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 28 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = data
SCREAMING_SNAKE_CASE : Any = None
def __repr__( self ):
'''simple docstring'''
return F"Node({self.data})"
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(A ) for item in self] )
def __getitem__( self, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, A, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = current.next
SCREAMING_SNAKE_CASE : Any = data
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(len(self ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(0, A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : Tuple = new_node
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : str = temp.next
SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = new_node
def UpperCamelCase_ ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCamelCase_ ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next
return delete_node.data
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.head is None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Any = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Optional[int] = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : int = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : int = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : List[Any] = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : List[Any] = prev
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__UpperCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__UpperCamelCase ) == i
linked_list.insert_nth(__UpperCamelCase ,i + 1 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__UpperCamelCase ) == 9
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
SCREAMING_SNAKE_CASE : Any = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_9_2.5_5_5_5_5,
'Hello, world!',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(__UpperCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : str = linked_list.delete_head()
assert result == -9
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__UpperCamelCase )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__UpperCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowercase__( ):
"""simple docstring"""
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Dict = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(__UpperCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f"Element at Position 1: {linked_list[1]}" )
SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip()
print('New list:' )
print(__UpperCamelCase )
print(f"length of linked_list is : {len(__UpperCamelCase )}" )
if __name__ == "__main__":
main()
| 28 | 1 |
'''simple docstring'''
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
| 28 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset)
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,):
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
else:
return _interleave_iterable_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,):
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
else:
return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
| 28 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 | 1 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger(__name__)
def lowercase__( __UpperCamelCase: Any ):
"""simple docstring"""
print('Loading config file...' )
def flatten_yaml_as_dict(__UpperCamelCase: List[Any] ,__UpperCamelCase: Optional[Any]="" ,__UpperCamelCase: List[str]="." ):
SCREAMING_SNAKE_CASE : List[Any] = []
for k, v in d.items():
SCREAMING_SNAKE_CASE : List[Any] = parent_key + sep + k if parent_key else k
if isinstance(__UpperCamelCase ,collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(__UpperCamelCase ,__UpperCamelCase ,sep=__UpperCamelCase ).items() )
else:
items.append((new_key, v) )
return dict(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Tuple = argparse.Namespace()
with open(__UpperCamelCase ,'r' ) as yaml_file:
try:
SCREAMING_SNAKE_CASE : Dict = yaml.load(__UpperCamelCase ,Loader=yaml.FullLoader )
SCREAMING_SNAKE_CASE : Any = flatten_yaml_as_dict(__UpperCamelCase )
for k, v in flat_cfg.items():
setattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
except yaml.YAMLError as exc:
logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase ,str(__UpperCamelCase ) ) )
return config
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = MobileViTVaConfig()
SCREAMING_SNAKE_CASE : Any = False
# dataset
if task_name.startswith('imagenet1k_' ):
SCREAMING_SNAKE_CASE : Dict = 10_00
if int(task_name.strip().split('_' )[-1] ) == 3_84:
SCREAMING_SNAKE_CASE : Optional[Any] = 3_84
else:
SCREAMING_SNAKE_CASE : List[Any] = 2_56
SCREAMING_SNAKE_CASE : Optional[Any] = 'imagenet-1k-id2label.json'
elif task_name.startswith('imagenet21k_to_1k_' ):
SCREAMING_SNAKE_CASE : Optional[int] = 2_10_00
if int(task_name.strip().split('_' )[-1] ) == 3_84:
SCREAMING_SNAKE_CASE : List[Any] = 3_84
else:
SCREAMING_SNAKE_CASE : Optional[Any] = 2_56
SCREAMING_SNAKE_CASE : Dict = 'imagenet-22k-id2label.json'
elif task_name.startswith('ade20k_' ):
SCREAMING_SNAKE_CASE : Optional[Any] = 1_51
SCREAMING_SNAKE_CASE : Optional[int] = 5_12
SCREAMING_SNAKE_CASE : Dict = 'ade20k-id2label.json'
SCREAMING_SNAKE_CASE : Union[str, Any] = True
elif task_name.startswith('voc_' ):
SCREAMING_SNAKE_CASE : Tuple = 21
SCREAMING_SNAKE_CASE : List[Any] = 5_12
SCREAMING_SNAKE_CASE : Optional[Any] = 'pascal-voc-id2label.json'
SCREAMING_SNAKE_CASE : Dict = True
# orig_config
SCREAMING_SNAKE_CASE : Optional[Any] = load_orig_config_file(__UpperCamelCase )
assert getattr(__UpperCamelCase ,'model.classification.name' ,-1 ) == "mobilevit_v2", "Invalid model"
SCREAMING_SNAKE_CASE : Tuple = getattr(__UpperCamelCase ,'model.classification.mitv2.width_multiplier' ,1.0 )
assert (
getattr(__UpperCamelCase ,'model.classification.mitv2.attn_norm_layer' ,-1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
SCREAMING_SNAKE_CASE : int = getattr(__UpperCamelCase ,'model.classification.activation.name' ,'swish' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(__UpperCamelCase ,'model.segmentation.output_stride' ,16 )
if "_deeplabv3" in task_name:
SCREAMING_SNAKE_CASE : str = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_rates' ,[12, 24, 36] )
SCREAMING_SNAKE_CASE : Tuple = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_out_channels' ,5_12 )
SCREAMING_SNAKE_CASE : int = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_dropout' ,0.1 )
# id2label
SCREAMING_SNAKE_CASE : List[str] = 'huggingface/label-files'
SCREAMING_SNAKE_CASE : Dict = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='dataset' ) ,'r' ) )
SCREAMING_SNAKE_CASE : List[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel
SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in idalabel.items()}
return config
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = dct.pop(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = val
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: List[str]=False ):
"""simple docstring"""
if base_model:
SCREAMING_SNAKE_CASE : Union[str, Any] = ''
else:
SCREAMING_SNAKE_CASE : List[str] = 'mobilevitv2.'
SCREAMING_SNAKE_CASE : Optional[Any] = []
for k in state_dict.keys():
if k[:8] == "encoder.":
SCREAMING_SNAKE_CASE : int = k[8:]
else:
SCREAMING_SNAKE_CASE : Optional[int] = k
if ".block." in k:
SCREAMING_SNAKE_CASE : str = k_new.replace('.block.' ,'.' )
if ".conv." in k:
SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace('.conv.' ,'.convolution.' )
if ".norm." in k:
SCREAMING_SNAKE_CASE : List[Any] = k_new.replace('.norm.' ,'.normalization.' )
if "conv_1." in k:
SCREAMING_SNAKE_CASE : Any = k_new.replace('conv_1.' ,f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace(f"layer_{i}." ,f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace('.exp_1x1.' ,'.expand_1x1.' )
if ".red_1x1." in k:
SCREAMING_SNAKE_CASE : Tuple = k_new.replace('.red_1x1.' ,'.reduce_1x1.' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace(f"layer_{i}.0." ,f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace(f"layer_{i}.1.local_rep.0." ,f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
SCREAMING_SNAKE_CASE : Dict = k_new.replace(f"layer_{i}.1.local_rep.1." ,f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
SCREAMING_SNAKE_CASE : int = [0, 1]
elif i == 4:
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 3]
elif i == 5:
SCREAMING_SNAKE_CASE : List[str] = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
SCREAMING_SNAKE_CASE : Tuple = k_new.replace(
f"layer_{i}.1.global_rep.{j}." ,f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
SCREAMING_SNAKE_CASE : List[Any] = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}." ,f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace(f"layer_{i}.1.conv_proj." ,f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
SCREAMING_SNAKE_CASE : List[Any] = k_new.replace('pre_norm_attn.0.' ,'layernorm_before.' )
if "pre_norm_attn.1." in k:
SCREAMING_SNAKE_CASE : List[Any] = k_new.replace('pre_norm_attn.1.' ,'attention.' )
if "pre_norm_ffn.0." in k:
SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace('pre_norm_ffn.0.' ,'layernorm_after.' )
if "pre_norm_ffn.1." in k:
SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace('pre_norm_ffn.1.' ,'ffn.conv1.' )
if "pre_norm_ffn.3." in k:
SCREAMING_SNAKE_CASE : int = k_new.replace('pre_norm_ffn.3.' ,'ffn.conv2.' )
if "classifier.1." in k:
SCREAMING_SNAKE_CASE : int = k_new.replace('classifier.1.' ,'classifier.' )
if "seg_head." in k:
SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace('seg_head.' ,'segmentation_head.' )
if ".aspp_layer." in k:
SCREAMING_SNAKE_CASE : Any = k_new.replace('.aspp_layer.' ,'.' )
if ".aspp_pool." in k:
SCREAMING_SNAKE_CASE : List[Any] = k_new.replace('.aspp_pool.' ,'.' )
rename_keys.append((k, k_new) )
return rename_keys
def lowercase__( __UpperCamelCase: Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
for k in state_dict.keys():
if k.startswith('seg_head.aux_head.' ):
keys_to_ignore.append(__UpperCamelCase )
for k in keys_to_ignore:
state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return im
@torch.no_grad()
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = get_mobilevitva_config(__UpperCamelCase ,__UpperCamelCase )
# load original state_dict
SCREAMING_SNAKE_CASE : Dict = torch.load(__UpperCamelCase ,map_location='cpu' )
# load huggingface model
if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ):
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval()
SCREAMING_SNAKE_CASE : List[str] = False
else:
SCREAMING_SNAKE_CASE : Optional[Any] = MobileViTVaForImageClassification(__UpperCamelCase ).eval()
SCREAMING_SNAKE_CASE : Optional[Any] = False
# remove and rename some keys of load the original model
SCREAMING_SNAKE_CASE : Dict = checkpoint
remove_unused_keys(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Tuple = create_rename_keys(__UpperCamelCase ,base_model=__UpperCamelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# load modified state_dict
model.load_state_dict(__UpperCamelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size ,size=config.image_size + 32 )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=prepare_img() ,return_tensors='pt' )
SCREAMING_SNAKE_CASE : Tuple = model(**__UpperCamelCase )
# verify classification model
if task_name.startswith('imagenet' ):
SCREAMING_SNAKE_CASE : Any = outputs.logits
SCREAMING_SNAKE_CASE : List[Any] = logits.argmax(-1 ).item()
print('Predicted class:' ,model.config.idalabel[predicted_class_idx] )
if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
SCREAMING_SNAKE_CASE : Any = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] )
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1e-4 )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__UpperCamelCase )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
UpperCamelCase_ = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
import math
class _a :
'''simple docstring'''
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = 0.0
SCREAMING_SNAKE_CASE : int = 0.0
for i in range(len(A ) ):
da += math.pow((sample[i] - weights[0][i]), 2 )
da += math.pow((sample[i] - weights[1][i]), 2 )
return 0 if da > da else 1
return 0
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
for i in range(len(A ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
SCREAMING_SNAKE_CASE : Tuple = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
SCREAMING_SNAKE_CASE : Optional[Any] = SelfOrganizingMap()
SCREAMING_SNAKE_CASE : List[Any] = 3
SCREAMING_SNAKE_CASE : Union[str, Any] = 0.5
for _ in range(__UpperCamelCase ):
for j in range(len(__UpperCamelCase ) ):
# training sample
SCREAMING_SNAKE_CASE : Dict = training_samples[j]
# Compute the winning vector
SCREAMING_SNAKE_CASE : Any = self_organizing_map.get_winner(__UpperCamelCase ,__UpperCamelCase )
# Update the winning vector
SCREAMING_SNAKE_CASE : int = self_organizing_map.update(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# classify test sample
SCREAMING_SNAKE_CASE : Optional[Any] = [0, 0, 0, 1]
SCREAMING_SNAKE_CASE : Optional[int] = self_organizing_map.get_winner(__UpperCamelCase ,__UpperCamelCase )
# results
print(f"Clusters that the test sample belongs to : {winner}" )
print(f"Weights that have been trained : {weights}" )
# running the main() function
if __name__ == "__main__":
main()
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=18, A=30, A=400, A=True, A=None, A=True, A=None, A=True, A=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], A=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'height': 224, 'width': 224}
SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else {'height': 18, 'width': 18}
SCREAMING_SNAKE_CASE : Optional[int] = parent
SCREAMING_SNAKE_CASE : Tuple = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Any = image_size
SCREAMING_SNAKE_CASE : List[Any] = min_resolution
SCREAMING_SNAKE_CASE : List[str] = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Optional[int] = size
SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop
SCREAMING_SNAKE_CASE : Optional[Any] = crop_size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : List[str] = image_mean
SCREAMING_SNAKE_CASE : List[str] = image_std
SCREAMING_SNAKE_CASE : Dict = do_convert_rgb
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def UpperCamelCase_ ( self, A=False, A=False, A=False ):
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta ) )
else:
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(self.batch_size ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = np.random.choice(np.arange(self.min_resolution, self.max_resolution ), 2 )
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
SCREAMING_SNAKE_CASE : Optional[Any] = [Image.fromarray(np.moveaxis(A, 0, -1 ) ) for x in image_inputs]
if torchify:
SCREAMING_SNAKE_CASE : Union[str, Any] = [torch.from_numpy(A ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ChineseCLIPImageProcessingTester(self, do_center_crop=A )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
self.assertTrue(hasattr(A, 'do_center_crop' ) )
self.assertTrue(hasattr(A, 'center_crop' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_convert_rgb' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'height': 224, 'width': 224} )
self.assertEqual(image_processor.crop_size, {'height': 18, 'width': 18} )
SCREAMING_SNAKE_CASE : int = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size, {'height': 84, 'width': 84} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : int = self.image_processor_tester.prepare_inputs(equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
SCREAMING_SNAKE_CASE : str = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
SCREAMING_SNAKE_CASE : List[str] = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = 3
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
self.assertTrue(hasattr(A, 'do_center_crop' ) )
self.assertTrue(hasattr(A, 'center_crop' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_convert_rgb' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : str = self.image_processor_tester.prepare_inputs(equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _a :
'''simple docstring'''
A : int
A : Node | None = None
A : Node | None = None
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = Node(1 )
SCREAMING_SNAKE_CASE : Dict = Node(2 )
SCREAMING_SNAKE_CASE : int = Node(3 )
SCREAMING_SNAKE_CASE : int = Node(4 )
SCREAMING_SNAKE_CASE : Dict = Node(5 )
return tree
def lowercase__( __UpperCamelCase: Node | None ):
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowercase__( __UpperCamelCase: Node | None ):
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowercase__( __UpperCamelCase: Node | None ):
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowercase__( __UpperCamelCase: Node | None ):
"""simple docstring"""
return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0
def lowercase__( __UpperCamelCase: Node | None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : list[Any] = []
if root is None:
return output
SCREAMING_SNAKE_CASE : Dict = deque([root] )
while process_queue:
SCREAMING_SNAKE_CASE : Union[str, Any] = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowercase__( __UpperCamelCase: Node | None ,__UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : list[Any] = []
def populate_output(__UpperCamelCase: Node | None ,__UpperCamelCase: int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left ,level - 1 )
populate_output(root.right ,level - 1 )
populate_output(__UpperCamelCase ,__UpperCamelCase )
return output
def lowercase__( __UpperCamelCase: Node | None ,__UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : list[Any] = []
def populate_output(__UpperCamelCase: Node | None ,__UpperCamelCase: int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right ,level - 1 )
populate_output(root.left ,level - 1 )
populate_output(__UpperCamelCase ,__UpperCamelCase )
return output
def lowercase__( __UpperCamelCase: Node | None ):
"""simple docstring"""
if root is None:
return []
SCREAMING_SNAKE_CASE : list[Sequence[Node | None]] = []
SCREAMING_SNAKE_CASE : List[str] = 0
SCREAMING_SNAKE_CASE : str = height(__UpperCamelCase )
for h in range(1 ,height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(__UpperCamelCase ,__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = 1
else:
output.append(get_nodes_from_right_to_left(__UpperCamelCase ,__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : List[Any] = 0
return output
def lowercase__( ): # Main function for testing.
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = make_tree()
print(f"In-order Traversal: {inorder(__UpperCamelCase )}" )
print(f"Pre-order Traversal: {preorder(__UpperCamelCase )}" )
print(f"Post-order Traversal: {postorder(__UpperCamelCase )}" ,'\n' )
print(f"Height of Tree: {height(__UpperCamelCase )}" ,'\n' )
print('Complete Level Order Traversal: ' )
print(level_order(__UpperCamelCase ) ,'\n' )
print('Level-wise order Traversal: ' )
for level in range(1 ,height(__UpperCamelCase ) + 1 ):
print(f"Level {level}:" ,get_nodes_from_left_to_right(__UpperCamelCase ,level=__UpperCamelCase ) )
print('\nZigZag order Traversal: ' )
print(zigzag(__UpperCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 28 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 | 1 |
'''simple docstring'''
import inspect
import unittest
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def UpperCamelCase_ ( self ):
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
SCREAMING_SNAKE_CASE : Any = inspect.getmembers(A, inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
SCREAMING_SNAKE_CASE : Dict = 'k-diffusion'
elif backend == "invisible_watermark":
SCREAMING_SNAKE_CASE : Union[str, Any] = 'invisible-watermark'
assert backend in deps, F"{backend} is not in the deps table!"
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ):
"""simple docstring"""
def get_matched_characters(__UpperCamelCase: str ,__UpperCamelCase: str ) -> str:
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : List[Any] = min(len(_stra ) ,len(_stra ) ) // 2
for i, l in enumerate(_stra ):
SCREAMING_SNAKE_CASE : str = int(max(0 ,i - limit ) )
SCREAMING_SNAKE_CASE : Optional[Any] = int(min(i + limit + 1 ,len(_stra ) ) )
if l in _stra[left:right]:
matched.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = f"{_stra[0:_stra.index(__UpperCamelCase )]} {_stra[_stra.index(__UpperCamelCase ) + 1:]}"
return "".join(__UpperCamelCase )
# matching characters
SCREAMING_SNAKE_CASE : Tuple = get_matched_characters(__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[str] = get_matched_characters(__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = len(__UpperCamelCase )
# transposition
SCREAMING_SNAKE_CASE : Any = (
len([(ca, ca) for ca, ca in zip(__UpperCamelCase ,__UpperCamelCase ) if ca != ca] ) // 2
)
if not match_count:
SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0
else:
SCREAMING_SNAKE_CASE : Any = (
1
/ 3
* (
match_count / len(__UpperCamelCase )
+ match_count / len(__UpperCamelCase )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
SCREAMING_SNAKE_CASE : List[Any] = 0
for ca, ca in zip(stra[:4] ,stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 28 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OPTForCausalLM",
"OPTModel",
"OPTPreTrainedModel",
"OPTForSequenceClassification",
"OPTForQuestionAnswering",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FlaxOPTForCausalLM",
"FlaxOPTModel",
"FlaxOPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 | 1 |
'''simple docstring'''
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def lowercase__( __UpperCamelCase: Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = {}
SCREAMING_SNAKE_CASE : Optional[int] = job['started_at']
SCREAMING_SNAKE_CASE : List[str] = job['completed_at']
SCREAMING_SNAKE_CASE : List[Any] = date_parser.parse(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = date_parser.parse(__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = round((end_datetime - start_datetime).total_seconds() / 6_0.0 )
SCREAMING_SNAKE_CASE : Any = start
SCREAMING_SNAKE_CASE : List[Any] = end
SCREAMING_SNAKE_CASE : Any = duration_in_min
return job_info
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Optional[int]=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = None
if token is not None:
SCREAMING_SNAKE_CASE : Any = {'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"}
SCREAMING_SNAKE_CASE : Any = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
SCREAMING_SNAKE_CASE : Optional[int] = requests.get(__UpperCamelCase ,headers=__UpperCamelCase ).json()
SCREAMING_SNAKE_CASE : Dict = {}
try:
job_time.update({job['name']: extract_time_from_single_job(__UpperCamelCase ) for job in result['jobs']} )
SCREAMING_SNAKE_CASE : Dict = math.ceil((result['total_count'] - 1_00) / 1_00 )
for i in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Any = requests.get(url + f"&page={i + 2}" ,headers=__UpperCamelCase ).json()
job_time.update({job['name']: extract_time_from_single_job(__UpperCamelCase ) for job in result['jobs']} )
return job_time
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
UpperCamelCase_ = parser.parse_args()
UpperCamelCase_ = get_job_time(args.workflow_run_id)
UpperCamelCase_ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F"""{k}: {v['duration']}""")
| 28 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class _a :
'''simple docstring'''
A : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} )
A : Optional[str] = field(
default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} )
A : Optional[str] = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} )
A : Optional[str] = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
A : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for training.'''} )
A : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} )
A : Optional[float] = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} )
A : Optional[int] = field(
default=10_000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} )
A : Optional[float] = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} )
A : Optional[str] = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} )
A : Optional[int] = field(
default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} )
A : Optional[int] = field(
default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} )
A : Optional[bool] = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} )
A : Optional[int] = field(default=50_000 , metadata={'''help''': '''Maximum number of training steps.'''} )
A : Optional[int] = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
A : Optional[int] = field(default=1_024 , metadata={'''help''': '''Sequence lengths used for training.'''} )
A : Optional[int] = field(default=1 , metadata={'''help''': '''Training seed.'''} )
A : Optional[int] = field(
default=1_024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , )
A : Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} )
A : Optional[bool] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If True the data is pretokenized.'''} )
@dataclass
class _a :
'''simple docstring'''
A : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
A : Optional[str] = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
A : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} )
A : Optional[int] = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
A : Optional[int] = field(default=1_024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} )
A : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
@dataclass
class _a :
'''simple docstring'''
A : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
A : Optional[int] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
A : Optional[int] = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , )
A : Optional[bool] = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} )
A : Optional[float] = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} )
A : Optional[int] = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} )
A : Optional[int] = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} )
A : Optional[float] = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} )
A : Optional[int] = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} )
A : Optional[int] = field(
default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} )
A : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
A : Optional[str] = field(
default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} )
A : Optional[str] = field(
default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} )
A : Optional[int] = field(
default=-1 , metadata={
'''help''': (
'''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'''
''' number corresponds to which GPU device id to run on.'''
)
} , )
@dataclass
class _a :
'''simple docstring'''
A : Optional[int] = field(
default=SCREAMING_SNAKE_CASE , metadata={
'''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'''
} , )
A : Optional[str] = field(
default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} )
A : Optional[str] = field(
default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} )
A : Optional[int] = field(
default=100_000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} )
A : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
A : Optional[float] = field(
default=1_000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} )
A : Optional[float] = field(
default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} )
A : Optional[float] = field(
default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} )
A : Optional[float] = field(
default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} )
A : Optional[float] = field(
default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} )
A : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , )
A : Optional[bool] = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} )
A : Optional[float] = field(
default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} )
@dataclass
class _a :
'''simple docstring'''
A : Optional[str] = field(
default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} )
A : Optional[str] = field(
default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} )
A : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
A : Optional[int] = field(default=200_000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} )
A : Optional[int] = field(
default=32_768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} )
A : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} )
A : Optional[bool] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
@dataclass
class _a :
'''simple docstring'''
A : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} )
A : Optional[str] = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} )
A : Optional[str] = field(
default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} )
A : Optional[int] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
@dataclass
class _a :
'''simple docstring'''
A : Optional[str] = field(
default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} )
A : Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} )
A : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} )
A : Optional[bool] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
| 28 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 | 1 |
'''simple docstring'''
import numpy as np
def lowercase__( __UpperCamelCase: np.array ):
"""simple docstring"""
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 | 1 |
'''simple docstring'''
from collections import deque
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = deque()
SCREAMING_SNAKE_CASE : int = [False for _ in range(__UpperCamelCase )]
SCREAMING_SNAKE_CASE : List[str] = [-1 for _ in range(__UpperCamelCase )]
SCREAMING_SNAKE_CASE : str = index_of[:]
def strong_connect(__UpperCamelCase: List[Any] ,__UpperCamelCase: str ,__UpperCamelCase: Union[str, Any] ):
SCREAMING_SNAKE_CASE : int = index # the number when this node is seen
SCREAMING_SNAKE_CASE : str = index # lowest rank node reachable from here
index += 1
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = True
for w in g[v]:
if index_of[w] == -1:
SCREAMING_SNAKE_CASE : Tuple = strong_connect(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
SCREAMING_SNAKE_CASE : str = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : Dict = stack.pop()
SCREAMING_SNAKE_CASE : Optional[int] = False
component.append(__UpperCamelCase )
while w != v:
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
SCREAMING_SNAKE_CASE : int = False
component.append(__UpperCamelCase )
components.append(__UpperCamelCase )
return index
SCREAMING_SNAKE_CASE : int = []
for v in range(__UpperCamelCase ):
if index_of[v] == -1:
strong_connect(__UpperCamelCase ,0 ,__UpperCamelCase )
return components
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = [[] for _ in range(__UpperCamelCase )]
for u, v in edges:
g[u].append(__UpperCamelCase )
return g
if __name__ == "__main__":
# Test
UpperCamelCase_ = 7
UpperCamelCase_ = [0, 0, 1, 2, 3, 3, 4, 4, 6]
UpperCamelCase_ = [1, 3, 2, 0, 1, 4, 5, 6, 5]
UpperCamelCase_ = [(u, v) for u, v in zip(source, target)]
UpperCamelCase_ = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__UpperCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase_ = {
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : str = LongformerTokenizer
A : List[str] = True
A : Optional[int] = LongformerTokenizerFast
A : Tuple = True
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Any = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) )
SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(A ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(A ) )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'lower newer'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer'
return input_text, output_text
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer'
SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A, A )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A )
SCREAMING_SNAKE_CASE : int = tokenizer.encode(
'sequence builders', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(
'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.'
SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A, A )
SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A, A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A, A )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE : Optional[int] = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A )
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence'
SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence'
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Tuple = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A, A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), )
SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ):
SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['add_prefix_space'], A )
self.assertEqual(post_processor_state['trim_offsets'], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Any = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
A, use_fast=A, add_prefix_space=A, trim_offsets=A )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
| 28 | 1 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = StableDiffusionXLImgaImgPipeline
A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
A : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, )
SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A )
SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A )
SCREAMING_SNAKE_CASE : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : str = image / 2 + 0.5
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A )
SCREAMING_SNAKE_CASE : str = sd_pipe.to(A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
# forward without prompt embeds
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt
SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']]
SCREAMING_SNAKE_CASE : int = sd_pipe(**A )
SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt']
SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )]
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(
**A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, )
SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A )
SCREAMING_SNAKE_CASE : str = pipe(**A ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 28 | 1 |
'''simple docstring'''
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ,__UpperCamelCase: int ,__UpperCamelCase: Optional[Any]=True ,__UpperCamelCase: Dict="pt" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = {'add_prefix_space': True} if isinstance(__UpperCamelCase ,__UpperCamelCase ) and not line.startswith(' ' ) else {}
SCREAMING_SNAKE_CASE : Any = padding_side
return tokenizer(
[line] ,max_length=__UpperCamelCase ,padding='max_length' if pad_to_max_length else None ,truncation=__UpperCamelCase ,return_tensors=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,**__UpperCamelCase ,)
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: str ,__UpperCamelCase: List[str]=None ,):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(__UpperCamelCase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A, A, A, A, A="train", A=None, A=None, A=None, A="", ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[Any] = Path(A ).joinpath(type_path + '.source' )
SCREAMING_SNAKE_CASE : int = Path(A ).joinpath(type_path + '.target' )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_char_lens(self.src_file )
SCREAMING_SNAKE_CASE : Any = max_source_length
SCREAMING_SNAKE_CASE : str = max_target_length
assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}"
SCREAMING_SNAKE_CASE : Any = tokenizer
SCREAMING_SNAKE_CASE : Optional[Any] = prefix
if n_obs is not None:
SCREAMING_SNAKE_CASE : Any = self.src_lens[:n_obs]
SCREAMING_SNAKE_CASE : Optional[int] = src_lang
SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_lang
def __len__( self ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = index + 1 # linecache starts at 1
SCREAMING_SNAKE_CASE : List[str] = self.prefix + linecache.getline(str(self.src_file ), A ).rstrip('\n' )
SCREAMING_SNAKE_CASE : Tuple = linecache.getline(str(self.tgt_file ), A ).rstrip('\n' )
assert source_line, F"empty source line for index {index}"
assert tgt_line, F"empty tgt line for index {index}"
# Need to add eos token manually for T5
if isinstance(self.tokenizer, A ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
SCREAMING_SNAKE_CASE : Optional[Any] = (
self.tokenizer.question_encoder if isinstance(self.tokenizer, A ) else self.tokenizer
)
SCREAMING_SNAKE_CASE : str = self.tokenizer.generator if isinstance(self.tokenizer, A ) else self.tokenizer
SCREAMING_SNAKE_CASE : int = encode_line(A, A, self.max_source_length, 'right' )
SCREAMING_SNAKE_CASE : List[str] = encode_line(A, A, self.max_target_length, 'right' )
SCREAMING_SNAKE_CASE : Tuple = source_inputs['input_ids'].squeeze()
SCREAMING_SNAKE_CASE : Dict = target_inputs['input_ids'].squeeze()
SCREAMING_SNAKE_CASE : Optional[Any] = source_inputs['attention_mask'].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def UpperCamelCase_ ( A ):
'''simple docstring'''
return [len(A ) for x in Path(A ).open().readlines()]
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = torch.stack([x['input_ids'] for x in batch] )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack([x['attention_mask'] for x in batch] )
SCREAMING_SNAKE_CASE : Dict = torch.stack([x['decoder_input_ids'] for x in batch] )
SCREAMING_SNAKE_CASE : int = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, A )
else self.tokenizer.pad_token_id
)
SCREAMING_SNAKE_CASE : Tuple = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, A )
else self.tokenizer.pad_token_id
)
SCREAMING_SNAKE_CASE : Dict = trim_batch(A, A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = trim_batch(A, A, attention_mask=A )
SCREAMING_SNAKE_CASE : List[str] = {
'input_ids': source_ids,
'attention_mask': source_mask,
'decoder_input_ids': y,
}
return batch
UpperCamelCase_ = getLogger(__name__)
def lowercase__( __UpperCamelCase: List[List] ):
"""simple docstring"""
return list(itertools.chain.from_iterable(__UpperCamelCase ) )
def lowercase__( __UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = get_git_info()
save_json(__UpperCamelCase ,os.path.join(__UpperCamelCase ,'git_log.json' ) )
def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Dict=4 ,**__UpperCamelCase: str ):
"""simple docstring"""
with open(__UpperCamelCase ,'w' ) as f:
json.dump(__UpperCamelCase ,__UpperCamelCase ,indent=__UpperCamelCase ,**__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[str] ):
"""simple docstring"""
with open(__UpperCamelCase ) as f:
return json.load(__UpperCamelCase )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = git.Repo(search_parent_directories=__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = {
'repo_id': str(__UpperCamelCase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
'hostname': str(socket.gethostname() ),
}
return repo_infos
def lowercase__( __UpperCamelCase: Callable ,__UpperCamelCase: Iterable ):
"""simple docstring"""
return list(map(__UpperCamelCase ,__UpperCamelCase ) )
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Dict ):
"""simple docstring"""
with open(__UpperCamelCase ,'wb' ) as f:
return pickle.dump(__UpperCamelCase ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
def remove_articles(__UpperCamelCase: str ):
return re.sub(r'\b(a|an|the)\b' ,' ' ,__UpperCamelCase )
def white_space_fix(__UpperCamelCase: Tuple ):
return " ".join(text.split() )
def remove_punc(__UpperCamelCase: int ):
SCREAMING_SNAKE_CASE : str = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__UpperCamelCase: int ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) )
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = normalize_answer(__UpperCamelCase ).split()
SCREAMING_SNAKE_CASE : Any = normalize_answer(__UpperCamelCase ).split()
SCREAMING_SNAKE_CASE : str = Counter(__UpperCamelCase ) & Counter(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = sum(common.values() )
if num_same == 0:
return 0
SCREAMING_SNAKE_CASE : List[str] = 1.0 * num_same / len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = 1.0 * num_same / len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = (2 * precision * recall) / (precision + recall)
return fa
def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ):
"""simple docstring"""
return normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for hypo, pred in zip(__UpperCamelCase ,__UpperCamelCase ):
em += exact_match_score(__UpperCamelCase ,__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
em /= len(__UpperCamelCase )
return {"em": em}
def lowercase__( __UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
return model_prefix.startswith('rag' )
def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Dict ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
SCREAMING_SNAKE_CASE : List[str] = 'dropout_rate'
for p in extra_params:
if getattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
if not hasattr(__UpperCamelCase ,__UpperCamelCase ) and not hasattr(__UpperCamelCase ,equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(__UpperCamelCase ) )
delattr(__UpperCamelCase ,__UpperCamelCase )
continue
SCREAMING_SNAKE_CASE : Optional[Any] = p if hasattr(__UpperCamelCase ,__UpperCamelCase ) else equivalent_param[p]
setattr(__UpperCamelCase ,__UpperCamelCase ,getattr(__UpperCamelCase ,__UpperCamelCase ) )
delattr(__UpperCamelCase ,__UpperCamelCase )
return hparams, config
| 28 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Dict = '''char'''
A : Any = '''bpe'''
A : Dict = '''wp'''
UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = ['''image_processor''', '''char_tokenizer''']
A : int = '''ViTImageProcessor'''
A : List[str] = '''MgpstrTokenizer'''
def __init__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', A, )
SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer
SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(A, A )
def __call__( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A )
if text is not None:
SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE : Any = encodings['input_ids']
return inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences
SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' )
SCREAMING_SNAKE_CASE : Optional[Any] = []
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(A ):
SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]]
SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : int = final_strs
SCREAMING_SNAKE_CASE : Any = final_scores
SCREAMING_SNAKE_CASE : Dict = char_strs
SCREAMING_SNAKE_CASE : Any = bpe_strs
SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs
return out
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
SCREAMING_SNAKE_CASE : List[Any] = self.char_decode
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : str = '[s]'
elif format == DecodeType.BPE:
SCREAMING_SNAKE_CASE : str = self.bpe_decode
SCREAMING_SNAKE_CASE : str = 2
SCREAMING_SNAKE_CASE : List[str] = '#'
elif format == DecodeType.WORDPIECE:
SCREAMING_SNAKE_CASE : Any = self.wp_decode
SCREAMING_SNAKE_CASE : Tuple = 102
SCREAMING_SNAKE_CASE : List[Any] = '[SEP]'
else:
raise ValueError(F"Format {format} is not supported." )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], []
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 )
SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A )
SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:]
SCREAMING_SNAKE_CASE : List[Any] = decoder(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 )
SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:]
for index in range(A ):
SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A )
SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos]
SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist()
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1
SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1]
SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(A )
conf_scores.append(A )
return dec_strs, conf_scores
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )]
return decode_strs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )]
return decode_strs
| 28 | 1 |
'''simple docstring'''
import unittest
from knapsack import greedy_knapsack as kp
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [10, 20, 30, 40, 50, 60]
SCREAMING_SNAKE_CASE : Union[str, Any] = [2, 4, 6, 8, 10, 12]
SCREAMING_SNAKE_CASE : Any = 100
self.assertEqual(kp.calc_profit(A, A, A ), 210 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertRaisesRegex(A, 'max_weight must greater than zero.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertRaisesRegex(A, 'Weight can not be negative.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertRaisesRegex(A, 'Profit can not be negative.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertRaisesRegex(A, 'max_weight must greater than zero.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.assertRaisesRegex(
A, 'The length of profit and weight must be same.' )
if __name__ == "__main__":
unittest.main()
| 28 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=10, A=18, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {'shortest_edge': 18}
SCREAMING_SNAKE_CASE : Dict = crop_size if crop_size is not None else {'height': 18, 'width': 18}
SCREAMING_SNAKE_CASE : Optional[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : Dict = num_channels
SCREAMING_SNAKE_CASE : int = num_frames
SCREAMING_SNAKE_CASE : Dict = image_size
SCREAMING_SNAKE_CASE : Dict = min_resolution
SCREAMING_SNAKE_CASE : Optional[Any] = max_resolution
SCREAMING_SNAKE_CASE : int = do_resize
SCREAMING_SNAKE_CASE : str = size
SCREAMING_SNAKE_CASE : str = do_normalize
SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean
SCREAMING_SNAKE_CASE : Any = image_std
SCREAMING_SNAKE_CASE : Tuple = crop_size
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Union[str, Any] = VivitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = VivitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'do_center_crop' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18} )
self.assertEqual(image_processor.crop_size, {'height': 18, 'width': 18} )
SCREAMING_SNAKE_CASE : Any = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size, {'height': 84, 'width': 84} )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
SCREAMING_SNAKE_CASE : Tuple = prepare_video_inputs(self.image_processor_tester, equal_resolution=A )
for video in video_inputs:
self.assertIsInstance(A, A )
self.assertIsInstance(video[0], Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(video_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Any = prepare_video_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for video in video_inputs:
self.assertIsInstance(A, A )
self.assertIsInstance(video[0], np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : Any = image_processing(video_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
SCREAMING_SNAKE_CASE : str = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Tuple = prepare_video_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for video in video_inputs:
self.assertIsInstance(A, A )
self.assertIsInstance(video[0], torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : List[Any] = image_processing(video_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
SCREAMING_SNAKE_CASE : Dict = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
| 28 |
'''simple docstring'''
from typing import Any
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = data
SCREAMING_SNAKE_CASE : Any = None
def __repr__( self ):
'''simple docstring'''
return F"Node({self.data})"
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = None
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : List[str] = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(A ) for item in self] )
def __getitem__( self, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, A, A ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
SCREAMING_SNAKE_CASE : Optional[Any] = self.head
for _ in range(A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = current.next
SCREAMING_SNAKE_CASE : Any = data
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(len(self ), A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
self.insert_nth(0, A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A )
if self.head is None:
SCREAMING_SNAKE_CASE : Optional[int] = new_node
elif index == 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head
SCREAMING_SNAKE_CASE : Tuple = new_node
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : str = temp.next
SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next
SCREAMING_SNAKE_CASE : List[str] = new_node
def UpperCamelCase_ ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCamelCase_ ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCamelCase_ ( self, A = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node
if index == 0:
SCREAMING_SNAKE_CASE : List[str] = self.head.next
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.head
for _ in range(index - 1 ):
SCREAMING_SNAKE_CASE : Any = temp.next
SCREAMING_SNAKE_CASE : List[str] = temp.next
SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next
return delete_node.data
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.head is None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : Any = self.head
while current:
# Store the current node's next node.
SCREAMING_SNAKE_CASE : Optional[int] = current.next
# Make the current node's next point backwards
SCREAMING_SNAKE_CASE : int = prev
# Make the previous node be the current node
SCREAMING_SNAKE_CASE : int = current
# Make the current node the next node (to progress iteration)
SCREAMING_SNAKE_CASE : List[Any] = next_node
# Return prev in order to put the head at the end
SCREAMING_SNAKE_CASE : List[Any] = prev
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__UpperCamelCase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__UpperCamelCase ) == i
linked_list.insert_nth(__UpperCamelCase ,i + 1 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__UpperCamelCase ) == 9
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True
for i in range(0 ,9 ):
SCREAMING_SNAKE_CASE : Any = -i
assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True
linked_list.reverse()
assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_9_2.5_5_5_5_5,
'Hello, world!',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
SCREAMING_SNAKE_CASE : Optional[int] = LinkedList()
for i in test_input:
linked_list.insert_tail(__UpperCamelCase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
SCREAMING_SNAKE_CASE : str = linked_list.delete_head()
assert result == -9
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 )
assert result is None
assert (
str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__UpperCamelCase )
assert (
str(__UpperCamelCase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__UpperCamelCase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def lowercase__( ):
"""simple docstring"""
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE : Dict = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(__UpperCamelCase )
print('\nReading/changing Node data using indexing:' )
print(f"Element at Position 1: {linked_list[1]}" )
SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip()
print('New list:' )
print(__UpperCamelCase )
print(f"length of linked_list is : {len(__UpperCamelCase )}" )
if __name__ == "__main__":
main()
| 28 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
UpperCamelCase_ = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Tuple = min_resolution
SCREAMING_SNAKE_CASE : int = max_resolution
SCREAMING_SNAKE_CASE : Tuple = do_resize
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Union[str, Any] = image_std
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
SCREAMING_SNAKE_CASE : int = rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_pad
def UpperCamelCase_ ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if not batched:
SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0]
if isinstance(A, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w )
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h )
else:
SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge']
SCREAMING_SNAKE_CASE : int = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = YolosImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A, 'image_mean' ) )
self.assertTrue(hasattr(A, 'image_std' ) )
self.assertTrue(hasattr(A, 'do_normalize' ) )
self.assertTrue(hasattr(A, 'do_resize' ) )
self.assertTrue(hasattr(A, 'size' ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad, A )
SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A )
SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A )
for image in image_inputs:
self.assertIsInstance(A, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A )
for image in image_inputs:
self.assertIsInstance(A, torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' )
SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f:
SCREAMING_SNAKE_CASE : int = json.loads(f.read() )
SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' )
SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' )
# verify pixel values
SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape, A )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) )
# verify masks
SCREAMING_SNAKE_CASE : Optional[int] = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) )
# verify size
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
| 28 | 1 |
'''simple docstring'''
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
UpperCamelCase_ = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, *A, A=None, A=None, A=None, **A ):
'''simple docstring'''
super().__init__(*A, **A )
SCREAMING_SNAKE_CASE : Optional[Any] = eval_examples
SCREAMING_SNAKE_CASE : List[Any] = post_process_function
SCREAMING_SNAKE_CASE : List[Any] = quant_trainer_args
SCREAMING_SNAKE_CASE : Tuple = 128 # default number of calibration samples
def UpperCamelCase_ ( self, A=None ):
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.' )
SCREAMING_SNAKE_CASE : List[str] = calib_dataset if calib_dataset is not None else self.calib_dataset
SCREAMING_SNAKE_CASE : Tuple = self._remove_unused_columns(A, description='Calibration' )
return DataLoader(
A, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, shuffle=A, )
def UpperCamelCase_ ( self, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.train_dataset if calib_dataset is None else calib_dataset
SCREAMING_SNAKE_CASE : Any = self.get_calib_dataloader(A )
SCREAMING_SNAKE_CASE : List[Any] = self.model
quant_trainer.configure_model(A, self.quant_trainer_args, calib=A )
model.eval()
quant_trainer.enable_calibration(A )
logger.info('***** Running calibration *****' )
logger.info(F" Num examples = {self.calib_num}" )
logger.info(F" Batch size = {calib_dataloader.batch_size}" )
for step, inputs in enumerate(A ):
# Prediction step
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.prediction_step(A, A, prediction_loss_only=A )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(A, self.quant_trainer_args )
SCREAMING_SNAKE_CASE : List[Any] = model
def UpperCamelCase_ ( self, A=None, A=None, A=None, A = "eval" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_eval_dataloader(A )
SCREAMING_SNAKE_CASE : Dict = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : int = self.compute_metrics
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : List[str] = eval_loop(
A, description='Evaluation', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=A, )
finally:
SCREAMING_SNAKE_CASE : List[str] = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(A, A, output.predictions )
SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(A )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(A )
self.log(A )
else:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
SCREAMING_SNAKE_CASE : Dict = self.callback_handler.on_evaluate(self.args, self.state, self.control, A )
return metrics
def UpperCamelCase_ ( self, A, A, A=None, A = "test" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(A )
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : List[str] = self.compute_metrics
SCREAMING_SNAKE_CASE : str = None
SCREAMING_SNAKE_CASE : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : int = eval_loop(
A, description='Prediction', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=A, )
finally:
SCREAMING_SNAKE_CASE : Tuple = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE : int = self.post_process_function(A, A, output.predictions, 'predict' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.compute_metrics(A )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(A )
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=A )
def UpperCamelCase_ ( self, A="./" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.eval_dataset
SCREAMING_SNAKE_CASE : int = self.get_eval_dataloader(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(A ) )
# saving device - to make it consistent
SCREAMING_SNAKE_CASE : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
# convert to tuple
SCREAMING_SNAKE_CASE : Optional[int] = tuple(v.to(A ) for k, v in batch.items() )
logger.info('Converting model to be onnx compatible' )
from pytorch_quantization.nn import TensorQuantizer
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : Dict = self.model.to(A )
model.eval()
model.float()
SCREAMING_SNAKE_CASE : int = model.module if hasattr(A, 'module' ) else model
quant_trainer.configure_model(A, self.quant_trainer_args )
SCREAMING_SNAKE_CASE : Any = os.path.join(A, 'model.onnx' )
logger.info(F"exporting model to {output_model_file}" )
SCREAMING_SNAKE_CASE : List[str] = {0: 'batch_size', 1: 'seq_len'}
torch.onnx.export(
A, A, A, export_params=A, opset_version=13, do_constant_folding=A, input_names=['input_ids', 'attention_mask', 'token_type_ids'], output_names=['output_start_logits', 'output_end_logits'], dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
}, verbose=A, )
logger.info('onnx export finished' )
| 28 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset)
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,):
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
else:
return _interleave_iterable_datasets(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,):
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(__UpperCamelCase ):
if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ):
if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'is an empty dataset dictionary.' )
raise ValueError(
f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" )
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." )
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (
(Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
else:
return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
| 28 | 1 |
'''simple docstring'''
from collections.abc import Callable
def lowercase__( __UpperCamelCase: Callable[[float], float] ,__UpperCamelCase: float ,__UpperCamelCase: float ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : float = a
SCREAMING_SNAKE_CASE : float = b
if function(__UpperCamelCase ) == 0: # one of the a or b is a root for the function
return a
elif function(__UpperCamelCase ) == 0:
return b
elif (
function(__UpperCamelCase ) * function(__UpperCamelCase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
SCREAMING_SNAKE_CASE : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(__UpperCamelCase ) == 0:
return mid
elif function(__UpperCamelCase ) * function(__UpperCamelCase ) < 0:
SCREAMING_SNAKE_CASE : Dict = mid
else:
SCREAMING_SNAKE_CASE : List[Any] = mid
SCREAMING_SNAKE_CASE : Dict = start + (end - start) / 2.0
return mid
def lowercase__( __UpperCamelCase: float ):
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_0_0_0))
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) )
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : str = patch_size
SCREAMING_SNAKE_CASE : Tuple = num_channels
SCREAMING_SNAKE_CASE : int = last_hidden_size
SCREAMING_SNAKE_CASE : Any = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = output_stride
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Dict = num_labels
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
SCREAMING_SNAKE_CASE : int = model(A, labels=A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Tuple = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
A : List[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A : Optional[int] = False
A : Dict = False
A : List[Any] = False
A : Optional[int] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self )
SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A )
SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Any = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Any = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : List[str] = 5
self.assertEqual(len(A ), A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
SCREAMING_SNAKE_CASE : int = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[Any] = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A )
SCREAMING_SNAKE_CASE : Any = self.default_image_processor
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A )
SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**A )
SCREAMING_SNAKE_CASE : List[str] = outputs.logits
# verify the logits
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
], device=A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : List[str] = model.to(A )
SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**A )
SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu()
SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] )
SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, A )
SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A )
SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, A )
| 28 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
UpperCamelCase_ = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Union[str, Any] = '''facebook/nllb-200-distilled-600M'''
A : Optional[Any] = (
'''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '''
'''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '''
'''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '''
'''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'''
)
A : Union[str, Any] = '''translator'''
A : Any = AutoTokenizer
A : List[Any] = AutoModelForSeqaSeqLM
A : List[str] = LANGUAGE_CODES
A : Tuple = ['''text''', '''text''', '''text''']
A : Union[str, Any] = ['''text''']
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(F"{src_lang} is not a supported language." )
if tgt_lang not in self.lang_to_code:
raise ValueError(F"{tgt_lang} is not a supported language." )
SCREAMING_SNAKE_CASE : Tuple = self.lang_to_code[src_lang]
SCREAMING_SNAKE_CASE : List[Any] = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
A, return_tensors='pt', src_lang=A, tgt_lang=A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.model.generate(**A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=A )
| 28 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase_ = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase_ = {
"distilbert-base-uncased": 5_1_2,
"distilbert-base-uncased-distilled-squad": 5_1_2,
"distilbert-base-cased": 5_1_2,
"distilbert-base-cased-distilled-squad": 5_1_2,
"distilbert-base-german-cased": 5_1_2,
"distilbert-base-multilingual-cased": 5_1_2,
}
UpperCamelCase_ = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : List[Any] = VOCAB_FILES_NAMES
A : Dict = PRETRAINED_VOCAB_FILES_MAP
A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
A : Optional[int] = ['''input_ids''', '''attention_mask''']
A : List[Any] = DistilBertTokenizer
def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ):
'''simple docstring'''
super().__init__(
A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, )
SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase', A ) != do_lower_case
or normalizer_state.get('strip_accents', A ) != strip_accents
or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = strip_accents
SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
def UpperCamelCase_ ( self, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A )
return tuple(A )
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
class _a :
'''simple docstring'''
def __init__( self, A = 0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = key
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
assert isinstance(A, A ) and isinstance(A, A )
SCREAMING_SNAKE_CASE : Tuple = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(A ) ^ key ) for ch in content]
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
assert isinstance(A, A ) and isinstance(A, A )
SCREAMING_SNAKE_CASE : Union[str, Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(A ) ^ key ) for ch in content]
def UpperCamelCase_ ( self, A, A = 0 ):
'''simple docstring'''
assert isinstance(A, A ) and isinstance(A, A )
SCREAMING_SNAKE_CASE : str = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
SCREAMING_SNAKE_CASE : str = ''
for ch in content:
ans += chr(ord(A ) ^ key )
return ans
def UpperCamelCase_ ( self, A, A = 0 ):
'''simple docstring'''
assert isinstance(A, A ) and isinstance(A, A )
SCREAMING_SNAKE_CASE : Any = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
SCREAMING_SNAKE_CASE : Dict = ''
for ch in content:
ans += chr(ord(A ) ^ key )
return ans
def UpperCamelCase_ ( self, A, A = 0 ):
'''simple docstring'''
assert isinstance(A, A ) and isinstance(A, A )
try:
with open(A ) as fin, open('encrypt.out', 'w+' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(A, A ) )
except OSError:
return False
return True
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
assert isinstance(A, A ) and isinstance(A, A )
try:
with open(A ) as fin, open('decrypt.out', 'w+' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(A, A ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 28 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
UpperCamelCase_ = get_tests_dir("fixtures")
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock()
SCREAMING_SNAKE_CASE : List[Any] = 500
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Any = HTTPError
SCREAMING_SNAKE_CASE : Any = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=A ) as mock_head:
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
with self.assertRaises(A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' )
SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(
'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' )
self.assertIsNotNone(A )
@is_staging_test
class _a ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id='test-image-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' )
except HTTPError:
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A )
image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token )
SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-image-processor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token )
SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' )
for k, v in image_processor.__dict__.items():
self.assertEqual(A, getattr(A, A ) )
def UpperCamelCase_ ( self ):
'''simple docstring'''
CustomImageProcessor.register_for_auto_class()
SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A )
image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, )
SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(
F"{USER}/test-dynamic-image-processor", trust_remote_code=A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
| 28 | 1 |
'''simple docstring'''
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
UpperCamelCase_ = logging.getLogger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Any = '''sequence-classification'''
def __init__( self, A ):
'''simple docstring'''
if type(A ) == dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = Namespace(**A )
SCREAMING_SNAKE_CASE : str = glue_output_modes[hparams.task]
SCREAMING_SNAKE_CASE : Tuple = glue_tasks_num_labels[hparams.task]
super().__init__(A, A, self.mode )
def UpperCamelCase_ ( self, **A ):
'''simple docstring'''
return self.model(**A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
SCREAMING_SNAKE_CASE : str = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None
SCREAMING_SNAKE_CASE : Optional[Any] = self(**A )
SCREAMING_SNAKE_CASE : Tuple = outputs[0]
SCREAMING_SNAKE_CASE : str = self.trainer.lr_schedulers[0]['scheduler']
SCREAMING_SNAKE_CASE : Any = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.hparams
SCREAMING_SNAKE_CASE : Any = processors[args.task]()
SCREAMING_SNAKE_CASE : Union[str, Any] = processor.get_labels()
for mode in ["train", "dev"]:
SCREAMING_SNAKE_CASE : Tuple = self._feature_file(A )
if os.path.exists(A ) and not args.overwrite_cache:
logger.info('Loading features from cached file %s', A )
else:
logger.info('Creating features from dataset file at %s', args.data_dir )
SCREAMING_SNAKE_CASE : int = (
processor.get_dev_examples(args.data_dir )
if mode == 'dev'
else processor.get_train_examples(args.data_dir )
)
SCREAMING_SNAKE_CASE : Dict = convert_examples_to_features(
A, self.tokenizer, max_length=args.max_seq_length, label_list=self.labels, output_mode=args.glue_output_mode, )
logger.info('Saving features into cached file %s', A )
torch.save(A, A )
def UpperCamelCase_ ( self, A, A, A = False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 'dev' if mode == 'test' else mode
SCREAMING_SNAKE_CASE : str = self._feature_file(A )
logger.info('Loading features from cached file %s', A )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(A )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([f.input_ids for f in features], dtype=torch.long )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([f.attention_mask for f in features], dtype=torch.long )
SCREAMING_SNAKE_CASE : int = torch.tensor([f.token_type_ids for f in features], dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
SCREAMING_SNAKE_CASE : int = torch.tensor([f.label for f in features], dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([f.label for f in features], dtype=torch.float )
return DataLoader(
TensorDataset(A, A, A, A ), batch_size=A, shuffle=A, )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
SCREAMING_SNAKE_CASE : Optional[Any] = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None
SCREAMING_SNAKE_CASE : List[Any] = self(**A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = outputs[:2]
SCREAMING_SNAKE_CASE : Any = logits.detach().cpu().numpy()
SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['labels'].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item()
SCREAMING_SNAKE_CASE : Optional[int] = np.concatenate([x['pred'] for x in outputs], axis=0 )
if self.hparams.glue_output_mode == "classification":
SCREAMING_SNAKE_CASE : List[str] = np.argmax(A, axis=1 )
elif self.hparams.glue_output_mode == "regression":
SCREAMING_SNAKE_CASE : List[str] = np.squeeze(A )
SCREAMING_SNAKE_CASE : Any = np.concatenate([x['target'] for x in outputs], axis=0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE : int = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE : Optional[Any] = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task, A, A )}
SCREAMING_SNAKE_CASE : List[Any] = dict(results.items() )
SCREAMING_SNAKE_CASE : Union[str, Any] = results
return ret, preds_list, out_label_list
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._eval_end(A )
SCREAMING_SNAKE_CASE : Dict = ret['log']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self._eval_end(A )
SCREAMING_SNAKE_CASE : str = ret['log']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def UpperCamelCase_ ( A, A ):
'''simple docstring'''
BaseTransformer.add_model_specific_args(A, A )
parser.add_argument(
'--max_seq_length', default=128, type=A, help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
), )
parser.add_argument(
'--task', default='', type=A, required=A, help='The GLUE task to run', )
parser.add_argument(
'--gpus', default=0, type=A, help='The number of GPUs allocated for this, it is by default 0 meaning none', )
parser.add_argument(
'--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets' )
return parser
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
add_generic_args(__UpperCamelCase ,os.getcwd() )
SCREAMING_SNAKE_CASE : List[str] = GLUETransformer.add_model_specific_args(__UpperCamelCase ,os.getcwd() )
SCREAMING_SNAKE_CASE : Dict = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(
'./results' ,f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" ,)
os.makedirs(args.output_dir )
SCREAMING_SNAKE_CASE : str = GLUETransformer(__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = generic_train(__UpperCamelCase ,__UpperCamelCase )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
SCREAMING_SNAKE_CASE : List[str] = sorted(glob.glob(os.path.join(args.output_dir ,'checkpoint-epoch=*.ckpt' ) ,recursive=__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Optional[Any] = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(__UpperCamelCase )
if __name__ == "__main__":
main()
| 28 |
'''simple docstring'''
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = val
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE : Optional[int] = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE : int = Node(A )
else:
self.right.insert(A )
else:
SCREAMING_SNAKE_CASE : int = val
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
if root:
inorder(root.left ,__UpperCamelCase )
res.append(root.val )
inorder(root.right ,__UpperCamelCase )
def lowercase__( __UpperCamelCase: List[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return arr
SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] )
for i in range(1 ,len(__UpperCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
SCREAMING_SNAKE_CASE : Dict = []
inorder(__UpperCamelCase ,__UpperCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
| 28 | 1 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 |
'''simple docstring'''
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : int = take_from
SCREAMING_SNAKE_CASE : Optional[int] = ()
if not isinstance(args[0] ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
f" version {__version__} is >= {version_name}" )
SCREAMING_SNAKE_CASE : Tuple = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else ''
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Any = call_frame.filename
SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno
SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 28 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
UpperCamelCase_ = 5_0_0_0_0
UpperCamelCase_ = 5_0_0_0
UpperCamelCase_ , UpperCamelCase_ = os.path.split(__file__)
UpperCamelCase_ = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def lowercase__( __UpperCamelCase: datasets.Dataset ,__UpperCamelCase: List[Any] ):
"""simple docstring"""
for i in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : str = dataset[i]
@get_duration
def lowercase__( __UpperCamelCase: datasets.Dataset ,__UpperCamelCase: Tuple ,__UpperCamelCase: List[str] ):
"""simple docstring"""
for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Optional[int] = dataset[i : i + batch_size]
@get_duration
def lowercase__( __UpperCamelCase: datasets.Dataset ,__UpperCamelCase: List[str] ,__UpperCamelCase: Dict ):
"""simple docstring"""
with dataset.formatted_as(type=__UpperCamelCase ):
for i in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Tuple = dataset[i]
@get_duration
def lowercase__( __UpperCamelCase: datasets.Dataset ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
with dataset.formatted_as(type=__UpperCamelCase ):
for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : str = dataset[i : i + batch_size]
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = {'num examples': SPEED_TEST_N_EXAMPLES}
SCREAMING_SNAKE_CASE : Union[str, Any] = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted, {'type': 'pandas', 'length': SMALL_TEST}),
(read_formatted, {'type': 'torch', 'length': SMALL_TEST}),
(read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}),
]
SCREAMING_SNAKE_CASE : Optional[Any] = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print('generating dataset' )
SCREAMING_SNAKE_CASE : Any = datasets.Features(
{'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} )
SCREAMING_SNAKE_CASE : int = generate_example_dataset(
os.path.join(__UpperCamelCase ,'dataset.arrow' ) ,__UpperCamelCase ,num_examples=__UpperCamelCase ,seq_shapes={'list': (1_00,)} ,)
print('first set of iterations' )
for func, kwargs in functions:
print(func.__name__ ,str(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : List[Any] = func(__UpperCamelCase ,**__UpperCamelCase )
print('shuffling dataset' )
SCREAMING_SNAKE_CASE : List[Any] = dataset.shuffle()
print('Second set of iterations (after shuffling' )
for func, kwargs in functions_shuffled:
print('shuffled ' ,func.__name__ ,str(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : List[str] = func(
__UpperCamelCase ,**__UpperCamelCase )
with open(__UpperCamelCase ,'wb' ) as f:
f.write(json.dumps(__UpperCamelCase ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 28 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 28 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase_ = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
'''simple docstring'''
from random import randint, random
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: bool = False ,__UpperCamelCase: bool = False ,__UpperCamelCase: int = 5 ,):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = [[-1] * number_of_cells] # Create a highway without any car
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Dict = max(__UpperCamelCase ,0 )
while i < number_of_cells:
SCREAMING_SNAKE_CASE : int = (
randint(0 ,__UpperCamelCase ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 ,max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = 0
SCREAMING_SNAKE_CASE : List[Any] = highway_now[car_index + 1 :]
for cell in range(len(__UpperCamelCase ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(__UpperCamelCase ,-1 )
def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: float ,__UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = len(__UpperCamelCase )
# Beforce calculations, the highway is empty
SCREAMING_SNAKE_CASE : int = [-1] * number_of_cells
for car_index in range(__UpperCamelCase ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
SCREAMING_SNAKE_CASE : List[Any] = min(highway_now[car_index] + 1 ,__UpperCamelCase )
# Number of empty cell before the next car
SCREAMING_SNAKE_CASE : Dict = get_distance(__UpperCamelCase ,__UpperCamelCase ) - 1
# We can't have the car causing an accident
SCREAMING_SNAKE_CASE : Dict = min(next_highway[car_index] ,__UpperCamelCase )
if random() < probability:
# Randomly, a driver will slow down
SCREAMING_SNAKE_CASE : List[str] = max(next_highway[car_index] - 1 ,0 )
return next_highway
def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = len(highway[0] )
for i in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : Optional[Any] = update(highway[i] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : Tuple = [-1] * number_of_cells
for car_index in range(__UpperCamelCase ):
SCREAMING_SNAKE_CASE : int = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
SCREAMING_SNAKE_CASE : Union[str, Any] = (car_index + speed) % number_of_cells
# Commit the change of position
SCREAMING_SNAKE_CASE : List[Any] = speed
highway.append(__UpperCamelCase )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28 | 1 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 10_00 ):
"""simple docstring"""
return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 28 |
'''simple docstring'''
from __future__ import annotations
import queue
class _a :
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = data
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
def lowercase__( ):
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower()
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = left_node
q.put(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: "
SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : Any = right_node
q.put(__UpperCamelCase )
raise
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
print(node.data ,end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data ,end=',' )
in_order(node.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data ,end=',' )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Optional[int] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
SCREAMING_SNAKE_CASE : Union[str, Any] = []
while not q.empty():
SCREAMING_SNAKE_CASE : List[Any] = q.get()
print(node_dequeued.data ,end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : Optional[Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data ,end=',' )
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Any = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE : Any = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE : list[TreeNode] = []
SCREAMING_SNAKE_CASE : int = node
while n or stack:
while n:
stack.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = n.left
SCREAMING_SNAKE_CASE : Tuple = stack.pop()
print(n.data ,end=',' )
SCREAMING_SNAKE_CASE : str = n.right
def lowercase__( __UpperCamelCase: TreeNode ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], []
SCREAMING_SNAKE_CASE : Optional[int] = node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data ,end=',' )
def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
UpperCamelCase_ = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 28 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Optional[Any] = ['''image_processor''', '''feature_extractor''']
A : Any = '''TvltImageProcessor'''
A : int = '''TvltFeatureExtractor'''
def __init__( self, A, A ):
'''simple docstring'''
super().__init__(image_processor=A, feature_extractor=A )
SCREAMING_SNAKE_CASE : Tuple = image_processor
SCREAMING_SNAKE_CASE : Tuple = feature_extractor
def __call__( self, A=None, A=None, A=None, A=None, A=False, A=False, *A, **A, ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError('You need to specify either an `images` or `audio` input to process.' )
SCREAMING_SNAKE_CASE : Tuple = None
if images is not None:
SCREAMING_SNAKE_CASE : List[str] = self.image_processor(A, mask_pixel=A, *A, **A )
if images_mixed is not None:
SCREAMING_SNAKE_CASE : Any = self.image_processor(A, is_mixed=A, *A, **A )
if audio is not None:
SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor(
A, *A, sampling_rate=A, mask_audio=A, **A )
SCREAMING_SNAKE_CASE : List[str] = {}
if audio is not None:
output_dict.update(A )
if images is not None:
output_dict.update(A )
if images_mixed_dict is not None:
output_dict.update(A )
return output_dict
@property
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.image_processor.model_input_names
SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 28 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
UpperCamelCase_ = logging.getLogger(__name__)
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ):
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class _a :
'''simple docstring'''
A : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
A : Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
A : Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
A : Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class _a :
'''simple docstring'''
A : str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
A : str = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
A : int = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
A : bool = field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,)
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' ,__UpperCamelCase )
# Set seed
set_seed(training_args.seed )
try:
SCREAMING_SNAKE_CASE : Optional[Any] = processors[data_args.task_name]()
SCREAMING_SNAKE_CASE : List[Any] = processor.get_labels()
SCREAMING_SNAKE_CASE : Optional[Any] = len(__UpperCamelCase )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=__UpperCamelCase ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,)
SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,)
SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,)
# Get datasets
SCREAMING_SNAKE_CASE : List[str] = (
MultipleChoiceDataset(
data_dir=data_args.data_dir ,tokenizer=__UpperCamelCase ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,)
if training_args.do_train
else None
)
SCREAMING_SNAKE_CASE : str = (
MultipleChoiceDataset(
data_dir=data_args.data_dir ,tokenizer=__UpperCamelCase ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,)
if training_args.do_eval
else None
)
def compute_metrics(__UpperCamelCase: EvalPrediction ) -> Dict:
SCREAMING_SNAKE_CASE : Any = np.argmax(p.predictions ,axis=1 )
return {"acc": simple_accuracy(__UpperCamelCase ,p.label_ids )}
# Data collator
SCREAMING_SNAKE_CASE : str = DataCollatorWithPadding(__UpperCamelCase ,pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
SCREAMING_SNAKE_CASE : Union[str, Any] = Trainer(
model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=__UpperCamelCase ,eval_dataset=__UpperCamelCase ,compute_metrics=__UpperCamelCase ,data_collator=__UpperCamelCase ,)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE : List[str] = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
SCREAMING_SNAKE_CASE : Any = trainer.evaluate()
SCREAMING_SNAKE_CASE : Any = os.path.join(training_args.output_dir ,'eval_results.txt' )
if trainer.is_world_master():
with open(__UpperCamelCase ,'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' ,__UpperCamelCase ,__UpperCamelCase )
writer.write('%s = %s\n' % (key, value) )
results.update(__UpperCamelCase )
return results
def lowercase__( __UpperCamelCase: Tuple ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 28 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A )
def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet(
A, A, A, A, A, A, A, A, A, A, A, )
# merge samples
if i == 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample
else:
SCREAMING_SNAKE_CASE : str = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(A, A )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, )
idx += 1
SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}"
@classmethod
def UpperCamelCase_ ( cls, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path
while os.path.isdir(A ):
SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A )
controlnets.append(A )
idx += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}"
logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." )
if len(A ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(A )
| 28 | 1 |
'''simple docstring'''
UpperCamelCase_ = [
"DownloadConfig",
"DownloadManager",
"DownloadMode",
"StreamingDownloadManager",
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 28 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : str = ['''audio_values''', '''audio_mask''']
def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ):
'''simple docstring'''
super().__init__(
feature_size=A, sampling_rate=A, padding_value=A, **A, )
SCREAMING_SNAKE_CASE : str = spectrogram_length
SCREAMING_SNAKE_CASE : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE : List[str] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
SCREAMING_SNAKE_CASE : Dict = n_fft
SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = padding_value
SCREAMING_SNAKE_CASE : Any = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = spectrogram(
A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, )
SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1]
SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0
SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
F" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"Only mono-channel audio is supported for input to {self}" )
SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A, np.ndarray ):
SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa )
elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
SCREAMING_SNAKE_CASE : int = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa )
# convert into correct format for padding
SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(A ) ):
SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = feature
# return as BatchFeature
if return_attention_mask:
SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features}
SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A )
return encoded_inputs
| 28 | 1 |
'''simple docstring'''
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A, A, A=1_024, A=1_024, A=3.6 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = tokenizer
SCREAMING_SNAKE_CASE : str = tokenizer.bos_token_id
SCREAMING_SNAKE_CASE : Tuple = dataset
SCREAMING_SNAKE_CASE : List[Any] = seq_length
SCREAMING_SNAKE_CASE : Tuple = seq_length * chars_per_token * num_of_sequences
def __iter__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = iter(self.dataset )
SCREAMING_SNAKE_CASE : List[Any] = True
while more_examples:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )['content'] )
buffer_len += len(buffer[-1] )
except StopIteration:
SCREAMING_SNAKE_CASE : Dict = False
break
SCREAMING_SNAKE_CASE : Dict = tokenizer(A, truncation=A )['input_ids']
SCREAMING_SNAKE_CASE : List[str] = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0, len(A ), self.seq_length ):
SCREAMING_SNAKE_CASE : Union[str, Any] = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def lowercase__( __UpperCamelCase: Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = {'streaming': True}
SCREAMING_SNAKE_CASE : Dict = load_dataset(args.dataset_name ,split='train' ,**__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = ConstantLengthDataset(__UpperCamelCase ,__UpperCamelCase ,seq_length=args.seq_length )
SCREAMING_SNAKE_CASE : Optional[Any] = DataLoader(__UpperCamelCase ,batch_size=args.batch_size )
return eval_dataloader
def lowercase__( __UpperCamelCase: Any ):
"""simple docstring"""
model.eval()
SCREAMING_SNAKE_CASE : Any = []
for step, batch in enumerate(__UpperCamelCase ):
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = model(__UpperCamelCase ,labels=__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[str] = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(__UpperCamelCase ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
SCREAMING_SNAKE_CASE : str = torch.mean(torch.cat(__UpperCamelCase ) )
try:
SCREAMING_SNAKE_CASE : Any = torch.exp(__UpperCamelCase )
except OverflowError:
SCREAMING_SNAKE_CASE : List[str] = float('inf' )
return loss.item(), perplexity.item()
# Setup Accelerator
UpperCamelCase_ = Accelerator()
# Parse configuration
UpperCamelCase_ = HfArgumentParser(EvaluationArguments)
UpperCamelCase_ = parser.parse_args()
set_seed(args.seed)
# Logging
UpperCamelCase_ = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
# Load model and tokenizer
UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
UpperCamelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
UpperCamelCase_ = create_dataloader(args)
# Prepare everything with our `accelerator`.
UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
UpperCamelCase_ , UpperCamelCase_ = evaluate(args)
logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
| 28 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _a :
'''simple docstring'''
def __init__( self, A, A=13, A=32, A=3, A=4, A=[10, 20, 30, 40], A=[2, 2, 3, 2], A=True, A=True, A=37, A="gelu", A=10, A=0.02, A=["stage2", "stage3", "stage4"], A=[2, 3, 4], A=None, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = parent
SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : List[Any] = num_channels
SCREAMING_SNAKE_CASE : str = num_stages
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes
SCREAMING_SNAKE_CASE : List[str] = depths
SCREAMING_SNAKE_CASE : Tuple = is_training
SCREAMING_SNAKE_CASE : Any = use_labels
SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size
SCREAMING_SNAKE_CASE : int = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = num_labels
SCREAMING_SNAKE_CASE : Optional[int] = initializer_range
SCREAMING_SNAKE_CASE : int = out_features
SCREAMING_SNAKE_CASE : Any = out_indices
SCREAMING_SNAKE_CASE : Dict = scope
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Optional[int] = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size], self.num_labels )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=A, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = ConvNextVaModel(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : str = model(A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = ConvNextVaForImageClassification(A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[Any] = model(A, labels=A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : int = model(A )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] )
# verify backbone works with out_features=None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : List[Any] = ConvNextVaBackbone(config=A )
model.to(A )
model.eval()
SCREAMING_SNAKE_CASE : List[str] = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ), 1 )
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs
SCREAMING_SNAKE_CASE : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = config_and_inputs
SCREAMING_SNAKE_CASE : List[str] = {'pixel_values': pixel_values, 'labels': labels}
return config, inputs_dict
@require_torch
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : Any = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
A : List[str] = (
{'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
A : Any = False
A : Tuple = False
A : Union[str, Any] = False
A : Any = False
A : List[Any] = False
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = ConvNextVaModelTester(self )
SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self ):
'''simple docstring'''
return
@unittest.skip(reason='ConvNextV2 does not use inputs_embeds' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='ConvNextV2 does not support input and output embeddings' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='ConvNextV2 does not use feedforward chunking' )
def UpperCamelCase_ ( self ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_with_labels()
SCREAMING_SNAKE_CASE : Tuple = True
if model_class.__name__ in [
*get_values(A ),
*get_values(A ),
]:
continue
SCREAMING_SNAKE_CASE : Optional[int] = model_class(A )
model.to(A )
model.train()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(A, A, return_labels=A )
SCREAMING_SNAKE_CASE : int = model(**A ).loss
loss.backward()
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
SCREAMING_SNAKE_CASE : Union[str, Any] = False
SCREAMING_SNAKE_CASE : Union[str, Any] = True
if (
model_class.__name__
in [*get_values(A ), *get_values(A )]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE : List[Any] = model_class(A )
model.to(A )
model.gradient_checkpointing_enable()
model.train()
SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(A, A, return_labels=A )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(**A ).loss
loss.backward()
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(A )
SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1], A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
def check_hidden_states_output(A, A, A ):
SCREAMING_SNAKE_CASE : Optional[int] = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(A, A ) )
SCREAMING_SNAKE_CASE : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(A ), expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Any = True
check_hidden_states_output(A, A, A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : str = True
check_hidden_states_output(A, A, A )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Optional[Any] = ConvNextVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(A )
SCREAMING_SNAKE_CASE : int = self.default_image_processor
SCREAMING_SNAKE_CASE : Any = prepare_img()
SCREAMING_SNAKE_CASE : Union[str, Any] = preprocessor(images=A, return_tensors='pt' ).to(A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = model(**A )
# verify the logits
SCREAMING_SNAKE_CASE : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, A )
SCREAMING_SNAKE_CASE : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
| 28 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
A : int = StableDiffusionDiffEditPipeline
A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
A : str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
A : Union[str, Any] = frozenset([] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, )
SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler(
beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE : int = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Dict = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self, A, A=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A )
SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0]
SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' )
if str(A ).startswith('mps' ):
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A )
else:
SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A )
SCREAMING_SNAKE_CASE : Any = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase_ ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class, '_optional_components' ):
return
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(A, A, A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A )
SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0]
SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max()
self.assertLess(A, 1E-4 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = 'cpu'
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A )
SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16) )
SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 )
SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
self.assertEqual(mask[0, -3, -4], 0 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 'cpu'
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A )
SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A )
SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A )
SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE : Tuple = np.array(
[0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], )
SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A, 1E-3 )
@require_torch_gpu
@slow
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE : List[str] = raw_image
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears'
SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents
SCREAMING_SNAKE_CASE : List[str] = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : List[Any] = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=A )
SCREAMING_SNAKE_CASE : str = 'a bowl of fruit'
SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears'
SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask(
image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert(
prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents
SCREAMING_SNAKE_CASE : str = pipe(
prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0]
SCREAMING_SNAKE_CASE : Tuple = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 | 1 |
'''simple docstring'''
import sys
from collections import defaultdict
class _a :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = []
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.node_position[vertex]
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = pos
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
SCREAMING_SNAKE_CASE : Optional[Any] = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
SCREAMING_SNAKE_CASE : str = 2 * start + 1
else:
SCREAMING_SNAKE_CASE : Optional[int] = 2 * start + 2
if heap[smallest_child] < heap[start]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = heap[smallest_child], positions[smallest_child]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = (
heap[start],
positions[start],
)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = temp, tempa
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child], self.get_position(positions[start] ) )
self.set_position(positions[start], A )
self.top_to_bottom(A, A, A, A )
def UpperCamelCase_ ( self, A, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = position[index]
while index != 0:
SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
SCREAMING_SNAKE_CASE : List[Any] = heap[parent]
SCREAMING_SNAKE_CASE : List[str] = position[parent]
self.set_position(position[parent], A )
else:
SCREAMING_SNAKE_CASE : Optional[int] = val
SCREAMING_SNAKE_CASE : List[Any] = temp
self.set_position(A, A )
break
SCREAMING_SNAKE_CASE : Union[str, Any] = parent
else:
SCREAMING_SNAKE_CASE : Optional[int] = val
SCREAMING_SNAKE_CASE : Any = temp
self.set_position(A, 0 )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = len(A ) // 2 - 1
for i in range(A, -1, -1 ):
self.top_to_bottom(A, A, len(A ), A )
def UpperCamelCase_ ( self, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = positions[0]
SCREAMING_SNAKE_CASE : Any = sys.maxsize
self.top_to_bottom(A, 0, len(A ), A )
return temp
def lowercase__( __UpperCamelCase: Any ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = Heap()
SCREAMING_SNAKE_CASE : Optional[Any] = [0] * len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Tuple = [-1] * len(__UpperCamelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
SCREAMING_SNAKE_CASE : str = [] # Heap of Distance of vertices from their neighboring vertex
SCREAMING_SNAKE_CASE : Tuple = []
for vertex in range(len(__UpperCamelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(__UpperCamelCase )
heap.node_position.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = []
SCREAMING_SNAKE_CASE : int = 1
SCREAMING_SNAKE_CASE : Union[str, Any] = sys.maxsize
for neighbor, distance in adjacency_list[0]:
SCREAMING_SNAKE_CASE : Any = 0
SCREAMING_SNAKE_CASE : Optional[int] = distance
heap.heapify(__UpperCamelCase ,__UpperCamelCase )
for _ in range(1 ,len(__UpperCamelCase ) ):
SCREAMING_SNAKE_CASE : List[Any] = heap.delete_minimum(__UpperCamelCase ,__UpperCamelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
SCREAMING_SNAKE_CASE : Optional[int] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__UpperCamelCase )]
):
SCREAMING_SNAKE_CASE : Optional[int] = distance
heap.bottom_to_top(
__UpperCamelCase ,heap.get_position(__UpperCamelCase ) ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : Dict = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCamelCase_ = int(input("Enter number of edges: ").strip())
UpperCamelCase_ = defaultdict(list)
for _ in range(edges_number):
UpperCamelCase_ = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 28 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,__UpperCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 28 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.