code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,):
if config_name_or_path is None:
lowerCamelCase_ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base'''
if generator_tokenizer_name_or_path is None:
lowerCamelCase_ = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
lowerCamelCase_ = question_encoder_name_or_path
lowerCamelCase_ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration
# Save model.
lowerCamelCase_ = RagConfig.from_pretrained(lowerCAmelCase__ )
lowerCamelCase_ = AutoConfig.from_pretrained(lowerCAmelCase__ )
lowerCamelCase_ = AutoConfig.from_pretrained(lowerCAmelCase__ )
lowerCamelCase_ = gen_config
lowerCamelCase_ = question_encoder_config
lowerCamelCase_ = model_class.from_pretrained_question_encoder_generator(
lowerCAmelCase__ ,lowerCAmelCase__ ,config=lowerCAmelCase__ )
rag_model.save_pretrained(lowerCAmelCase__ )
# Sanity check.
model_class.from_pretrained(lowerCAmelCase__ )
# Save tokenizers.
lowerCamelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' )
lowerCamelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""",
choices=["""rag_sequence""", """rag_token"""],
required=True,
type=str,
help="""RAG model type: rag_sequence, rag_token""",
)
parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""")
parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""")
parser.add_argument(
"""--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier"""
)
parser.add_argument(
"""--generator_tokenizer_name_or_path""",
type=str,
help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""",
)
parser.add_argument(
"""--question_encoder_tokenizer_name_or_path""",
type=str,
help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""",
)
parser.add_argument(
"""--config_name_or_path""",
type=str,
help=(
"""Identifier of the model config to use, if not provided, resolves to a base config for a given"""
""" ``model_type``"""
),
)
A_ = parser.parse_args()
A_ = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 29 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
A_ = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
A_ = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
A_ = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ):
if concatenate_texts:
return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"]
else:
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 29 | 1 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def lowercase ( lowerCAmelCase__ = "AAPL" ):
lowerCamelCase_ = f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCamelCase_ = BeautifulSoup(requests.get(lowerCAmelCase__ ).text ,'''html.parser''' )
lowerCamelCase_ = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' ,class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 | 1 |
"""simple docstring"""
import requests
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = {'''Content-Type''': '''application/json'''}
lowerCamelCase_ = requests.post(lowerCAmelCase__ ,json={'''text''': message_body} ,headers=lowerCAmelCase__ )
if response.status_code != 200:
lowerCamelCase_ = (
'''Request to slack returned an error '''
f"{response.status_code}, the response is:\n{response.text}"
)
raise ValueError(lowerCAmelCase__ )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 29 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 20
lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create ramp distribution
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy()
lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy()
lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] )
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase_ = ramp_logits[1] * 1_0_0.0
# make sure at least 2 tokens are kept
lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
# check that min length is applied at length 5
lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 )
lowerCamelCase_ = 5
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] )
# check that min length is not applied anymore at length 15
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = 15
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 )
lowerCamelCase_ = 1
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 )
lowerCamelCase_ = 4
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# with processor list
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
# with processor list
def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["""PLBartTokenizer"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PLBartForCausalLM""",
"""PLBartForConditionalGeneration""",
"""PLBartForSequenceClassification""",
"""PLBartModel""",
"""PLBartPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 29 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def lowercase ( lowerCAmelCase__ ):
def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ):
lowerCamelCase_ = timeit.default_timer()
lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ )
lowerCamelCase_ = timeit.default_timer() - starttime
return delta
lowerCamelCase_ = func.__name__
return wrapper
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = []
lowerCamelCase_ = seq_shapes or {}
for i in range(lowerCAmelCase__ ):
lowerCamelCase_ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(lowerCAmelCase__ ,_ArrayXD ):
lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(lowerCAmelCase__ ,datasets.Value ):
if v.dtype == "string":
lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.'''
else:
lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item()
elif isinstance(lowerCAmelCase__ ,datasets.Sequence ):
while isinstance(lowerCAmelCase__ ,datasets.Sequence ):
lowerCamelCase_ = v.feature
lowerCamelCase_ = seq_shapes[k]
lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype )
lowerCamelCase_ = data
dummy_data.append((i, example) )
return dummy_data
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ )
with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer:
for key, record in dummy_data:
lowerCamelCase_ = features.encode_example(lowerCAmelCase__ )
writer.write(lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." )
lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) )
return dataset
| 29 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
A_ = logging.get_logger(__name__)
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , *UpperCAmelCase , **UpperCAmelCase ):
warnings.warn(
'''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use SegformerImageProcessor instead.''' , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 29 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
A_ = [
"""good first issue""",
"""feature request""",
"""wip""",
]
def lowercase ( ):
lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] )
lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' )
lowerCamelCase_ = repo.get_issues(state='''open''' )
for issue in open_issues:
lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ )
lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None
lowerCamelCase_ = dt.utcnow()
lowerCamelCase_ = (current_time - issue.updated_at).days
lowerCamelCase_ = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
A_ = """ \"\"\"
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"\"\"
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
lowerCamelCase_ = self.diffusers_dir
shutil.copy(
os.path.join(UpperCAmelCase , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ):
lowerCamelCase_ = comment + f"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
lowerCamelCase_ = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result
lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
lowerCamelCase_ = black.format_str(UpperCAmelCase , mode=UpperCAmelCase )
lowerCamelCase_ = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(UpperCAmelCase , '''w''' , newline='''\n''' ) as f:
f.write(UpperCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(UpperCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=UpperCAmelCase )
with open(UpperCAmelCase , '''r''' ) as f:
self.assertTrue(f.read() , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
# Base copy consistency
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , UpperCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , UpperCAmelCase ) , )
# Copy consistency with a really long name
lowerCamelCase_ = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub('''Bert''' , UpperCAmelCase , UpperCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , UpperCAmelCase , overwrite_result=re.sub('''DDPM''' , '''Test''' , UpperCAmelCase ) , )
| 29 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape
lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ )
lowerCamelCase_ = emb.weight.data
return lin_layer
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ):
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
remove_ignore_keys_(lowerCAmelCase__ )
lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ )
if mbart_aa and finetuned:
lowerCamelCase_ = '''relu'''
lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight''']
lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ )
model.model.load_state_dict(lowerCAmelCase__ )
if finetuned:
lowerCamelCase_ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""",
default="""facebook/mbart-large-cc25""",
type=str,
help="""Which huggingface architecture to use: mbart-large""",
)
parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""")
parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""")
A_ = parser.parse_args()
A_ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return 1 if input_a == input_a else 0
def lowercase ( ):
assert xnor_gate(0 ,0 ) == 1
assert xnor_gate(0 ,1 ) == 0
assert xnor_gate(1 ,0 ) == 0
assert xnor_gate(1 ,1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 29 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCamelCase ( lowerCAmelCase ):
a__: Any = (DDPMScheduler,)
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
lowerCamelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCAmelCase )
return config
def UpperCAmelCase__ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
self.check_over_configs(thresholding=UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase )
lowerCamelCase_ = scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase ):
if i == len(UpperCAmelCase ) - 1:
lowerCamelCase_ = -1
else:
lowerCamelCase_ = timesteps[i + 1]
lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase )
lowerCamelCase_ = prev_t.item()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
lowerCamelCase_ = len(UpperCAmelCase )
with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
from math import sqrt
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (
number >= 0
), "'number' must been an int and positive"
lowerCamelCase_ = True
# 0 and 1 are none primes.
if number <= 1:
lowerCamelCase_ = False
for divisor in range(2 ,int(round(sqrt(lowerCAmelCase__ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowerCamelCase_ = False
break
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ), "'status' must been from type bool"
return status
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowerCamelCase_ = list(range(2 ,n + 1 ) )
lowerCamelCase_ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCAmelCase__ ) ):
for j in range(i + 1 ,len(lowerCAmelCase__ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowerCamelCase_ = 0
# filters actual prime numbers.
lowerCamelCase_ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ), "'ans' must been from type list"
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (n > 2), "'N' must been an int and > 2"
lowerCamelCase_ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 ,n + 1 ):
if is_prime(lowerCAmelCase__ ):
ans.append(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ), "'ans' must been from type list"
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and number >= 0, "'number' must been an int and >= 0"
lowerCamelCase_ = [] # this list will be returns of the function.
# potential prime number factors.
lowerCamelCase_ = 2
lowerCamelCase_ = number
if number == 0 or number == 1:
ans.append(lowerCAmelCase__ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCAmelCase__ ):
while quotient != 1:
if is_prime(lowerCAmelCase__ ) and (quotient % factor == 0):
ans.append(lowerCAmelCase__ )
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ), "'ans' must been from type list"
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCamelCase_ = 0
# prime factorization of 'number'
lowerCamelCase_ = prime_factorization(lowerCAmelCase__ )
lowerCamelCase_ = max(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ), "'ans' must been from type int"
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCamelCase_ = 0
# prime factorization of 'number'
lowerCamelCase_ = prime_factorization(lowerCAmelCase__ )
lowerCamelCase_ = min(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ), "'ans' must been from type int"
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ), "'number' must been an int"
assert isinstance(number % 2 == 0 ,lowerCAmelCase__ ), "compare bust been from type bool"
return number % 2 == 0
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ), "'number' must been an int"
assert isinstance(number % 2 != 0 ,lowerCAmelCase__ ), "compare bust been from type bool"
return number % 2 != 0
def lowercase ( lowerCAmelCase__ ):
assert (
isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (number > 2) and is_even(lowerCAmelCase__ )
), "'number' must been an int, even and > 2"
lowerCamelCase_ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowerCamelCase_ = get_prime_numbers(lowerCAmelCase__ )
lowerCamelCase_ = len(lowerCAmelCase__ )
# run variable for while-loops.
lowerCamelCase_ = 0
lowerCamelCase_ = None
# exit variable. for break up the loops
lowerCamelCase_ = True
while i < len_pn and loop:
lowerCamelCase_ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowerCamelCase_ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and (len(lowerCAmelCase__ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
assert (
isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowerCamelCase_ = 0
while numbera != 0:
lowerCamelCase_ = numbera % numbera
lowerCamelCase_ = numbera
lowerCamelCase_ = rest
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
assert (
isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowerCamelCase_ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowerCamelCase_ = prime_factorization(lowerCAmelCase__ )
lowerCamelCase_ = prime_factorization(lowerCAmelCase__ )
elif numbera == 1 or numbera == 1:
lowerCamelCase_ = []
lowerCamelCase_ = []
lowerCamelCase_ = max(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowerCamelCase_ = prime_fac_a.count(lowerCAmelCase__ )
lowerCamelCase_ = prime_fac_a.count(lowerCAmelCase__ )
for _ in range(max(lowerCAmelCase__ ,lowerCAmelCase__ ) ):
ans *= n
else:
lowerCamelCase_ = prime_fac_a.count(lowerCAmelCase__ )
for _ in range(lowerCAmelCase__ ):
ans *= n
done.append(lowerCAmelCase__ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowerCamelCase_ = prime_fac_a.count(lowerCAmelCase__ )
for _ in range(lowerCAmelCase__ ):
ans *= n
done.append(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (n >= 0), "'number' must been a positive int"
lowerCamelCase_ = 0
lowerCamelCase_ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCAmelCase__ ):
ans += 1
# precondition
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and is_prime(
lowerCAmelCase__ ), "'ans' must been a prime number and from type int"
return ans
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
assert (
is_prime(lowerCAmelCase__ ) and is_prime(lowerCAmelCase__ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowerCamelCase_ = p_number_a + 1 # jump to the next number
lowerCamelCase_ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCAmelCase__ ):
number += 1
while number < p_number_a:
ans.append(lowerCAmelCase__ )
number += 1
# fetch the next prime number.
while not is_prime(lowerCAmelCase__ ):
number += 1
# precondition
assert (
isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and ans[0] != p_number_a
and ans[len(lowerCAmelCase__ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (n >= 1), "'n' must been int and >= 1"
lowerCamelCase_ = [] # will be returned.
for divisor in range(1 ,n + 1 ):
if n % divisor == 0:
ans.append(lowerCAmelCase__ )
# precondition
assert ans[0] == 1 and ans[len(lowerCAmelCase__ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (
number > 1
), "'number' must been an int and >= 1"
lowerCamelCase_ = get_divisors(lowerCAmelCase__ )
# precondition
assert (
isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and (divisors[0] == 1)
and (divisors[len(lowerCAmelCase__ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
assert (
isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowerCamelCase_ = gcd(abs(lowerCAmelCase__ ) ,abs(lowerCAmelCase__ ) )
# precondition
assert (
isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (n >= 0), "'n' must been a int and >= 0"
lowerCamelCase_ = 1 # this will be return.
for factor in range(1 ,n + 1 ):
ans *= factor
return ans
def lowercase ( lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and (n >= 0), "'n' must been an int and >= 0"
lowerCamelCase_ = 0
lowerCamelCase_ = 1
lowerCamelCase_ = 1 # this will be return
for _ in range(n - 1 ):
lowerCamelCase_ = ans
ans += fiba
lowerCamelCase_ = tmp
return ans
| 29 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
A_ = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase ( lowerCAmelCase ):
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `max_length` value of the model configuration.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `num_beams` value of the model configuration.'
)
} , )
a__: Optional[Union[str, Path, GenerationConfig]] = field(
default=lowerCAmelCase , metadata={
'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'
} , )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = v.to_dict()
return d
| 29 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = 0
lowerCamelCase_ = len(lowerCAmelCase__ ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
lowerCamelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(lowerCAmelCase__ ):
return None
lowerCamelCase_ = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
lowerCamelCase_ = left
lowerCamelCase_ = point
elif point > right:
lowerCamelCase_ = right
lowerCamelCase_ = point
else:
if item < current_item:
lowerCamelCase_ = point - 1
else:
lowerCamelCase_ = point + 1
return None
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
lowerCamelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(lowerCAmelCase__ ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
elif point > right:
return interpolation_search_by_recursion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,point - 1 )
else:
return interpolation_search_by_recursion(
lowerCAmelCase__ ,lowerCAmelCase__ ,point + 1 ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
if collection != sorted(lowerCAmelCase__ ):
raise ValueError('''Collection must be ascending sorted''' )
return True
if __name__ == "__main__":
import sys
A_ = 0
if debug == 1:
A_ = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("""Sequence must be ascending sorted to apply interpolation search""")
A_ = 67
A_ = interpolation_search(collection, target)
if result is not None:
print(f"{target} found at positions: {result}")
else:
print("""Not found""")
| 29 |
"""simple docstring"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
A_ = True
except ImportError:
A_ = False
try:
from torch.hub import _get_torch_home
A_ = _get_torch_home()
except ImportError:
A_ = os.path.expanduser(
os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch"""))
)
A_ = os.path.join(torch_cache_home, """transformers""")
A_ = """https://cdn.huggingface.co"""
A_ = """https://s3.amazonaws.com/models.huggingface.co/bert"""
A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1])
A_ = os.path.join(PATH, """config.yaml""")
A_ = os.path.join(PATH, """attributes.txt""")
A_ = os.path.join(PATH, """objects.txt""")
A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path)
A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE)
A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE)
A_ = """pytorch_model.bin"""
A_ = """config.yaml"""
def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ):
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = OrderedDict()
with open(lowerCAmelCase__ ,'''rb''' ) as f:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
lowerCamelCase_ = ckp.pop(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ )
else:
assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ )
lowerCamelCase_ = v
return r
class __lowerCamelCase :
a__: Union[str, Any] = {}
def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ):
lowerCamelCase_ = name
lowerCamelCase_ = level
lowerCamelCase_ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 )
lowerCamelCase_ = v
setattr(self , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = d
def __repr__( self ):
return str(list((self._pointer.keys()) ) )
def __setattr__( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = val
lowerCamelCase_ = val
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ = len(UpperCAmelCase ) - 1
lowerCamelCase_ = self._pointer
if len(UpperCAmelCase ) > 1:
for i, l in enumerate(UpperCAmelCase ):
if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ):
setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase )
if l == last_level:
lowerCamelCase_ = val
else:
lowerCamelCase_ = pointer[l]
def UpperCAmelCase__ ( self ):
return self._pointer
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
json.dump(UpperCAmelCase , UpperCAmelCase )
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase ):
with open(UpperCAmelCase ) as stream:
lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase )
return data
def __str__( self ):
lowerCamelCase_ = ''' '''
if self._name != "root":
lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n"
else:
lowerCamelCase_ = ''''''
lowerCamelCase_ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n"
lowerCamelCase_ = level
return r[:-1]
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
return cls(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase )
if os.path.isdir(UpperCAmelCase ):
lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase )
elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ):
lowerCamelCase_ = pretrained_model_name_or_path
else:
lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase )
try:
# Load from URL or cache if already cached
lowerCamelCase_ = cached_path(
UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowerCamelCase_ = Config.load_yaml(UpperCAmelCase )
except EnvironmentError:
lowerCamelCase_ = '''Can\'t load config for'''
raise EnvironmentError(UpperCAmelCase )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(UpperCAmelCase ), kwargs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device )
lowerCamelCase_ = in_tensor.numpy()
lowerCamelCase_ = out_tensor.numpy()[0]
print(na.shape ,na[0, 0, :5] )
print(na.shape ,na[0, 0, :5] )
assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), (
f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %"
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = urlparse(lowerCAmelCase__ )
return parsed.scheme in ("http", "https")
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ):
lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowerCamelCase_ = '''/''' not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,):
lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + user_agent
lowerCamelCase_ = {'''user-agent''': ua}
if resume_size > 0:
lowerCamelCase_ = '''bytes=%d-''' % (resume_size,)
lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ )
if response.status_code == 416: # Range not satisfiable
return
lowerCamelCase_ = response.headers.get('''Content-Length''' )
lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None
lowerCamelCase_ = tqdm(
unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,)
for chunk in response.iter_content(chunk_size=1_024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowerCAmelCase__ ) )
temp_file.write(lowerCAmelCase__ )
progress.close()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = None
if not local_files_only:
try:
lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ )
if response.status_code == 200:
lowerCamelCase_ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ )
# get cache path to put the file
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowerCAmelCase__ ):
return cache_path
else:
lowerCamelCase_ = [
file
for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(lowerCAmelCase__ ) > 0:
return os.path.join(lowerCAmelCase__ ,matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowerCamelCase_ = cache_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
# If the download just completed while the lock was activated.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowerCamelCase_ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(lowerCAmelCase__ ,'''a+b''' ) as f:
yield f
lowerCamelCase_ = _resumable_file_manager
if os.path.exists(lowerCAmelCase__ ):
lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size
else:
lowerCamelCase_ = 0
else:
lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ )
lowerCamelCase_ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,)
http_get(
lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,)
os.replace(temp_file.name ,lowerCAmelCase__ )
lowerCamelCase_ = {'''url''': url, '''etag''': etag}
lowerCamelCase_ = cache_path + '''.json'''
with open(lowerCAmelCase__ ,'''w''' ) as meta_file:
json.dump(lowerCAmelCase__ ,lowerCAmelCase__ )
return cache_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ):
lowerCamelCase_ = url.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
lowerCamelCase_ = url_hash.hexdigest()
if etag:
lowerCamelCase_ = etag.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if is_remote_url(lowerCAmelCase__ ):
# URL, so get it from the cache (downloading if necessary)
lowerCamelCase_ = get_from_cache(
lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,)
elif os.path.exists(lowerCAmelCase__ ):
# File, and it exists.
lowerCamelCase_ = url_or_filename
elif urlparse(lowerCAmelCase__ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) )
if extract_compressed_file:
if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ )
lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted'''
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowerCamelCase_ = output_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ )
if is_zipfile(lowerCAmelCase__ ):
with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file:
zip_file.extractall(lowerCAmelCase__ )
zip_file.close()
elif tarfile.is_tarfile(lowerCAmelCase__ ):
lowerCamelCase_ = tarfile.open(lowerCAmelCase__ )
tar_file.extractall(lowerCAmelCase__ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) )
return output_path_extracted
return output_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = eval(f.read() )
else:
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
try:
lowerCamelCase_ = requests.json()
except Exception:
lowerCamelCase_ = req.content.decode()
assert data is not None, "could not connect"
try:
lowerCamelCase_ = eval(lowerCAmelCase__ )
except Exception:
lowerCamelCase_ = data.split('''\n''' )
req.close()
return data
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowerCAmelCase__ )
with open(lowerCAmelCase__ ,'''rb''' ) as stream:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )
lowerCamelCase_ = weights.pop('''model''' )
lowerCamelCase_ = {}
for k, v in model.items():
lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ )
if "running_var" in k:
lowerCamelCase_ = torch.tensor([0] )
lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' )
lowerCamelCase_ = zero
return new
def lowercase ( ):
print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
lowerCamelCase_ = cva.imread(lowerCAmelCase__ )
else:
lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ )
assert img is not None, f"could not connect to: {im}"
lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowerCamelCase_ = img[:, :, ::-1]
return img
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ):
return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
| 29 | 1 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __lowerCamelCase ( unittest.TestCase ):
a__: Union[str, Any] = JukeboxTokenizer
a__: Dict = {
'artist': 'Zac Brown Band',
'genres': 'Country',
'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ',
}
@require_torch
def UpperCAmelCase__ ( self ):
import torch
lowerCamelCase_ = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' )
lowerCamelCase_ = tokenizer(**self.metas )['''input_ids''']
# fmt: off
lowerCamelCase_ = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase__ ( self ):
import torch
lowerCamelCase_ = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' )
lowerCamelCase_ = tokenizer(**self.metas )['''input_ids''']
# fmt: off
lowerCamelCase_ = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 29 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
A_ = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
a__: int = field(
default=1024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} )
a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
lowerCamelCase_ = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowerCamelCase_ = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __lowerCamelCase :
a__: str = field(
default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
a__: str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,)
lowerCamelCase_ = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
datasets.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCamelCase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCamelCase_ = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowerCamelCase_ = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowerCamelCase_ = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names
lowerCamelCase_ = len(lowerCAmelCase__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# load tapex tokenizer
lowerCamelCase_ = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,)
lowerCamelCase_ = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# Padding strategy
if data_args.pad_to_max_length:
lowerCamelCase_ = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCamelCase_ = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1}
lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length )
def preprocess_tabfact_function(lowerCAmelCase__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowerCAmelCase__ ):
lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] )
return _table_pd
lowerCamelCase_ = examples['''statement''']
lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) )
lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ )
lowerCamelCase_ = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
lowerCamelCase_ = raw_datasets.map(
lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
lowerCamelCase_ = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCAmelCase__ ):
lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCamelCase_ = default_data_collator
elif training_args.fpaa:
lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 )
else:
lowerCamelCase_ = None
# Initialize our Trainer
lowerCamelCase_ = Trainer(
model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,)
# Training
if training_args.do_train:
lowerCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ = last_checkpoint
lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
lowerCamelCase_ = train_result.metrics
lowerCamelCase_ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ )
)
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ )
lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ )
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.log_metrics('''eval''' ,lowerCAmelCase__ )
trainer.save_metrics('''eval''' ,lowerCAmelCase__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowerCamelCase_ = predict_dataset.remove_columns('''label''' )
lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(lowerCAmelCase__ ,'''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(lowerCAmelCase__ ):
lowerCamelCase_ = label_list[item]
writer.write(f"{index}\t{item}\n" )
lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
A_ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""")
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = 16_000 ):
lowerCamelCase_ = int(round(sample_rate * max_length ) )
if len(lowerCAmelCase__ ) <= sample_length:
return wav
lowerCamelCase_ = randint(0 ,len(lowerCAmelCase__ ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class __lowerCamelCase :
a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'Name of a dataset from the datasets package'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A file containing the training audio paths and labels.'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A file containing the validation audio paths and labels.'} )
a__: str = field(
default='train' , metadata={
'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\''
} , )
a__: str = field(
default='validation' , metadata={
'help': (
'The name of the training data set split to use (via the datasets library). Defaults to \'validation\''
)
} , )
a__: str = field(
default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , )
a__: str = field(
default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a__: float = field(
default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , )
@dataclass
class __lowerCamelCase :
a__: str = field(
default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} )
a__: str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
a__: Optional[bool] = field(
default=lowerCAmelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , )
def UpperCAmelCase__ ( self ):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''will be removed in a future version. Use `--freeze_feature_encoder`'''
'''instead. Setting `freeze_feature_encoder==True`.''' , UpperCAmelCase , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''should not be used in combination with `--freeze_feature_encoder`.'''
'''Only make use of `--freeze_feature_encoder`.''' )
def lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_audio_classification''' ,lowerCAmelCase__ ,lowerCAmelCase__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase_ = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
lowerCamelCase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to train from scratch.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Initialize our dataset and prepare it for the audio classification task.
lowerCamelCase_ = DatasetDict()
lowerCamelCase_ = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,)
lowerCamelCase_ = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,)
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
'''Make sure to set `--audio_column_name` to the correct audio column - one of '''
f"{', '.join(raw_datasets['train'].column_names )}." )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
'''Make sure to set `--label_column_name` to the correct text column - one of '''
f"{', '.join(raw_datasets['train'].column_names )}." )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
lowerCamelCase_ = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
lowerCamelCase_ = raw_datasets.cast_column(
data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
lowerCamelCase_ = feature_extractor.model_input_names[0]
def train_transforms(lowerCAmelCase__ ):
lowerCamelCase_ = []
for audio in batch[data_args.audio_column_name]:
lowerCamelCase_ = random_subsample(
audio['''array'''] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(lowerCAmelCase__ )
lowerCamelCase_ = feature_extractor(lowerCAmelCase__ ,sampling_rate=feature_extractor.sampling_rate )
lowerCamelCase_ = {model_input_name: inputs.get(lowerCAmelCase__ )}
lowerCamelCase_ = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(lowerCAmelCase__ ):
lowerCamelCase_ = [audio['''array'''] for audio in batch[data_args.audio_column_name]]
lowerCamelCase_ = feature_extractor(lowerCAmelCase__ ,sampling_rate=feature_extractor.sampling_rate )
lowerCamelCase_ = {model_input_name: inputs.get(lowerCAmelCase__ )}
lowerCamelCase_ = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
lowerCamelCase_ = raw_datasets['''train'''].features[data_args.label_column_name].names
lowerCamelCase_ , lowerCamelCase_ = {}, {}
for i, label in enumerate(lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
lowerCamelCase_ = label
# Load the accuracy metric from the datasets package
lowerCamelCase_ = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(lowerCAmelCase__ ):
lowerCamelCase_ = np.argmax(eval_pred.predictions ,axis=1 )
return metric.compute(predictions=lowerCAmelCase__ ,references=eval_pred.label_ids )
lowerCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path ,num_labels=len(lowerCAmelCase__ ) ,labelaid=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,finetuning_task='''audio-classification''' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
lowerCamelCase_ = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,)
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
lowerCamelCase_ = (
raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(lowerCAmelCase__ ,output_all_columns=lowerCAmelCase__ )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
lowerCamelCase_ = (
raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(lowerCAmelCase__ ,output_all_columns=lowerCAmelCase__ )
# Initialize our trainer
lowerCamelCase_ = Trainer(
model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=raw_datasets['''train'''] if training_args.do_train else None ,eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,)
# Training
if training_args.do_train:
lowerCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ = last_checkpoint
lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
trainer.save_model()
trainer.log_metrics('''train''' ,train_result.metrics )
trainer.save_metrics('''train''' ,train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
lowerCamelCase_ = trainer.evaluate()
trainer.log_metrics('''eval''' ,lowerCAmelCase__ )
trainer.save_metrics('''eval''' ,lowerCAmelCase__ )
# Write model card and (optionally) push to hub
lowerCamelCase_ = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''audio-classification''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''audio-classification'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 29 |
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
lowerCamelCase_ = -(labels.shape[-1] * loss.item())
lowerCamelCase_ = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 29 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowerCamelCase_ = str(bin(lowerCAmelCase__ ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowerCamelCase_ = str(bin(lowerCAmelCase__ ) )[2:]
if shift_amount >= len(lowerCAmelCase__ ):
return "0b0"
lowerCamelCase_ = binary_number[: len(lowerCAmelCase__ ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
if number >= 0: # Get binary representation of positive number
lowerCamelCase_ = '''0''' + str(bin(lowerCAmelCase__ ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
lowerCamelCase_ = len(bin(lowerCAmelCase__ )[3:] ) # Find 2's complement of number
lowerCamelCase_ = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:]
lowerCamelCase_ = (
'''1''' + '''0''' * (binary_number_length - len(lowerCAmelCase__ )) + binary_number
)
if shift_amount >= len(lowerCAmelCase__ ):
return "0b" + binary_number[0] * len(lowerCAmelCase__ )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(lowerCAmelCase__ ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ )
for row_idx in range(lowerCAmelCase__ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] ,end=''' ''' )
else:
print(triangle[row_idx][col_idx] ,end='''''' )
print()
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowerCamelCase_ = []
for current_row_idx in range(lowerCAmelCase__ ):
lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ )
triangle.append(lowerCAmelCase__ )
return triangle
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
lowerCamelCase_ , lowerCamelCase_ = 1, 1
for current_col_idx in range(1 ,lowerCAmelCase__ ):
calculate_current_element(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
return current_row
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,):
lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1]
lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx]
lowerCamelCase_ = above_to_left_elt + above_to_right_elt
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowerCamelCase_ = [[1]]
for row_index in range(1 ,lowerCAmelCase__ ):
lowerCamelCase_ = [0] + result[-1] + [0]
lowerCamelCase_ = row_index + 1
# Calculate the number of distinct elements in a row
lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) )
lowerCamelCase_ = [
temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 )
]
lowerCamelCase_ = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
lowerCamelCase_ = row_first_half + row_second_half
result.append(lowerCAmelCase__ )
return result
def lowercase ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None:
lowerCamelCase_ = f"{func.__name__}({value})"
lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 29 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
if not grid or not grid[0]:
raise TypeError('''The grid does not contain the appropriate information''' )
for cell_n in range(1 ,len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
lowerCamelCase_ = grid[0]
for row_n in range(1 ,len(lowerCAmelCase__ ) ):
lowerCamelCase_ = grid[row_n]
lowerCamelCase_ = fill_row(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = grid[row_n]
return grid[-1][-1]
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
current_row[0] += row_above[0]
for cell_n in range(1 ,len(lowerCAmelCase__ ) ):
current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = self.get_rust_tokenizer()
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase )
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
lowerCamelCase_ = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' )
lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = processor(text=UpperCAmelCase )
lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ = processor.batch_decode(UpperCAmelCase )
lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 29 | 1 |
"""simple docstring"""
import re
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = re.compile(
R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' )
return bool(re.search(lowerCAmelCase__ ,lowerCAmelCase__ ) )
if __name__ == "__main__":
A_ = """0094702343221"""
print(is_sri_lankan_phone_number(phone))
| 29 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
lowerCamelCase_ = [5, 5, 5, 5]
elif "fl4" in model_name:
lowerCamelCase_ = [4, 4, 4, 4]
lowerCamelCase_ = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
if "lrf" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
else:
lowerCamelCase_ = [2, 2, 2, 2]
if "tiny" in model_name:
lowerCamelCase_ = 96
elif "small" in model_name:
lowerCamelCase_ = 96
elif "base" in model_name:
lowerCamelCase_ = 128
elif "large" in model_name:
lowerCamelCase_ = 192
elif "xlarge" in model_name:
lowerCamelCase_ = 256
elif "huge" in model_name:
lowerCamelCase_ = 352
# set label information
lowerCamelCase_ = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowerCamelCase_ = '''imagenet-22k-id2label.json'''
else:
lowerCamelCase_ = '''imagenet-1k-id2label.json'''
lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) )
lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
lowerCamelCase_ = FocalNetConfig(
embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,)
return config
def lowercase ( lowerCAmelCase__ ):
if "patch_embed.proj" in name:
lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' )
if "layers" in name:
lowerCamelCase_ = '''encoder.''' + name
if "encoder.layers" in name:
lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' )
if "downsample.proj" in name:
lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' )
if "blocks" in name:
lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' )
if name == "norm.weight":
lowerCamelCase_ = '''layernorm.weight'''
if name == "norm.bias":
lowerCamelCase_ = '''layernorm.bias'''
if "head" in name:
lowerCamelCase_ = name.replace('''head''' ,'''classifier''' )
else:
lowerCamelCase_ = '''focalnet.''' + name
return name
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ):
# fmt: off
lowerCamelCase_ = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowerCamelCase_ = model_name_to_url[model_name]
print('''Checkpoint URL: ''' ,lowerCAmelCase__ )
lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ )
lowerCamelCase_ = val
lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ )
lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ )
model.eval()
# load state dict
model.load_state_dict(lowerCAmelCase__ )
# verify conversion
lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ = BitImageProcessor(
do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,)
lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw )
lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' )
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ),
] )
lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 )
lowerCamelCase_ = model(**lowerCAmelCase__ )
lowerCamelCase_ = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' ,outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub..." )
model.push_to_hub(f"{model_name}" )
processor.push_to_hub(f"{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
A_ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 29 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
A_ = logging.get_logger(__name__)
class __lowerCamelCase ( lowerCAmelCase ):
a__: Any = ['input_features', 'attention_mask']
def __init__( self , UpperCAmelCase=80 , UpperCAmelCase=1_6000 , UpperCAmelCase=0.0 , UpperCAmelCase=10 , UpperCAmelCase=25 , UpperCAmelCase="hamming_window" , UpperCAmelCase=3_2_7_6_8.0 , UpperCAmelCase=0.9_7 , UpperCAmelCase=1.0 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ):
super().__init__(feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = feature_size
lowerCamelCase_ = sampling_rate
lowerCamelCase_ = padding_value
lowerCamelCase_ = hop_length
lowerCamelCase_ = win_length
lowerCamelCase_ = frame_signal_scale
lowerCamelCase_ = preemphasis_coeff
lowerCamelCase_ = mel_floor
lowerCamelCase_ = normalize_means
lowerCamelCase_ = normalize_vars
lowerCamelCase_ = win_function
lowerCamelCase_ = return_attention_mask
lowerCamelCase_ = win_length * sampling_rate // 1000
lowerCamelCase_ = hop_length * sampling_rate // 1000
lowerCamelCase_ = optimal_fft_length(self.sample_size )
lowerCamelCase_ = (self.n_fft // 2) + 1
def UpperCAmelCase__ ( self , UpperCAmelCase ):
if self.win_function == "hamming_window":
lowerCamelCase_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase )
else:
lowerCamelCase_ = window_function(window_length=self.sample_size , name=self.win_function )
lowerCamelCase_ = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
lowerCamelCase_ = spectrogram(
one_waveform * self.frame_signal_scale , window=UpperCAmelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=UpperCAmelCase , preemphasis=self.preemphasis_coeff , mel_filters=UpperCAmelCase , mel_floor=self.mel_floor , log_mel='''log''' , )
return msfc_features.T
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
# make sure we normalize float32 arrays
if self.normalize_means:
lowerCamelCase_ = x[:input_length].mean(axis=0 )
lowerCamelCase_ = np.subtract(UpperCAmelCase , UpperCAmelCase )
if self.normalize_vars:
lowerCamelCase_ = x[:input_length].std(axis=0 )
lowerCamelCase_ = np.divide(UpperCAmelCase , UpperCAmelCase )
if input_length < x.shape[0]:
lowerCamelCase_ = padding_value
# make sure array is in float32
lowerCamelCase_ = x.astype(np.floataa )
return x
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ):
lowerCamelCase_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(UpperCAmelCase , UpperCAmelCase , self.padding_value ) for x, n in zip(UpperCAmelCase , UpperCAmelCase )]
def __call__( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'''It is strongly recommended to pass the ``sampling_rate`` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
lowerCamelCase_ = isinstance(UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}" )
lowerCamelCase_ = is_batched_numpy or (
isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCamelCase_ = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ):
lowerCamelCase_ = np.asarray(UpperCAmelCase , dtype=np.floataa )
elif isinstance(UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCamelCase_ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase_ = [raw_speech]
# extract fbank features
lowerCamelCase_ = [self._extract_mfsc_features(UpperCAmelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
lowerCamelCase_ = BatchFeature({'''input_features''': features} )
lowerCamelCase_ = self.pad(
UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , )
# make sure list is in array format
lowerCamelCase_ = padded_inputs.get('''input_features''' )
if isinstance(input_features[0] , UpperCAmelCase ):
lowerCamelCase_ = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for feature in input_features]
lowerCamelCase_ = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
lowerCamelCase_ = [np.asarray(UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
lowerCamelCase_ = (
np.array(UpperCAmelCase , dtype=np.intaa )
if self._get_padding_strategies(UpperCAmelCase , max_length=UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
lowerCamelCase_ = self.normalize(
padded_inputs['''input_features'''] , attention_mask=UpperCAmelCase )
if return_tensors is not None:
lowerCamelCase_ = padded_inputs.convert_to_tensors(UpperCAmelCase )
return padded_inputs
| 29 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: Tuple = RoCBertTokenizer
a__: int = None
a__: Optional[Any] = False
a__: Optional[int] = True
a__: Tuple = filter_non_english
def UpperCAmelCase__ ( self ):
super().setUp()
lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d''']
lowerCamelCase_ = {}
lowerCamelCase_ = {}
for i, value in enumerate(UpperCAmelCase ):
lowerCamelCase_ = i
lowerCamelCase_ = i
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
lowerCamelCase_ = {}
for i, token in enumerate(UpperCAmelCase ):
lowerCamelCase_ = i
lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
lowerCamelCase_ = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def UpperCAmelCase__ ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
lowerCamelCase_ = tokenizer_r.encode_plus(
UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , )
lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False
lowerCamelCase_ = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''的''', '''人''', '''有''']
lowerCamelCase_ = ''''''.join(UpperCAmelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = True
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = False
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase )
# it is expected that only the first Chinese character is not preceded by "##".
lowerCamelCase_ = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase )
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
lowerCamelCase_ = '''你好,你是谁'''
lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.prepare_for_model(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_autoformer""": [
"""AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AutoformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AutoformerForPrediction""",
"""AutoformerModel""",
"""AutoformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
A_ = datasets.logging.get_logger(__name__)
A_ = """\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",
author = \"Moosavi, Nafise Sadat and
Strube, Michael\",
booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",
month = aug,
year = \"2016\",
address = \"Berlin, Germany\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/P16-1060\",
doi = \"10.18653/v1/P16-1060\",
pages = \"632--642\",
}
"""
A_ = """\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
"""
A_ = """
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting 'keep_singletons=False', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
'mentions': mentions
'muc': MUC metric [Vilain et al, 1995]
'bcub': B-cubed [Bagga and Baldwin, 1998]
'ceafe': CEAFe [Luo et al., 2005]
'lea': LEA [Moosavi and Strube, 2016]
'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric('coval')
>>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',
... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',
... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',
... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',
... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',
... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{'mentions/recall': 1.0,[...] 'conll_score': 100.0}
"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ):
lowerCamelCase_ = {doc: key_lines}
lowerCamelCase_ = {doc: sys_lines}
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ )
key_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ )
sys_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
if remove_nested:
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'''Number of removed nested coreferring mentions in the key '''
f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" )
logger.info(
'''Number of resulting singleton clusters in the key '''
f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" )
if not keep_singletons:
logger.info(
f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system "
'''files, respectively''' )
return doc_coref_infos
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for name, metric in metrics:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} )
logger.info(
name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,)
if conll_subparts_num == 3:
lowerCamelCase_ = (conll / 3) * 100
logger.info(f"CoNLL score: {conll:.2f}" )
output_scores.update({'''conll_score''': conll} )
return output_scores
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = False
for line in key_lines:
if not line.startswith('''#''' ):
if len(line.split() ) > 6:
lowerCamelCase_ = line.split()[5]
if not parse_col == "-":
lowerCamelCase_ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Sequence(datasets.Value('''string''' ) ),
} ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[
'''https://github.com/ns-moosavi/coval''',
'''https://www.aclweb.org/anthology/P16-1060''',
'''http://www.conll.cemantix.org/2012/data.html''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ):
lowerCamelCase_ = [
('''mentions''', evaluator.mentions),
('''muc''', evaluator.muc),
('''bcub''', evaluator.b_cubed),
('''ceafe''', evaluator.ceafe),
('''lea''', evaluator.lea),
]
if min_span:
lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
lowerCamelCase_ = evaluate(
key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , )
return score
| 29 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
A_ = False
class __lowerCamelCase ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = pipe(
image=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
lowerCamelCase_ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 29 |
"""simple docstring"""
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(UpperCAmelCase , UpperCAmelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = {
'''max_new_tokens''': 1024,
'''foo''': '''bar''',
}
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = generation_config.update(**UpperCAmelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , UpperCAmelCase )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , UpperCAmelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ ( cls ):
lowerCamelCase_ = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
| 29 | 1 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
A_ = {
"""cola""": 2,
"""mnli""": 3,
"""mrpc""": 2,
"""sst-2""": 2,
"""sts-b""": 1,
"""qqp""": 2,
"""qnli""": 2,
"""rte""": 2,
"""wnli""": 2,
}
logging.set_verbosity_info()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ):
# Initialise PyTorch model
lowerCamelCase_ = XLNetConfig.from_json_file(lowerCAmelCase__ )
lowerCamelCase_ = finetuning_task.lower() if finetuning_task is not None else ''''''
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" )
lowerCamelCase_ = finetuning_task
lowerCamelCase_ = GLUE_TASKS_NUM_LABELS[finetuning_task]
lowerCamelCase_ = XLNetForSequenceClassification(lowerCAmelCase__ )
elif "squad" in finetuning_task:
lowerCamelCase_ = finetuning_task
lowerCamelCase_ = XLNetForQuestionAnswering(lowerCAmelCase__ )
else:
lowerCamelCase_ = XLNetLMHeadModel(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
# Save pytorch-model
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
print(f"Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}" )
torch.save(model.state_dict() ,lowerCAmelCase__ )
print(f"Save configuration file to {os.path.abspath(lowerCAmelCase__ )}" )
with open(lowerCAmelCase__ ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--xlnet_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained XLNet model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the folder to store the PyTorch model or dataset/vocab.""",
)
parser.add_argument(
"""--finetuning_task""",
default=None,
type=str,
help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""",
)
A_ = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 29 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __lowerCamelCase :
a__: List[str]
a__: Optional[str] = None
# Automatically constructed
a__: ClassVar[str] = "dict"
a__: ClassVar[Any] = None
a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase )
def __call__( self ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def UpperCAmelCase__ ( self ):
from .features import Value
return {k: Value('''string''' ) for k in sorted(self.languages )}
@dataclass
class __lowerCamelCase :
a__: Optional[List] = None
a__: Optional[int] = None
a__: Optional[str] = None
# Automatically constructed
a__: ClassVar[str] = "dict"
a__: ClassVar[Any] = None
a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None
lowerCamelCase_ = len(self.languages ) if self.languages else None
def __call__( self ):
return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = set(self.languages )
if self.languages and set(UpperCAmelCase ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
lowerCamelCase_ = []
for lang, text in translation_dict.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def UpperCAmelCase__ ( self ):
from .features import Sequence, Value
return {
"language": Sequence(Value('''string''' ) ),
"translation": Sequence(Value('''string''' ) ),
}
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_time_series_transformer""": [
"""TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""TimeSeriesTransformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TimeSeriesTransformerForPrediction""",
"""TimeSeriesTransformerModel""",
"""TimeSeriesTransformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
A_ = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A_ = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 29 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [True] * n
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = True
for i in range(3 ,int(n**0.5 + 1 ) ,2 ):
lowerCamelCase_ = i * 2
while index < n:
lowerCamelCase_ = False
lowerCamelCase_ = index + i
lowerCamelCase_ = [2]
for i in range(3 ,lowerCAmelCase__ ,2 ):
if is_prime[i]:
primes.append(lowerCAmelCase__ )
return primes
def lowercase ( lowerCAmelCase__ = 999_966_663_333 ):
lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100
lowerCamelCase_ = prime_sieve(lowerCAmelCase__ )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = primes[prime_index]
while (last_prime**2) <= limit:
lowerCamelCase_ = primes[prime_index + 1]
lowerCamelCase_ = last_prime**2
lowerCamelCase_ = next_prime**2
# Get numbers divisible by lps(current)
lowerCamelCase_ = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
lowerCamelCase_ = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
lowerCamelCase_ = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
lowerCamelCase_ = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 29 | 1 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = f"Input value of [number={number}] must be an integer"
raise TypeError(lowerCAmelCase__ )
if number < 1:
lowerCamelCase_ = f"Input value of [number={number}] must be > 0"
raise ValueError(lowerCAmelCase__ )
elif number == 1:
return 3
elif number == 2:
return 5
else:
lowerCamelCase_ = int(math.log(number // 3 ,2 ) ) + 2
lowerCamelCase_ = [3, 5]
lowerCamelCase_ = 2
lowerCamelCase_ = 3
for block in range(1 ,lowerCAmelCase__ ):
for _ in range(lowerCAmelCase__ ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
A_ = 0
try:
A_ = proth(number)
except ValueError:
print(f"ValueError: there is no {number}th Proth number")
continue
print(f"The {number}th Proth number: {value}")
| 29 |
"""simple docstring"""
import os
from collections import namedtuple
import pytest
from datasets import ClassLabel, Features, Sequence, Value
from datasets.commands.test import TestCommand
from datasets.info import DatasetInfo, DatasetInfosDict
A_ = namedtuple(
"""_TestCommandArgs""",
[
"""dataset""",
"""name""",
"""cache_dir""",
"""data_dir""",
"""all_configs""",
"""save_infos""",
"""ignore_verifications""",
"""force_redownload""",
"""clear_cache""",
],
defaults=[None, None, None, False, False, False, False, False],
)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return (abs(source - target ) / target) < 0.01
@pytest.mark.integration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ )
lowerCamelCase_ = TestCommand(*lowerCAmelCase__ )
test_command.run()
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' )
assert os.path.exists(lowerCAmelCase__ )
lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ )
lowerCamelCase_ = DatasetInfosDict(
{
'''default''': DatasetInfo(
features=Features(
{
'''tokens''': Sequence(Value('''string''' ) ),
'''ner_tags''': Sequence(
ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ),
'''langs''': Sequence(Value('''string''' ) ),
'''spans''': Sequence(Value('''string''' ) ),
} ) ,splits=[
{
'''name''': '''train''',
'''num_bytes''': 2_351_563,
'''num_examples''': 10_000,
},
{
'''name''': '''validation''',
'''num_bytes''': 238_418,
'''num_examples''': 1_000,
},
] ,download_size=3_940_680 ,dataset_size=2_589_981 ,)
} )
assert dataset_infos.keys() == expected_dataset_infos.keys()
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ )
if key == "num_bytes":
assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ )
elif key == "splits":
assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ )
for split in result:
assert result[split].name == expected[split].name
assert result[split].num_examples == expected[split].num_examples
assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes )
else:
result == expected
| 29 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
@require_tokenizers
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: Optional[int] = MvpTokenizer
a__: List[str] = MvpTokenizerFast
a__: Dict = True
a__: Any = filter_roberta_detectors
def UpperCAmelCase__ ( self ):
super().setUp()
lowerCamelCase_ = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
lowerCamelCase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowerCamelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
lowerCamelCase_ = {'''unk_token''': '''<unk>'''}
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(UpperCAmelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(UpperCAmelCase ) )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
return "lower newer", "lower newer"
@cached_property
def UpperCAmelCase__ ( self ):
return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' )
@cached_property
def UpperCAmelCase__ ( self ):
return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' )
@require_torch
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
lowerCamelCase_ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase_ = tokenizer(UpperCAmelCase , max_length=len(UpperCAmelCase ) , padding=UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
lowerCamelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
# Test that special tokens are reset
@require_torch
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' )
# check if input_ids are returned and no labels
self.assertIn('''input_ids''' , UpperCAmelCase )
self.assertIn('''attention_mask''' , UpperCAmelCase )
self.assertNotIn('''labels''' , UpperCAmelCase )
self.assertNotIn('''decoder_attention_mask''' , UpperCAmelCase )
@require_torch
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase_ = tokenizer(text_target=UpperCAmelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def UpperCAmelCase__ ( self ):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase_ = tokenizer(
['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(batch.input_ids.shape , (2, 1024) )
@require_torch
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''A long paragraph for summarization.''']
lowerCamelCase_ = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
lowerCamelCase_ = tokenizer(UpperCAmelCase , text_target=UpperCAmelCase , return_tensors='''pt''' )
lowerCamelCase_ = inputs['''input_ids''']
lowerCamelCase_ = inputs['''labels''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
def UpperCAmelCase__ ( self ):
pass
def UpperCAmelCase__ ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = '''A, <mask> AllenNLP sentence.'''
lowerCamelCase_ = tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(
UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 29 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
A_ = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
A_ = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
A_ = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ):
if concatenate_texts:
return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"]
else:
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 29 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ):
lowerCamelCase_ = '''backbone.''' if is_semantic else ''''''
lowerCamelCase_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append(
(f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
(f"{prefix}cls_token", '''beit.embeddings.cls_token'''),
(f"{prefix}patch_embed.proj.weight", '''beit.embeddings.patch_embeddings.projection.weight'''),
(f"{prefix}patch_embed.proj.bias", '''beit.embeddings.patch_embeddings.projection.bias'''),
(f"{prefix}pos_embed", '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ):
for i in range(config.num_hidden_layers ):
lowerCamelCase_ = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight" )
lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias" )
lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias" )
lowerCamelCase_ = in_proj_weight[
: config.hidden_size, :
]
lowerCamelCase_ = q_bias
lowerCamelCase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase_ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase_ = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.gamma_1" )
lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.gamma_2" )
lowerCamelCase_ = gamma_a
lowerCamelCase_ = gamma_a
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = dct.pop(lowerCAmelCase__ )
lowerCamelCase_ = val
def lowercase ( ):
lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ):
lowerCamelCase_ = False if '''rvlcdip''' in checkpoint_url else True
lowerCamelCase_ = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase__ ,use_mask_token=lowerCAmelCase__ )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowerCamelCase_ = 1_024
lowerCamelCase_ = 4_096
lowerCamelCase_ = 24
lowerCamelCase_ = 16
# labels
if "rvlcdip" in checkpoint_url:
lowerCamelCase_ = 16
lowerCamelCase_ = '''huggingface/label-files'''
lowerCamelCase_ = '''rvlcdip-id2label.json'''
lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) )
lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
lowerCamelCase_ = idalabel
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
lowerCamelCase_ = create_rename_keys(lowerCAmelCase__ ,has_lm_head=lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ ,lowerCAmelCase__ ,has_lm_head=lowerCAmelCase__ )
# load HuggingFace model
lowerCamelCase_ = BeitForMaskedImageModeling(lowerCAmelCase__ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase__ )
model.eval()
model.load_state_dict(lowerCAmelCase__ )
# Check outputs on an image
lowerCamelCase_ = BeitImageProcessor(
size=config.image_size ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ )
lowerCamelCase_ = prepare_img()
lowerCamelCase_ = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' )
lowerCamelCase_ = encoding['''pixel_values''']
lowerCamelCase_ = model(lowerCAmelCase__ )
lowerCamelCase_ = outputs.logits
# verify logits
lowerCamelCase_ = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(lowerCAmelCase__ ), "Shape of logits not as expected"
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(lowerCAmelCase__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
if has_lm_head:
lowerCamelCase_ = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
lowerCamelCase_ = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(lowerCAmelCase__ ,lowerCAmelCase__ ) ,organization='''nielsr''' ,commit_message='''Add image processor''' ,use_temp_dir=lowerCAmelCase__ ,)
model.push_to_hub(
repo_path_or_name=Path(lowerCAmelCase__ ,lowerCAmelCase__ ) ,organization='''nielsr''' ,commit_message='''Add model''' ,use_temp_dir=lowerCAmelCase__ ,)
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""",
type=str,
help="""URL to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
)
A_ = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 | 1 |
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
a__: Optional[int] = StableDiffusionDiffEditPipeline
a__: Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'}
a__: Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'}
a__: str = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a__: Dict = frozenset([] )
def UpperCAmelCase__ ( self ):
torch.manual_seed(0 )
lowerCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , )
lowerCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , )
lowerCamelCase_ = DDIMInverseScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase , set_alpha_to_zero=UpperCAmelCase , )
torch.manual_seed(0 )
lowerCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
lowerCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
lowerCamelCase_ = CLIPTextModel(UpperCAmelCase )
lowerCamelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
lowerCamelCase_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ):
lowerCamelCase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
lowerCamelCase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
if str(UpperCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ = torch.manual_seed(UpperCAmelCase )
else:
lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase_ = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ):
lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase_ = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('''RGB''' )
if str(UpperCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ = torch.manual_seed(UpperCAmelCase )
else:
lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase_ = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ):
lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase_ = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('''RGB''' )
if str(UpperCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ = torch.manual_seed(UpperCAmelCase )
else:
lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase_ = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self ):
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = pipe(**UpperCAmelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = self.pipeline_class.from_pretrained(UpperCAmelCase )
pipe_loaded.to(UpperCAmelCase )
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(UpperCAmelCase , UpperCAmelCase ) is None , f"`{optional_component}` did not stay set to None after loading." , )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = pipe_loaded(**UpperCAmelCase )[0]
lowerCamelCase_ = np.abs(output - output_loaded ).max()
self.assertLess(UpperCAmelCase , 1e-4 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu'''
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_mask_inputs(UpperCAmelCase )
lowerCamelCase_ = pipe.generate_mask(**UpperCAmelCase )
lowerCamelCase_ = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
lowerCamelCase_ = np.array([0] * 9 )
lowerCamelCase_ = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCAmelCase , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu'''
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inversion_inputs(UpperCAmelCase )
lowerCamelCase_ = pipe.invert(**UpperCAmelCase ).images
lowerCamelCase_ = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
lowerCamelCase_ = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
lowerCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCAmelCase , 1e-3 )
def UpperCAmelCase__ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu'''
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = {'''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''beta_schedule''': '''scaled_linear'''}
lowerCamelCase_ = DPMSolverMultistepScheduler(**UpperCAmelCase )
lowerCamelCase_ = DPMSolverMultistepInverseScheduler(**UpperCAmelCase )
lowerCamelCase_ = self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inversion_inputs(UpperCAmelCase )
lowerCamelCase_ = pipe.invert(**UpperCAmelCase ).images
lowerCamelCase_ = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
lowerCamelCase_ = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
lowerCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCAmelCase , 1e-3 )
@require_torch_gpu
@slow
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCAmelCase__ ( cls ):
lowerCamelCase_ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
lowerCamelCase_ = raw_image.convert('''RGB''' ).resize((768, 768) )
lowerCamelCase_ = raw_image
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa )
lowerCamelCase_ = DDIMScheduler.from_config(pipe.scheduler.config )
lowerCamelCase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = '''a bowl of fruit'''
lowerCamelCase_ = '''a bowl of pears'''
lowerCamelCase_ = pipe.generate_mask(
image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , )
lowerCamelCase_ = pipe.invert(
prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase ).latents
lowerCamelCase_ = pipe(
prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
lowerCamelCase_ = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5e-1
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa )
lowerCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
lowerCamelCase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = '''a bowl of fruit'''
lowerCamelCase_ = '''a bowl of pears'''
lowerCamelCase_ = pipe.generate_mask(
image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , )
lowerCamelCase_ = pipe.invert(
prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase , num_inference_steps=25 , ).latents
lowerCamelCase_ = pipe(
prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
lowerCamelCase_ = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 29 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 20
lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create ramp distribution
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy()
lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy()
lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] )
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase_ = ramp_logits[1] * 1_0_0.0
# make sure at least 2 tokens are kept
lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
# check that min length is applied at length 5
lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 )
lowerCamelCase_ = 5
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] )
# check that min length is not applied anymore at length 15
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = 15
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 )
lowerCamelCase_ = 1
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 )
lowerCamelCase_ = 4
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# with processor list
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
# with processor list
def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 29 | 1 |
"""simple docstring"""
import torch
from torch import nn
class __lowerCamelCase ( nn.Module ):
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ):
super().__init__()
lowerCamelCase_ = n_token
lowerCamelCase_ = d_embed
lowerCamelCase_ = d_proj
lowerCamelCase_ = cutoffs + [n_token]
lowerCamelCase_ = [0] + self.cutoffs
lowerCamelCase_ = div_val
lowerCamelCase_ = self.cutoffs[0]
lowerCamelCase_ = len(self.cutoffs ) - 1
lowerCamelCase_ = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
lowerCamelCase_ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
lowerCamelCase_ = nn.Parameter(torch.zeros(self.n_clusters ) )
lowerCamelCase_ = nn.ModuleList()
lowerCamelCase_ = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) )
else:
self.out_projs.append(UpperCAmelCase )
self.out_layers.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) )
else:
for i in range(len(self.cutoffs ) ):
lowerCamelCase_ , lowerCamelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCamelCase_ = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) )
self.out_layers.append(nn.Linear(UpperCAmelCase , r_idx - l_idx ) )
lowerCamelCase_ = keep_order
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
if proj is None:
lowerCamelCase_ = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
lowerCamelCase_ = nn.functional.linear(UpperCAmelCase , proj.t().contiguous() )
lowerCamelCase_ = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ):
if labels is not None:
# Shift so that tokens < n predict n
lowerCamelCase_ = hidden[..., :-1, :].contiguous()
lowerCamelCase_ = labels[..., 1:].contiguous()
lowerCamelCase_ = hidden.view(-1 , hidden.size(-1 ) )
lowerCamelCase_ = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' )
else:
lowerCamelCase_ = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
lowerCamelCase_ = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
lowerCamelCase_ = labels != -100
lowerCamelCase_ = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
lowerCamelCase_ = (
-nn.functional.log_softmax(UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
lowerCamelCase_ = nn.functional.log_softmax(UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
lowerCamelCase_ , lowerCamelCase_ = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
lowerCamelCase_ , lowerCamelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCamelCase_ = self.out_layers[0].weight[l_idx:r_idx]
lowerCamelCase_ = self.out_layers[0].bias[l_idx:r_idx]
else:
lowerCamelCase_ = self.out_layers[i].weight
lowerCamelCase_ = self.out_layers[i].bias
if i == 0:
lowerCamelCase_ = torch.cat([weight_i, self.cluster_weight] , dim=0 )
lowerCamelCase_ = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCAmelCase )
biases.append(UpperCAmelCase )
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = weights[0], biases[0], self.out_projs[0]
lowerCamelCase_ = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = nn.functional.log_softmax(UpperCAmelCase , dim=1 )
if labels is None:
lowerCamelCase_ = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
lowerCamelCase_ = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
lowerCamelCase_ = 0
lowerCamelCase_ = [0] + self.cutoffs
for i in range(len(UpperCAmelCase ) - 1 ):
lowerCamelCase_ , lowerCamelCase_ = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
lowerCamelCase_ = (labels >= l_idx) & (labels < r_idx)
lowerCamelCase_ = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
lowerCamelCase_ = labels.index_select(0 , UpperCAmelCase ) - l_idx
lowerCamelCase_ = head_logprob.index_select(0 , UpperCAmelCase )
lowerCamelCase_ = hidden.index_select(0 , UpperCAmelCase )
else:
lowerCamelCase_ = hidden
if i == 0:
if labels is not None:
lowerCamelCase_ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
lowerCamelCase_ = head_logprob[:, : self.cutoffs[0]]
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = weights[i], biases[i], self.out_projs[i]
lowerCamelCase_ = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = nn.functional.log_softmax(UpperCAmelCase , dim=1 )
lowerCamelCase_ = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
lowerCamelCase_ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
lowerCamelCase_ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
lowerCamelCase_ = logprob_i
if labels is not None:
if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order:
out.index_copy_(0 , UpperCAmelCase , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def UpperCAmelCase__ ( self , UpperCAmelCase ):
if self.n_clusters == 0:
lowerCamelCase_ = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
lowerCamelCase_ , lowerCamelCase_ = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
lowerCamelCase_ , lowerCamelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCamelCase_ = self.out_layers[0].weight[l_idx:r_idx]
lowerCamelCase_ = self.out_layers[0].bias[l_idx:r_idx]
else:
lowerCamelCase_ = self.out_layers[i].weight
lowerCamelCase_ = self.out_layers[i].bias
if i == 0:
lowerCamelCase_ = torch.cat([weight_i, self.cluster_weight] , dim=0 )
lowerCamelCase_ = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCAmelCase )
biases.append(UpperCAmelCase )
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = weights[0], biases[0], self.out_projs[0]
lowerCamelCase_ = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = hidden.new_empty((head_logit.size(0 ), self.n_token) )
lowerCamelCase_ = nn.functional.log_softmax(UpperCAmelCase , dim=1 )
lowerCamelCase_ = [0] + self.cutoffs
for i in range(len(UpperCAmelCase ) - 1 ):
lowerCamelCase_ , lowerCamelCase_ = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
lowerCamelCase_ = head_logprob[:, : self.cutoffs[0]]
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = weights[i], biases[i], self.out_projs[i]
lowerCamelCase_ = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = nn.functional.log_softmax(UpperCAmelCase , dim=1 )
lowerCamelCase_ = head_logprob[:, -i] + tail_logprob_i
lowerCamelCase_ = logprob_i
return out
| 29 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def lowercase ( lowerCAmelCase__ ):
def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ):
lowerCamelCase_ = timeit.default_timer()
lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ )
lowerCamelCase_ = timeit.default_timer() - starttime
return delta
lowerCamelCase_ = func.__name__
return wrapper
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = []
lowerCamelCase_ = seq_shapes or {}
for i in range(lowerCAmelCase__ ):
lowerCamelCase_ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(lowerCAmelCase__ ,_ArrayXD ):
lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(lowerCAmelCase__ ,datasets.Value ):
if v.dtype == "string":
lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.'''
else:
lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item()
elif isinstance(lowerCAmelCase__ ,datasets.Sequence ):
while isinstance(lowerCAmelCase__ ,datasets.Sequence ):
lowerCamelCase_ = v.feature
lowerCamelCase_ = seq_shapes[k]
lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype )
lowerCamelCase_ = data
dummy_data.append((i, example) )
return dummy_data
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ )
with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer:
for key, record in dummy_data:
lowerCamelCase_ = features.encode_example(lowerCAmelCase__ )
writer.write(lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." )
lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) )
return dataset
| 29 | 1 |
"""simple docstring"""
import copy
import re
class __lowerCamelCase :
a__: Optional[Any] = 'hp'
a__: str = {}
a__: Dict = None
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = prefix
lowerCamelCase_ = defaults
cls.build_naming_info()
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ):
if len(UpperCAmelCase ) == 0:
return ""
lowerCamelCase_ = None
if any(char.isdigit() for char in word ):
raise Exception(f"Parameters should not contain numbers: '{word}' contains a number" )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(UpperCAmelCase ) + 1 ):
lowerCamelCase_ = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
lowerCamelCase_ = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(UpperCAmelCase ):
lowerCamelCase_ = ''''''
while integer != 0:
lowerCamelCase_ = chr(ord('''A''' ) + integer % 10 ) + s
integer //= 10
return s
lowerCamelCase_ = 0
while True:
lowerCamelCase_ = word + '''#''' + int_to_alphabetic(UpperCAmelCase )
if sword in info["reverse_short_word"]:
continue
else:
lowerCamelCase_ = sword
break
lowerCamelCase_ = short_word
lowerCamelCase_ = word
return short_word
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = param_name.split('''_''' )
lowerCamelCase_ = [TrialShortNamer.shortname_for_word(UpperCAmelCase , UpperCAmelCase ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
lowerCamelCase_ = ['''''', '''_''']
for separator in separators:
lowerCamelCase_ = separator.join(UpperCAmelCase )
if shortname not in info["reverse_short_param"]:
lowerCamelCase_ = shortname
lowerCamelCase_ = param_name
return shortname
return param_name
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = TrialShortNamer.shortname_for_key(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = short_name
lowerCamelCase_ = param_name
@classmethod
def UpperCAmelCase__ ( cls ):
if cls.NAMING_INFO is not None:
return
lowerCamelCase_ = {
'''short_word''': {},
'''reverse_short_word''': {},
'''short_param''': {},
'''reverse_short_param''': {},
}
lowerCamelCase_ = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = info
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase ):
cls.build_naming_info()
assert cls.PREFIX is not None
lowerCamelCase_ = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f"You should provide a default value for the param name {k} with value {v}" )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
lowerCamelCase_ = cls.NAMING_INFO['''short_param'''][k]
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = 1 if v else 0
lowerCamelCase_ = '''''' if isinstance(UpperCAmelCase , (int, float) ) else '''-'''
lowerCamelCase_ = f"{key}{sep}{v}"
name.append(UpperCAmelCase )
return "_".join(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase ):
lowerCamelCase_ = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
lowerCamelCase_ = []
else:
lowerCamelCase_ = repr.split('''_''' )
lowerCamelCase_ = {}
for value in values:
if "-" in value:
lowerCamelCase_ , lowerCamelCase_ = value.split('''-''' )
else:
lowerCamelCase_ = re.sub('''[0-9.]''' , '''''' , UpperCAmelCase )
lowerCamelCase_ = float(re.sub('''[^0-9.]''' , '''''' , UpperCAmelCase ) )
lowerCamelCase_ = cls.NAMING_INFO['''reverse_short_param'''][p_k]
lowerCamelCase_ = p_v
for k in cls.DEFAULTS:
if k not in parameters:
lowerCamelCase_ = cls.DEFAULTS[k]
return parameters
| 29 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
A_ = [
"""good first issue""",
"""feature request""",
"""wip""",
]
def lowercase ( ):
lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] )
lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' )
lowerCamelCase_ = repo.get_issues(state='''open''' )
for issue in open_issues:
lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ )
lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None
lowerCamelCase_ = dt.utcnow()
lowerCamelCase_ = (current_time - issue.updated_at).days
lowerCamelCase_ = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
A_ = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape
lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ )
lowerCamelCase_ = emb.weight.data
return lin_layer
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ):
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
remove_ignore_keys_(lowerCAmelCase__ )
lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ )
if mbart_aa and finetuned:
lowerCamelCase_ = '''relu'''
lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight''']
lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ )
model.model.load_state_dict(lowerCAmelCase__ )
if finetuned:
lowerCamelCase_ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""",
default="""facebook/mbart-large-cc25""",
type=str,
help="""Which huggingface architecture to use: mbart-large""",
)
parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""")
parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""")
A_ = parser.parse_args()
A_ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 29 | 1 |
"""simple docstring"""
import time
import warnings
from abc import ABC
from copy import deepcopy
from typing import Optional
import torch
from ..utils import add_start_docstrings, logging
A_ = logging.get_logger(__name__)
A_ = R"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
or scores for each vocabulary token after SoftMax.
kwargs (`Dict[str, Any]`, *optional*):
Additional stopping criteria specific kwargs.
Return:
`bool`. `False` indicates we should continue, `True` indicates we should stop.
"""
class __lowerCamelCase ( lowerCAmelCase ):
@add_start_docstrings(UpperCAmelCase )
def __call__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
raise NotImplementedError('''StoppingCriteria needs to be subclassed''' )
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase = None ):
lowerCamelCase_ = max_length
lowerCamelCase_ = max_position_embeddings
@add_start_docstrings(UpperCAmelCase )
def __call__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = input_ids.shape[-1]
lowerCamelCase_ = cur_len >= self.max_length
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
logger.warning_once(
'''This is a friendly reminder - the current text generation call will exceed the model\'s predefined '''
f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe "
'''exceptions, performance degradation, or nothing at all.''' )
return is_done
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase ):
warnings.warn(
'''The class `MaxNewTokensCriteria` is deprecated. '''
f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` "
'''with `max_length = start_length + max_new_tokens` instead.''' , UpperCAmelCase , )
lowerCamelCase_ = start_length
lowerCamelCase_ = max_new_tokens
lowerCamelCase_ = start_length + max_new_tokens
@add_start_docstrings(UpperCAmelCase )
def __call__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
return input_ids.shape[-1] >= self.max_length
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase = None ):
lowerCamelCase_ = max_time
lowerCamelCase_ = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(UpperCAmelCase )
def __call__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
return time.time() - self.initial_timestamp > self.max_time
class __lowerCamelCase ( lowerCAmelCase ):
@add_start_docstrings(UpperCAmelCase )
def __call__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
return any(criteria(UpperCAmelCase , UpperCAmelCase ) for criteria in self )
@property
def UpperCAmelCase__ ( self ):
for stopping_criterium in self:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
return stopping_criterium.max_length
elif isinstance(UpperCAmelCase , UpperCAmelCase ):
return stopping_criterium.max_length
return None
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = stopping_criteria.max_length
lowerCamelCase_ = deepcopy(lowerCAmelCase__ )
if stopping_max_length is not None and stopping_max_length != max_length:
warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' ,lowerCAmelCase__ )
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=lowerCAmelCase__ ) )
return new_stopping_criteria
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
A_ = logging.getLogger(__name__)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
# save results
if os.path.exists(lowerCAmelCase__ ):
if os.path.exists(os.path.join(lowerCAmelCase__ ,'''config.json''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase__ ,'''config.json''' ) ):
os.remove(os.path.join(lowerCAmelCase__ ,'''config.json''' ) )
if os.path.exists(os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin''' ) ):
os.remove(os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin''' ) )
else:
os.makedirs(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=False ):
lowerCamelCase_ = 2
if unlogit:
lowerCamelCase_ = torch.pow(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = p * torch.log(lowerCAmelCase__ )
lowerCamelCase_ = 0
return -plogp.sum(dim=-1 )
def lowercase ( lowerCAmelCase__ ):
logger.info('''lv, h >\t''' + '''\t'''.join(f"{x + 1}" for x in range(len(lowerCAmelCase__ ) ) ) )
for row in range(len(lowerCAmelCase__ ) ):
if tensor.dtype != torch.long:
logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:.5f}" for x in tensor[row].cpu().data ) )
else:
logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:d}" for x in tensor[row].cpu().data ) )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ,lowerCAmelCase__=True ,lowerCAmelCase__=None ,lowerCAmelCase__=False ):
lowerCamelCase_ , lowerCamelCase_ = model.config.num_hidden_layers, model.config.num_attention_heads
lowerCamelCase_ = torch.zeros(lowerCAmelCase__ ,lowerCAmelCase__ ).to(args.device )
lowerCamelCase_ = torch.zeros(lowerCAmelCase__ ,lowerCAmelCase__ ).to(args.device )
if head_mask is None:
lowerCamelCase_ = torch.ones(lowerCAmelCase__ ,lowerCAmelCase__ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCAmelCase__ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
lowerCamelCase_ = None
lowerCamelCase_ = 0.0
lowerCamelCase_ = 0.0
for step, inputs in enumerate(tqdm(lowerCAmelCase__ ,desc='''Iteration''' ,disable=args.local_rank not in [-1, 0] ) ):
lowerCamelCase_ = tuple(t.to(args.device ) for t in inputs )
((lowerCamelCase_) , ) = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
lowerCamelCase_ = model(lowerCAmelCase__ ,labels=lowerCAmelCase__ ,head_mask=lowerCAmelCase__ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCAmelCase__ ):
lowerCamelCase_ = entropy(attn.detach() ,lowerCAmelCase__ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCAmelCase__ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
lowerCamelCase_ = 2
lowerCamelCase_ = torch.pow(torch.pow(lowerCAmelCase__ ,lowerCAmelCase__ ).sum(-1 ) ,1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
lowerCamelCase_ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('''Attention entropies''' )
print_ad_tensor(lowerCAmelCase__ )
if compute_importance:
logger.info('''Head importance scores''' )
print_ad_tensor(lowerCAmelCase__ )
logger.info('''Head ranked by importance scores''' )
lowerCamelCase_ = torch.zeros(head_importance.numel() ,dtype=torch.long ,device=args.device )
lowerCamelCase_ = torch.arange(
head_importance.numel() ,device=args.device )
lowerCamelCase_ = head_ranks.view_as(lowerCAmelCase__ )
print_ad_tensor(lowerCAmelCase__ )
return attn_entropy, head_importance, total_loss
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,compute_entropy=lowerCAmelCase__ )
lowerCamelCase_ = 1 / loss # instead of downsteam score use the LM loss
logger.info('''Pruning: original score: %f, threshold: %f''' ,lowerCAmelCase__ ,original_score * args.masking_threshold )
lowerCamelCase_ = torch.ones_like(lowerCAmelCase__ )
lowerCamelCase_ = max(1 ,int(new_head_mask.numel() * args.masking_amount ) )
lowerCamelCase_ = original_score
while current_score >= original_score * args.masking_threshold:
lowerCamelCase_ = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
lowerCamelCase_ = float('''Inf''' )
lowerCamelCase_ = head_importance.view(-1 ).sort()[1]
if len(lowerCAmelCase__ ) <= num_to_mask:
print('''BREAK BY num_to_mask''' )
break
# mask heads
lowerCamelCase_ = current_heads_to_mask[:num_to_mask]
logger.info('''Heads to mask: %s''' ,str(current_heads_to_mask.tolist() ) )
lowerCamelCase_ = new_head_mask.view(-1 )
lowerCamelCase_ = 0.0
lowerCamelCase_ = new_head_mask.view_as(lowerCAmelCase__ )
lowerCamelCase_ = new_head_mask.clone().detach()
print_ad_tensor(lowerCAmelCase__ )
# Compute metric and head importance again
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,compute_entropy=lowerCAmelCase__ ,head_mask=lowerCAmelCase__ )
lowerCamelCase_ = 1 / loss
logger.info(
'''Masking: current score: %f, remaining heads %d (%.1f percents)''' ,lowerCAmelCase__ ,new_head_mask.sum() ,new_head_mask.sum() / new_head_mask.numel() * 100 ,)
logger.info('''Final head mask''' )
print_ad_tensor(lowerCAmelCase__ )
np.save(os.path.join(args.output_dir ,'''head_mask.npy''' ) ,head_mask.detach().cpu().numpy() )
return head_mask
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = datetime.now()
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,compute_entropy=lowerCAmelCase__ ,compute_importance=lowerCAmelCase__ ,head_mask=lowerCAmelCase__ )
lowerCamelCase_ = 1 / loss
lowerCamelCase_ = datetime.now() - before_time
lowerCamelCase_ = sum(p.numel() for p in model.parameters() )
lowerCamelCase_ = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase__ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = [
v,
]
assert sum(len(lowerCAmelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCAmelCase__ )
lowerCamelCase_ = sum(p.numel() for p in model.parameters() )
lowerCamelCase_ = datetime.now()
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = compute_heads_importance(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,compute_entropy=lowerCAmelCase__ ,compute_importance=lowerCAmelCase__ ,head_mask=lowerCAmelCase__ ,actually_pruned=lowerCAmelCase__ ,)
lowerCamelCase_ = 1 / loss
lowerCamelCase_ = datetime.now() - before_time
logger.info(
'''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' ,lowerCAmelCase__ ,lowerCAmelCase__ ,pruned_num_params / original_num_params * 100 ,)
logger.info('''Pruning: score with masking: %f score with pruning: %f''' ,lowerCAmelCase__ ,lowerCAmelCase__ )
logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' ,original_time / new_time * 100 )
save_model(lowerCAmelCase__ ,args.output_dir )
def lowercase ( ):
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--data_dir''' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' ,)
parser.add_argument(
'''--model_name_or_path''' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='''Path to pretrained model or model identifier from huggingface.co/models''' ,)
parser.add_argument(
'''--output_dir''' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='''The output directory where the model predictions and checkpoints will be written.''' ,)
# Other parameters
parser.add_argument(
'''--config_name''' ,default='''''' ,type=lowerCAmelCase__ ,help='''Pretrained config name or path if not the same as model_name_or_path''' ,)
parser.add_argument(
'''--tokenizer_name''' ,default='''''' ,type=lowerCAmelCase__ ,help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' ,)
parser.add_argument(
'''--cache_dir''' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,help='''Where do you want to store the pre-trained models downloaded from s3''' ,)
parser.add_argument(
'''--data_subset''' ,type=lowerCAmelCase__ ,default=-1 ,help='''If > 0: limit the data to a subset of data_subset instances.''' )
parser.add_argument(
'''--overwrite_output_dir''' ,action='''store_true''' ,help='''Whether to overwrite data in output directory''' )
parser.add_argument(
'''--overwrite_cache''' ,action='''store_true''' ,help='''Overwrite the cached training and evaluation sets''' )
parser.add_argument(
'''--dont_normalize_importance_by_layer''' ,action='''store_true''' ,help='''Don\'t normalize importance score by layers''' )
parser.add_argument(
'''--dont_normalize_global_importance''' ,action='''store_true''' ,help='''Don\'t normalize all importance scores between 0 and 1''' ,)
parser.add_argument(
'''--try_masking''' ,action='''store_true''' ,help='''Whether to try to mask head until a threshold of accuracy.''' )
parser.add_argument(
'''--masking_threshold''' ,default=0.9 ,type=lowerCAmelCase__ ,help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' ,)
parser.add_argument(
'''--masking_amount''' ,default=0.1 ,type=lowerCAmelCase__ ,help='''Amount to heads to masking at each masking step.''' )
parser.add_argument('''--metric_name''' ,default='''acc''' ,type=lowerCAmelCase__ ,help='''Metric to use for head masking.''' )
parser.add_argument(
'''--max_seq_length''' ,default=128 ,type=lowerCAmelCase__ ,help=(
'''The maximum total input sequence length after WordPiece tokenization. \n'''
'''Sequences longer than this will be truncated, sequences shorter padded.'''
) ,)
parser.add_argument('''--batch_size''' ,default=1 ,type=lowerCAmelCase__ ,help='''Batch size.''' )
parser.add_argument('''--seed''' ,type=lowerCAmelCase__ ,default=42 )
parser.add_argument('''--local_rank''' ,type=lowerCAmelCase__ ,default=-1 ,help='''local_rank for distributed training on gpus''' )
parser.add_argument('''--no_cuda''' ,action='''store_true''' ,help='''Whether not to use CUDA when available''' )
parser.add_argument('''--server_ip''' ,type=lowerCAmelCase__ ,default='''''' ,help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' ,type=lowerCAmelCase__ ,default='''''' ,help='''Can be used for distant debugging.''' )
lowerCamelCase_ = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=lowerCAmelCase__ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
lowerCamelCase_ = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' )
lowerCamelCase_ = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
lowerCamelCase_ = torch.device('''cuda''' ,args.local_rank )
lowerCamelCase_ = 1
torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device ,args.n_gpu ,bool(args.local_rank != -1 ) ) )
lowerCamelCase_ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
lowerCamelCase_ = nn.parallel.DistributedDataParallel(
lowerCAmelCase__ ,device_ids=[args.local_rank] ,output_device=args.local_rank ,find_unused_parameters=lowerCAmelCase__ )
elif args.n_gpu > 1:
lowerCamelCase_ = nn.DataParallel(lowerCAmelCase__ )
# Print/save training arguments
os.makedirs(args.output_dir ,exist_ok=lowerCAmelCase__ )
torch.save(lowerCAmelCase__ ,os.path.join(args.output_dir ,'''run_args.bin''' ) )
logger.info('''Training/evaluation parameters %s''' ,lowerCAmelCase__ )
# Prepare dataset
lowerCamelCase_ = np.concatenate(
[
np.loadtxt(args.data_dir ,dtype=np.intaa ),
] )
lowerCamelCase_ = (torch.from_numpy(lowerCAmelCase__ ),)
lowerCamelCase_ = TensorDataset(*lowerCAmelCase__ )
lowerCamelCase_ = RandomSampler(lowerCAmelCase__ )
lowerCamelCase_ = DataLoader(lowerCAmelCase__ ,sampler=lowerCAmelCase__ ,batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
lowerCamelCase_ = mask_heads(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
prune_heads(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 29 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCamelCase ( lowerCAmelCase ):
a__: Any = (DDPMScheduler,)
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
lowerCamelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCAmelCase )
return config
def UpperCAmelCase__ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
self.check_over_configs(thresholding=UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase )
lowerCamelCase_ = scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase ):
if i == len(UpperCAmelCase ) - 1:
lowerCamelCase_ = -1
else:
lowerCamelCase_ = timesteps[i + 1]
lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase )
lowerCamelCase_ = prev_t.item()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
lowerCamelCase_ = len(UpperCAmelCase )
with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
lowerCamelCase_ = field
lowerCamelCase_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
lowerCamelCase_ = Json(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , field=UpperCAmelCase , **UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
# Build iterable dataset
if self.streaming:
lowerCamelCase_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
lowerCamelCase_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class __lowerCamelCase :
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
if num_proc is not None and num_proc <= 0:
raise ValueError(f"num_proc {num_proc} must be an integer > 0." )
lowerCamelCase_ = dataset
lowerCamelCase_ = path_or_buf
lowerCamelCase_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
lowerCamelCase_ = num_proc
lowerCamelCase_ = '''utf-8'''
lowerCamelCase_ = to_json_kwargs
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.to_json_kwargs.pop('''path_or_buf''' , UpperCAmelCase )
lowerCamelCase_ = self.to_json_kwargs.pop('''orient''' , '''records''' )
lowerCamelCase_ = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False )
lowerCamelCase_ = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True )
lowerCamelCase_ = self.to_json_kwargs.pop('''compression''' , UpperCAmelCase )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(f"`datasets` currently does not support {compression} compression" )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , '''wb''' , compression=UpperCAmelCase ) as buffer:
lowerCamelCase_ = self._write(file_obj=UpperCAmelCase , orient=UpperCAmelCase , lines=UpperCAmelCase , index=UpperCAmelCase , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
f"The compression parameter is not supported when writing to a buffer, but compression={compression}"
''' was passed. Please provide a local path instead.''' )
lowerCamelCase_ = self._write(
file_obj=self.path_or_buf , orient=UpperCAmelCase , lines=UpperCAmelCase , index=UpperCAmelCase , **self.to_json_kwargs )
return written
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = args
lowerCamelCase_ = query_table(
table=self.dataset.data , key=slice(UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , )
lowerCamelCase_ = batch.to_pandas().to_json(
path_or_buf=UpperCAmelCase , orient=UpperCAmelCase , lines=UpperCAmelCase , index=UpperCAmelCase , **UpperCAmelCase )
if not json_str.endswith('''\n''' ):
json_str += "\n"
return json_str.encode(self.encoding )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ):
lowerCamelCase_ = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
lowerCamelCase_ = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(UpperCAmelCase )
else:
lowerCamelCase_ , lowerCamelCase_ = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase , UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
written += file_obj.write(UpperCAmelCase )
return written
| 29 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
A_ = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase ( lowerCAmelCase ):
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `max_length` value of the model configuration.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `num_beams` value of the model configuration.'
)
} , )
a__: Optional[Union[str, Path, GenerationConfig]] = field(
default=lowerCAmelCase , metadata={
'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'
} , )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = v.to_dict()
return d
| 29 | 1 |
"""simple docstring"""
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
A_ = get_logger(__name__)
A_ = Path(__file__).parent / """model_card_template.md"""
A_ = uuida().hex
A_ = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES
A_ = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES
A_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/"""
def lowercase ( lowerCAmelCase__ = None ):
lowerCamelCase_ = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f"; torch/{_torch_version}"
if is_flax_available():
ua += f"; jax/{_jax_version}"
ua += f"; flax/{_flax_version}"
if is_onnx_available():
ua += f"; onnxruntime/{_onnxruntime_version}"
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' ,'''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + user_agent
return ua
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ):
if token is None:
lowerCamelCase_ = HfFolder.get_token()
if organization is None:
lowerCamelCase_ = whoami(lowerCAmelCase__ )['''name''']
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(lowerCAmelCase__ ,'''local_rank''' ) and args.local_rank not in [-1, 0]:
return
lowerCamelCase_ = args.hub_token if hasattr(lowerCAmelCase__ ,'''hub_token''' ) else None
lowerCamelCase_ = get_full_repo_name(lowerCAmelCase__ ,token=lowerCAmelCase__ )
lowerCamelCase_ = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' ,license='''apache-2.0''' ,library_name='''diffusers''' ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=lowerCAmelCase__ ,model_name=lowerCAmelCase__ ,repo_name=lowerCAmelCase__ ,dataset_name=args.dataset_name if hasattr(lowerCAmelCase__ ,'''dataset_name''' ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(lowerCAmelCase__ ,'''gradient_accumulation_steps''' ) else None
) ,adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ ,'''adam_beta1''' ) else None ,adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ ,'''adam_beta2''' ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(lowerCAmelCase__ ,'''adam_weight_decay''' ) else None ,adam_epsilon=args.adam_epsilon if hasattr(lowerCAmelCase__ ,'''adam_epsilon''' ) else None ,lr_scheduler=args.lr_scheduler if hasattr(lowerCAmelCase__ ,'''lr_scheduler''' ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(lowerCAmelCase__ ,'''lr_warmup_steps''' ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(lowerCAmelCase__ ,'''ema_inv_gamma''' ) else None ,ema_power=args.ema_power if hasattr(lowerCAmelCase__ ,'''ema_power''' ) else None ,ema_max_decay=args.ema_max_decay if hasattr(lowerCAmelCase__ ,'''ema_max_decay''' ) else None ,mixed_precision=args.mixed_precision ,)
lowerCamelCase_ = os.path.join(args.output_dir ,'''README.md''' )
model_card.save(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ = None ):
if resolved_file is None or commit_hash is not None:
return commit_hash
lowerCamelCase_ = str(Path(lowerCAmelCase__ ).as_posix() )
lowerCamelCase_ = re.search(R'''snapshots/([^/]+)/''' ,lowerCAmelCase__ )
if search is None:
return None
lowerCamelCase_ = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(lowerCAmelCase__ ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
A_ = os.path.expanduser(
os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface"""))
)
A_ = os.path.join(hf_cache_home, """diffusers""")
def lowercase ( lowerCAmelCase__ = None ,lowerCAmelCase__ = None ):
if new_cache_dir is None:
lowerCamelCase_ = DIFFUSERS_CACHE
if old_cache_dir is None:
lowerCamelCase_ = old_diffusers_cache
lowerCamelCase_ = Path(lowerCAmelCase__ ).expanduser()
lowerCamelCase_ = Path(lowerCAmelCase__ ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
lowerCamelCase_ = new_cache_dir / old_blob_path.relative_to(lowerCAmelCase__ )
new_blob_path.parent.mkdir(parents=lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
os.replace(lowerCAmelCase__ ,lowerCAmelCase__ )
try:
os.symlink(lowerCAmelCase__ ,lowerCAmelCase__ )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
A_ = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""")
if not os.path.isfile(cache_version_file):
A_ = 0
else:
with open(cache_version_file) as f:
try:
A_ = int(f.read())
except ValueError:
A_ = 0
if cache_version < 1:
A_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"""The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """
"""existing cached models. This is a one-time operation, you can interrupt it or run it """
"""later by calling `diffusers.utils.hub_utils.move_cache()`."""
)
try:
move_cache()
except Exception as e:
A_ = """\n""".join(traceback.format_tb(e.__traceback__))
logger.error(
f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease "
"""file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """
"""message and we will do our best to help."""
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, """w""") as f:
f.write("""1""")
except Exception:
logger.warning(
f"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure "
"""the directory exists and can be written to."""
)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ = None ):
if variant is not None:
lowerCamelCase_ = weights_name.split('''.''' )
lowerCamelCase_ = splits[:-1] + [variant] + splits[-1:]
lowerCamelCase_ = '''.'''.join(lowerCAmelCase__ )
return weights_name
def lowercase ( lowerCAmelCase__ ,*,
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,):
lowerCamelCase_ = str(lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
return pretrained_model_name_or_path
elif os.path.isdir(lowerCAmelCase__ ):
if os.path.isfile(os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ):
# Load from a PyTorch checkpoint
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ):
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
return model_file
else:
raise EnvironmentError(
f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(lowerCAmelCase__ ).base_version ) >= version.parse('''0.20.0''' )
):
try:
lowerCamelCase_ = hf_hub_download(
lowerCAmelCase__ ,filename=_add_variant(lowerCAmelCase__ ,lowerCAmelCase__ ) ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,use_auth_token=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,subfolder=lowerCAmelCase__ ,revision=revision or commit_hash ,)
warnings.warn(
f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." ,lowerCAmelCase__ ,)
return model_file
except: # noqa: E722
warnings.warn(
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(lowerCAmelCase__ ,lowerCAmelCase__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(lowerCAmelCase__ ,lowerCAmelCase__ )}' so that the correct variant file can be added." ,lowerCAmelCase__ ,)
try:
# 2. Load model file as usual
lowerCamelCase_ = hf_hub_download(
lowerCAmelCase__ ,filename=lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,use_auth_token=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,subfolder=lowerCAmelCase__ ,revision=revision or commit_hash ,)
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
'''this model name. Check the model page at '''
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." )
except EntryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." )
except HTTPError as err:
raise EnvironmentError(
f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" )
except ValueError:
raise EnvironmentError(
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
f" directory containing a file named {weights_name} or"
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
f"containing a file named {weights_name}" )
| 29 |
"""simple docstring"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
A_ = True
except ImportError:
A_ = False
try:
from torch.hub import _get_torch_home
A_ = _get_torch_home()
except ImportError:
A_ = os.path.expanduser(
os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch"""))
)
A_ = os.path.join(torch_cache_home, """transformers""")
A_ = """https://cdn.huggingface.co"""
A_ = """https://s3.amazonaws.com/models.huggingface.co/bert"""
A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1])
A_ = os.path.join(PATH, """config.yaml""")
A_ = os.path.join(PATH, """attributes.txt""")
A_ = os.path.join(PATH, """objects.txt""")
A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path)
A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE)
A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE)
A_ = """pytorch_model.bin"""
A_ = """config.yaml"""
def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ):
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = OrderedDict()
with open(lowerCAmelCase__ ,'''rb''' ) as f:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
lowerCamelCase_ = ckp.pop(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ )
else:
assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ )
lowerCamelCase_ = v
return r
class __lowerCamelCase :
a__: Union[str, Any] = {}
def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ):
lowerCamelCase_ = name
lowerCamelCase_ = level
lowerCamelCase_ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 )
lowerCamelCase_ = v
setattr(self , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = d
def __repr__( self ):
return str(list((self._pointer.keys()) ) )
def __setattr__( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = val
lowerCamelCase_ = val
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ = len(UpperCAmelCase ) - 1
lowerCamelCase_ = self._pointer
if len(UpperCAmelCase ) > 1:
for i, l in enumerate(UpperCAmelCase ):
if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ):
setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase )
if l == last_level:
lowerCamelCase_ = val
else:
lowerCamelCase_ = pointer[l]
def UpperCAmelCase__ ( self ):
return self._pointer
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
json.dump(UpperCAmelCase , UpperCAmelCase )
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase ):
with open(UpperCAmelCase ) as stream:
lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase )
return data
def __str__( self ):
lowerCamelCase_ = ''' '''
if self._name != "root":
lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n"
else:
lowerCamelCase_ = ''''''
lowerCamelCase_ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n"
lowerCamelCase_ = level
return r[:-1]
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
return cls(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase )
if os.path.isdir(UpperCAmelCase ):
lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase )
elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ):
lowerCamelCase_ = pretrained_model_name_or_path
else:
lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase )
try:
# Load from URL or cache if already cached
lowerCamelCase_ = cached_path(
UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowerCamelCase_ = Config.load_yaml(UpperCAmelCase )
except EnvironmentError:
lowerCamelCase_ = '''Can\'t load config for'''
raise EnvironmentError(UpperCAmelCase )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(UpperCAmelCase ), kwargs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device )
lowerCamelCase_ = in_tensor.numpy()
lowerCamelCase_ = out_tensor.numpy()[0]
print(na.shape ,na[0, 0, :5] )
print(na.shape ,na[0, 0, :5] )
assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), (
f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %"
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = urlparse(lowerCAmelCase__ )
return parsed.scheme in ("http", "https")
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ):
lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowerCamelCase_ = '''/''' not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,):
lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + user_agent
lowerCamelCase_ = {'''user-agent''': ua}
if resume_size > 0:
lowerCamelCase_ = '''bytes=%d-''' % (resume_size,)
lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ )
if response.status_code == 416: # Range not satisfiable
return
lowerCamelCase_ = response.headers.get('''Content-Length''' )
lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None
lowerCamelCase_ = tqdm(
unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,)
for chunk in response.iter_content(chunk_size=1_024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowerCAmelCase__ ) )
temp_file.write(lowerCAmelCase__ )
progress.close()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = None
if not local_files_only:
try:
lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ )
if response.status_code == 200:
lowerCamelCase_ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ )
# get cache path to put the file
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowerCAmelCase__ ):
return cache_path
else:
lowerCamelCase_ = [
file
for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(lowerCAmelCase__ ) > 0:
return os.path.join(lowerCAmelCase__ ,matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowerCamelCase_ = cache_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
# If the download just completed while the lock was activated.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowerCamelCase_ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(lowerCAmelCase__ ,'''a+b''' ) as f:
yield f
lowerCamelCase_ = _resumable_file_manager
if os.path.exists(lowerCAmelCase__ ):
lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size
else:
lowerCamelCase_ = 0
else:
lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ )
lowerCamelCase_ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,)
http_get(
lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,)
os.replace(temp_file.name ,lowerCAmelCase__ )
lowerCamelCase_ = {'''url''': url, '''etag''': etag}
lowerCamelCase_ = cache_path + '''.json'''
with open(lowerCAmelCase__ ,'''w''' ) as meta_file:
json.dump(lowerCAmelCase__ ,lowerCAmelCase__ )
return cache_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ):
lowerCamelCase_ = url.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
lowerCamelCase_ = url_hash.hexdigest()
if etag:
lowerCamelCase_ = etag.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if is_remote_url(lowerCAmelCase__ ):
# URL, so get it from the cache (downloading if necessary)
lowerCamelCase_ = get_from_cache(
lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,)
elif os.path.exists(lowerCAmelCase__ ):
# File, and it exists.
lowerCamelCase_ = url_or_filename
elif urlparse(lowerCAmelCase__ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) )
if extract_compressed_file:
if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ )
lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted'''
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowerCamelCase_ = output_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ )
if is_zipfile(lowerCAmelCase__ ):
with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file:
zip_file.extractall(lowerCAmelCase__ )
zip_file.close()
elif tarfile.is_tarfile(lowerCAmelCase__ ):
lowerCamelCase_ = tarfile.open(lowerCAmelCase__ )
tar_file.extractall(lowerCAmelCase__ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) )
return output_path_extracted
return output_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = eval(f.read() )
else:
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
try:
lowerCamelCase_ = requests.json()
except Exception:
lowerCamelCase_ = req.content.decode()
assert data is not None, "could not connect"
try:
lowerCamelCase_ = eval(lowerCAmelCase__ )
except Exception:
lowerCamelCase_ = data.split('''\n''' )
req.close()
return data
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowerCAmelCase__ )
with open(lowerCAmelCase__ ,'''rb''' ) as stream:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )
lowerCamelCase_ = weights.pop('''model''' )
lowerCamelCase_ = {}
for k, v in model.items():
lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ )
if "running_var" in k:
lowerCamelCase_ = torch.tensor([0] )
lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' )
lowerCamelCase_ = zero
return new
def lowercase ( ):
print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
lowerCamelCase_ = cva.imread(lowerCAmelCase__ )
else:
lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ )
assert img is not None, f"could not connect to: {im}"
lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowerCamelCase_ = img[:, :, ::-1]
return img
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ):
return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
| 29 | 1 |
"""simple docstring"""
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
A_ = logging.get_logger(__name__)
A_ = {}
A_ = {}
A_ = {}
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = None ,):
lowerCamelCase_ = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" )
lowerCamelCase_ = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" )
lowerCamelCase_ = format_type
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = None ):
lowerCamelCase_ = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
lowerCamelCase_ = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=["""python"""])
_register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""])
_register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""])
_register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""])
_register_formatter(CustomFormatter, """custom""")
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""])
else:
A_ = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""")
_register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""])
else:
A_ = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""")
_register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, """jax""", aliases=[])
else:
A_ = ValueError("""JAX needs to be installed to be able to return JAX arrays.""")
_register_unavailable_formatter(_jax_error, """jax""", aliases=[])
def lowercase ( lowerCAmelCase__ ):
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def lowercase ( lowerCAmelCase__ ,**lowerCAmelCase__ ):
lowerCamelCase_ = get_format_type_from_alias(lowerCAmelCase__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**lowerCAmelCase__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
| 29 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
A_ = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
a__: int = field(
default=1024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} )
a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
lowerCamelCase_ = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowerCamelCase_ = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __lowerCamelCase :
a__: str = field(
default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
a__: str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,)
lowerCamelCase_ = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
datasets.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCamelCase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCamelCase_ = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowerCamelCase_ = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowerCamelCase_ = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names
lowerCamelCase_ = len(lowerCAmelCase__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# load tapex tokenizer
lowerCamelCase_ = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,)
lowerCamelCase_ = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# Padding strategy
if data_args.pad_to_max_length:
lowerCamelCase_ = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCamelCase_ = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1}
lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length )
def preprocess_tabfact_function(lowerCAmelCase__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowerCAmelCase__ ):
lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] )
return _table_pd
lowerCamelCase_ = examples['''statement''']
lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) )
lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ )
lowerCamelCase_ = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
lowerCamelCase_ = raw_datasets.map(
lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
lowerCamelCase_ = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCAmelCase__ ):
lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCamelCase_ = default_data_collator
elif training_args.fpaa:
lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 )
else:
lowerCamelCase_ = None
# Initialize our Trainer
lowerCamelCase_ = Trainer(
model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,)
# Training
if training_args.do_train:
lowerCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ = last_checkpoint
lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
lowerCamelCase_ = train_result.metrics
lowerCamelCase_ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ )
)
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ )
lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ )
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.log_metrics('''eval''' ,lowerCAmelCase__ )
trainer.save_metrics('''eval''' ,lowerCAmelCase__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowerCamelCase_ = predict_dataset.remove_columns('''label''' )
lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(lowerCAmelCase__ ,'''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(lowerCAmelCase__ ):
lowerCamelCase_ = label_list[item]
writer.write(f"{index}\t{item}\n" )
lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
if num <= 0:
raise ValueError('''Input must be a positive integer''' )
lowerCamelCase_ = [True] * (num + 1)
lowerCamelCase_ = 2
while p * p <= num:
if primes[p]:
for i in range(p * p ,num + 1 ,lowerCAmelCase__ ):
lowerCamelCase_ = False
p += 1
return [prime for prime in range(2 ,num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
A_ = int(input("""Enter a positive integer: """).strip())
print(prime_sieve_eratosthenes(user_num))
| 29 |
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
lowerCamelCase_ = -(labels.shape[-1] * loss.item())
lowerCamelCase_ = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 29 | 1 |
"""simple docstring"""
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase ):
a__: Dict = 'pixel_values'
a__: Any = False
a__: List[Any] = TimmBackboneConfig
def __init__( self , UpperCAmelCase , **UpperCAmelCase ):
requires_backends(self , '''timm''' )
super().__init__(UpperCAmelCase )
lowerCamelCase_ = config
if config.backbone is None:
raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' )
if config.backbone not in timm.list_models():
raise ValueError(f"backbone {config.backbone} is not supported by timm." )
if hasattr(UpperCAmelCase , '''out_features''' ) and config.out_features is not None:
raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' )
lowerCamelCase_ = getattr(UpperCAmelCase , '''use_pretrained_backbone''' , UpperCAmelCase )
if pretrained is None:
raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCamelCase_ = config.out_indices if getattr(UpperCAmelCase , '''out_indices''' , UpperCAmelCase ) is not None else (-1,)
lowerCamelCase_ = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCamelCase_ = self._backbone.return_layers
lowerCamelCase_ = {layer['''module''']: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ):
requires_backends(cls , ['''vision''', '''timm'''] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCamelCase_ = kwargs.pop('''config''' , TimmBackboneConfig() )
lowerCamelCase_ = kwargs.pop('''use_timm_backbone''' , UpperCAmelCase )
if not use_timm:
raise ValueError('''use_timm_backbone must be True for timm backbones''' )
lowerCamelCase_ = kwargs.pop('''num_channels''' , config.num_channels )
lowerCamelCase_ = kwargs.pop('''features_only''' , config.features_only )
lowerCamelCase_ = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone )
lowerCamelCase_ = kwargs.pop('''out_indices''' , config.out_indices )
lowerCamelCase_ = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
pass
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ):
lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCamelCase_ = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError('''Cannot output attentions for timm backbones at the moment''' )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCamelCase_ = self._all_layers
lowerCamelCase_ = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self._return_layers
lowerCamelCase_ = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCamelCase_ = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = None
lowerCamelCase_ = tuple(UpperCAmelCase )
lowerCamelCase_ = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCamelCase_ = (feature_maps,)
if output_hidden_states:
lowerCamelCase_ = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ )
for row_idx in range(lowerCAmelCase__ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] ,end=''' ''' )
else:
print(triangle[row_idx][col_idx] ,end='''''' )
print()
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowerCamelCase_ = []
for current_row_idx in range(lowerCAmelCase__ ):
lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ )
triangle.append(lowerCAmelCase__ )
return triangle
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
lowerCamelCase_ , lowerCamelCase_ = 1, 1
for current_col_idx in range(1 ,lowerCAmelCase__ ):
calculate_current_element(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
return current_row
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,):
lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1]
lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx]
lowerCamelCase_ = above_to_left_elt + above_to_right_elt
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowerCamelCase_ = [[1]]
for row_index in range(1 ,lowerCAmelCase__ ):
lowerCamelCase_ = [0] + result[-1] + [0]
lowerCamelCase_ = row_index + 1
# Calculate the number of distinct elements in a row
lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) )
lowerCamelCase_ = [
temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 )
]
lowerCamelCase_ = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
lowerCamelCase_ = row_first_half + row_second_half
result.append(lowerCAmelCase__ )
return result
def lowercase ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None:
lowerCamelCase_ = f"{func.__name__}({value})"
lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 29 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=lowerCAmelCase ):
a__: Optional[Any] = ['keras_nlp']
def __init__( self , *UpperCAmelCase , **UpperCAmelCase ):
requires_backends(self , ['''keras_nlp'''] )
| 29 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = self.get_rust_tokenizer()
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase )
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
lowerCamelCase_ = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' )
lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = processor(text=UpperCAmelCase )
lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ = processor.batch_decode(UpperCAmelCase )
lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
A_ = {
"""configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""],
"""tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AdaptiveEmbedding""",
"""TransfoXLForSequenceClassification""",
"""TransfoXLLMHeadModel""",
"""TransfoXLModel""",
"""TransfoXLPreTrainedModel""",
"""load_tf_weights_in_transfo_xl""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFAdaptiveEmbedding""",
"""TFTransfoXLForSequenceClassification""",
"""TFTransfoXLLMHeadModel""",
"""TFTransfoXLMainLayer""",
"""TFTransfoXLModel""",
"""TFTransfoXLPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
lowerCamelCase_ = [5, 5, 5, 5]
elif "fl4" in model_name:
lowerCamelCase_ = [4, 4, 4, 4]
lowerCamelCase_ = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
if "lrf" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
else:
lowerCamelCase_ = [2, 2, 2, 2]
if "tiny" in model_name:
lowerCamelCase_ = 96
elif "small" in model_name:
lowerCamelCase_ = 96
elif "base" in model_name:
lowerCamelCase_ = 128
elif "large" in model_name:
lowerCamelCase_ = 192
elif "xlarge" in model_name:
lowerCamelCase_ = 256
elif "huge" in model_name:
lowerCamelCase_ = 352
# set label information
lowerCamelCase_ = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowerCamelCase_ = '''imagenet-22k-id2label.json'''
else:
lowerCamelCase_ = '''imagenet-1k-id2label.json'''
lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) )
lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
lowerCamelCase_ = FocalNetConfig(
embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,)
return config
def lowercase ( lowerCAmelCase__ ):
if "patch_embed.proj" in name:
lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' )
if "layers" in name:
lowerCamelCase_ = '''encoder.''' + name
if "encoder.layers" in name:
lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' )
if "downsample.proj" in name:
lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' )
if "blocks" in name:
lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' )
if name == "norm.weight":
lowerCamelCase_ = '''layernorm.weight'''
if name == "norm.bias":
lowerCamelCase_ = '''layernorm.bias'''
if "head" in name:
lowerCamelCase_ = name.replace('''head''' ,'''classifier''' )
else:
lowerCamelCase_ = '''focalnet.''' + name
return name
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ):
# fmt: off
lowerCamelCase_ = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowerCamelCase_ = model_name_to_url[model_name]
print('''Checkpoint URL: ''' ,lowerCAmelCase__ )
lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ )
lowerCamelCase_ = val
lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ )
lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ )
model.eval()
# load state dict
model.load_state_dict(lowerCAmelCase__ )
# verify conversion
lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ = BitImageProcessor(
do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,)
lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw )
lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' )
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ),
] )
lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 )
lowerCamelCase_ = model(**lowerCAmelCase__ )
lowerCamelCase_ = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' ,outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub..." )
model.push_to_hub(f"{model_name}" )
processor.push_to_hub(f"{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
A_ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 29 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
A_ = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=18 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=None , ):
lowerCamelCase_ = size if size is not None else {'''height''': 20, '''width''': 20}
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = num_channels
lowerCamelCase_ = image_size
lowerCamelCase_ = min_resolution
lowerCamelCase_ = max_resolution
lowerCamelCase_ = size
lowerCamelCase_ = do_normalize
lowerCamelCase_ = do_convert_rgb
lowerCamelCase_ = [512, 1024, 2048, 4096]
lowerCamelCase_ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
def UpperCAmelCase__ ( self ):
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
lowerCamelCase_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ).convert('''RGB''' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = PixaStructImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_convert_rgb''' ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.image_processor_tester.prepare_dummy_image()
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
lowerCamelCase_ = 2048
lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''pt''' , max_patches=UpperCAmelCase )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1e-3 , rtol=1e-3 ) )
def UpperCAmelCase__ ( self ):
# Initialize image_processor
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
lowerCamelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ = image_processor(
UpperCAmelCase , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCAmelCase__ ( self ):
# Initialize image_processor
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
lowerCamelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
lowerCamelCase_ = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(UpperCAmelCase ):
lowerCamelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
lowerCamelCase_ = '''Hello'''
lowerCamelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase , header_text=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ = image_processor(
UpperCAmelCase , return_tensors='''pt''' , max_patches=UpperCAmelCase , header_text=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCAmelCase__ ( self ):
# Initialize image_processor
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
lowerCamelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ = image_processor(
UpperCAmelCase , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCAmelCase__ ( self ):
# Initialize image_processor
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
lowerCamelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ = image_processor(
UpperCAmelCase , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: Any = PixaStructImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = PixaStructImageProcessingTester(self , num_channels=4 )
lowerCamelCase_ = 3
@property
def UpperCAmelCase__ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_convert_rgb''' ) )
def UpperCAmelCase__ ( self ):
# Initialize image_processor
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
lowerCamelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ = image_processor(
UpperCAmelCase , return_tensors='''pt''' , max_patches=UpperCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 29 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: Tuple = RoCBertTokenizer
a__: int = None
a__: Optional[Any] = False
a__: Optional[int] = True
a__: Tuple = filter_non_english
def UpperCAmelCase__ ( self ):
super().setUp()
lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d''']
lowerCamelCase_ = {}
lowerCamelCase_ = {}
for i, value in enumerate(UpperCAmelCase ):
lowerCamelCase_ = i
lowerCamelCase_ = i
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
lowerCamelCase_ = {}
for i, token in enumerate(UpperCAmelCase ):
lowerCamelCase_ = i
lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
lowerCamelCase_ = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def UpperCAmelCase__ ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
lowerCamelCase_ = tokenizer_r.encode_plus(
UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , )
lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False
lowerCamelCase_ = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''的''', '''人''', '''有''']
lowerCamelCase_ = ''''''.join(UpperCAmelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = True
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = False
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase )
# it is expected that only the first Chinese character is not preceded by "##".
lowerCamelCase_ = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase )
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
lowerCamelCase_ = '''你好,你是谁'''
lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.prepare_for_model(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [True] * n
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = True
for i in range(3 ,int(n**0.5 + 1 ) ,2 ):
lowerCamelCase_ = i * 2
while index < n:
lowerCamelCase_ = False
lowerCamelCase_ = index + i
lowerCamelCase_ = [2]
for i in range(3 ,lowerCAmelCase__ ,2 ):
if is_prime[i]:
primes.append(lowerCAmelCase__ )
return primes
def lowercase ( lowerCAmelCase__ = 999_966_663_333 ):
lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100
lowerCamelCase_ = prime_sieve(lowerCAmelCase__ )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = primes[prime_index]
while (last_prime**2) <= limit:
lowerCamelCase_ = primes[prime_index + 1]
lowerCamelCase_ = last_prime**2
lowerCamelCase_ = next_prime**2
# Get numbers divisible by lps(current)
lowerCamelCase_ = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
lowerCamelCase_ = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
lowerCamelCase_ = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
lowerCamelCase_ = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 29 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
A_ = datasets.logging.get_logger(__name__)
A_ = """\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",
author = \"Moosavi, Nafise Sadat and
Strube, Michael\",
booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",
month = aug,
year = \"2016\",
address = \"Berlin, Germany\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/P16-1060\",
doi = \"10.18653/v1/P16-1060\",
pages = \"632--642\",
}
"""
A_ = """\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
"""
A_ = """
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting 'keep_singletons=False', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
'mentions': mentions
'muc': MUC metric [Vilain et al, 1995]
'bcub': B-cubed [Bagga and Baldwin, 1998]
'ceafe': CEAFe [Luo et al., 2005]
'lea': LEA [Moosavi and Strube, 2016]
'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric('coval')
>>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',
... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',
... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',
... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',
... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',
... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{'mentions/recall': 1.0,[...] 'conll_score': 100.0}
"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ):
lowerCamelCase_ = {doc: key_lines}
lowerCamelCase_ = {doc: sys_lines}
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ )
key_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ )
sys_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
if remove_nested:
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'''Number of removed nested coreferring mentions in the key '''
f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" )
logger.info(
'''Number of resulting singleton clusters in the key '''
f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" )
if not keep_singletons:
logger.info(
f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system "
'''files, respectively''' )
return doc_coref_infos
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for name, metric in metrics:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} )
logger.info(
name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,)
if conll_subparts_num == 3:
lowerCamelCase_ = (conll / 3) * 100
logger.info(f"CoNLL score: {conll:.2f}" )
output_scores.update({'''conll_score''': conll} )
return output_scores
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = False
for line in key_lines:
if not line.startswith('''#''' ):
if len(line.split() ) > 6:
lowerCamelCase_ = line.split()[5]
if not parse_col == "-":
lowerCamelCase_ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Sequence(datasets.Value('''string''' ) ),
} ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[
'''https://github.com/ns-moosavi/coval''',
'''https://www.aclweb.org/anthology/P16-1060''',
'''http://www.conll.cemantix.org/2012/data.html''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ):
lowerCamelCase_ = [
('''mentions''', evaluator.mentions),
('''muc''', evaluator.muc),
('''bcub''', evaluator.b_cubed),
('''ceafe''', evaluator.ceafe),
('''lea''', evaluator.lea),
]
if min_span:
lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
lowerCamelCase_ = evaluate(
key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , )
return score
| 29 | 1 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
A_ = """CompVis/stable-diffusion-v1-1"""
A_ = """CompVis/stable-diffusion-v1-2"""
A_ = """CompVis/stable-diffusion-v1-3"""
A_ = """CompVis/stable-diffusion-v1-4"""
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ):
super()._init_()
lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase )
lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase )
lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase )
lowerCamelCase_ = StableDiffusionPipeline(
vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=UpperCAmelCase , requires_safety_checker=UpperCAmelCase , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self ):
return {k: getattr(self , UpperCAmelCase ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self , UpperCAmelCase = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowerCamelCase_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase )
def UpperCAmelCase__ ( self ):
self.enable_attention_slicing(UpperCAmelCase )
@torch.no_grad()
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ):
return self.pipea(
prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , )
@torch.no_grad()
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ):
return self.pipea(
prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , )
@torch.no_grad()
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ):
return self.pipea(
prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , )
@torch.no_grad()
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ):
return self.pipea(
prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , )
@torch.no_grad()
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ):
lowerCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(UpperCAmelCase )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." )
# Get first result from Stable Diffusion Checkpoint v1.1
lowerCamelCase_ = self.textaimg_sda_a(
prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.2
lowerCamelCase_ = self.textaimg_sda_a(
prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.3
lowerCamelCase_ = self.textaimg_sda_a(
prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.4
lowerCamelCase_ = self.textaimg_sda_a(
prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 29 |
"""simple docstring"""
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(UpperCAmelCase , UpperCAmelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = {
'''max_new_tokens''': 1024,
'''foo''': '''bar''',
}
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = generation_config.update(**UpperCAmelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , UpperCAmelCase )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , UpperCAmelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ ( cls ):
lowerCamelCase_ = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
| 29 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
A_ = (3, 9, -11, 0, 7, 5, 1, -1)
A_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __lowerCamelCase :
a__: int
a__: Node | None
class __lowerCamelCase :
def __init__( self , UpperCAmelCase ):
lowerCamelCase_ = None
for i in sorted(UpperCAmelCase , reverse=UpperCAmelCase ):
lowerCamelCase_ = Node(UpperCAmelCase , self.head )
def __iter__( self ):
lowerCamelCase_ = self.head
while node:
yield node.data
lowerCamelCase_ = node.next_node
def __len__( self ):
return sum(1 for _ in self )
def __str__( self ):
return " -> ".join([str(UpperCAmelCase ) for node in self] )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return SortedLinkedList(list(lowerCAmelCase__ ) + list(lowerCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
A_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 29 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __lowerCamelCase :
a__: List[str]
a__: Optional[str] = None
# Automatically constructed
a__: ClassVar[str] = "dict"
a__: ClassVar[Any] = None
a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase )
def __call__( self ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def UpperCAmelCase__ ( self ):
from .features import Value
return {k: Value('''string''' ) for k in sorted(self.languages )}
@dataclass
class __lowerCamelCase :
a__: Optional[List] = None
a__: Optional[int] = None
a__: Optional[str] = None
# Automatically constructed
a__: ClassVar[str] = "dict"
a__: ClassVar[Any] = None
a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None
lowerCamelCase_ = len(self.languages ) if self.languages else None
def __call__( self ):
return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = set(self.languages )
if self.languages and set(UpperCAmelCase ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
lowerCamelCase_ = []
for lang, text in translation_dict.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def UpperCAmelCase__ ( self ):
from .features import Sequence, Value
return {
"language": Sequence(Value('''string''' ) ),
"translation": Sequence(Value('''string''' ) ),
}
| 29 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=18 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=[0.5, 0.5, 0.5] , ):
lowerCamelCase_ = size if size is not None else {'''shortest_edge''': 18}
lowerCamelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = num_channels
lowerCamelCase_ = image_size
lowerCamelCase_ = min_resolution
lowerCamelCase_ = max_resolution
lowerCamelCase_ = do_resize
lowerCamelCase_ = size
lowerCamelCase_ = do_center_crop
lowerCamelCase_ = crop_size
lowerCamelCase_ = do_normalize
lowerCamelCase_ = image_mean
lowerCamelCase_ = image_std
def UpperCAmelCase__ ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: Tuple = LevitImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = LevitImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(UpperCAmelCase , '''size''' ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def UpperCAmelCase__ ( self ):
pass
def UpperCAmelCase__ ( self ):
# Initialize image_processing
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCamelCase_ = image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def UpperCAmelCase__ ( self ):
# Initialize image_processing
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCamelCase_ = image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def UpperCAmelCase__ ( self ):
# Initialize image_processing
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCamelCase_ = image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
A_ = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = cva.getAffineTransform(lowerCAmelCase__ ,lowerCAmelCase__ )
return cva.warpAffine(lowerCAmelCase__ ,lowerCAmelCase__ ,(rows, cols) )
if __name__ == "__main__":
# read original image
A_ = cva.imread(
str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""")
)
# turn image in gray scale value
A_ = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
A_ , A_ = gray_img.shape
# set different points to rotate image
A_ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa)
A_ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa)
A_ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa)
A_ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa)
# add all rotated images in a list
A_ = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
A_ = plt.figure(1)
A_ = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""]
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""")
plt.title(titles[i])
plt.axis("""off""")
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 29 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [True] * n
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = True
for i in range(3 ,int(n**0.5 + 1 ) ,2 ):
lowerCamelCase_ = i * 2
while index < n:
lowerCamelCase_ = False
lowerCamelCase_ = index + i
lowerCamelCase_ = [2]
for i in range(3 ,lowerCAmelCase__ ,2 ):
if is_prime[i]:
primes.append(lowerCAmelCase__ )
return primes
def lowercase ( lowerCAmelCase__ = 999_966_663_333 ):
lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100
lowerCamelCase_ = prime_sieve(lowerCAmelCase__ )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = primes[prime_index]
while (last_prime**2) <= limit:
lowerCamelCase_ = primes[prime_index + 1]
lowerCamelCase_ = last_prime**2
lowerCamelCase_ = next_prime**2
# Get numbers divisible by lps(current)
lowerCamelCase_ = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
lowerCamelCase_ = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
lowerCamelCase_ = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
lowerCamelCase_ = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 29 | 1 |
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
lowerCamelCase_ = -(labels.shape[-1] * loss.item())
lowerCamelCase_ = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 29 |
"""simple docstring"""
import os
from collections import namedtuple
import pytest
from datasets import ClassLabel, Features, Sequence, Value
from datasets.commands.test import TestCommand
from datasets.info import DatasetInfo, DatasetInfosDict
A_ = namedtuple(
"""_TestCommandArgs""",
[
"""dataset""",
"""name""",
"""cache_dir""",
"""data_dir""",
"""all_configs""",
"""save_infos""",
"""ignore_verifications""",
"""force_redownload""",
"""clear_cache""",
],
defaults=[None, None, None, False, False, False, False, False],
)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return (abs(source - target ) / target) < 0.01
@pytest.mark.integration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ )
lowerCamelCase_ = TestCommand(*lowerCAmelCase__ )
test_command.run()
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' )
assert os.path.exists(lowerCAmelCase__ )
lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ )
lowerCamelCase_ = DatasetInfosDict(
{
'''default''': DatasetInfo(
features=Features(
{
'''tokens''': Sequence(Value('''string''' ) ),
'''ner_tags''': Sequence(
ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ),
'''langs''': Sequence(Value('''string''' ) ),
'''spans''': Sequence(Value('''string''' ) ),
} ) ,splits=[
{
'''name''': '''train''',
'''num_bytes''': 2_351_563,
'''num_examples''': 10_000,
},
{
'''name''': '''validation''',
'''num_bytes''': 238_418,
'''num_examples''': 1_000,
},
] ,download_size=3_940_680 ,dataset_size=2_589_981 ,)
} )
assert dataset_infos.keys() == expected_dataset_infos.keys()
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ )
if key == "num_bytes":
assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ )
elif key == "splits":
assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ )
for split in result:
assert result[split].name == expected[split].name
assert result[split].num_examples == expected[split].num_examples
assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes )
else:
result == expected
| 29 | 1 |
"""simple docstring"""
from math import ceil
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = list(range(0 ,lowerCAmelCase__ ) )
lowerCamelCase_ = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
lowerCamelCase_ = []
for i in device_map_blocks:
if device_map_blocks.count(lowerCAmelCase__ ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(lowerCAmelCase__ )
# Missing blocks
lowerCamelCase_ = [i for i in blocks if i not in device_map_blocks]
lowerCamelCase_ = [i for i in device_map_blocks if i not in blocks]
if len(lowerCAmelCase__ ) != 0:
raise ValueError(
'''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.'''
''' These attention blocks were specified more than once: ''' + str(lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != 0:
raise ValueError(
'''There are attention blocks for this model that are not specified in the device_map. Add these attention '''
'''blocks to a device on the device_map: ''' + str(lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != 0:
raise ValueError(
'''The device_map contains more attention blocks than this model has. Remove these from the device_map:'''
+ str(lowerCAmelCase__ ) )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = list(range(lowerCAmelCase__ ) )
lowerCamelCase_ = int(ceil(n_layers / len(lowerCAmelCase__ ) ) )
lowerCamelCase_ = [layers[i : i + n_blocks] for i in range(0 ,lowerCAmelCase__ ,lowerCAmelCase__ )]
return dict(zip(lowerCAmelCase__ ,lowerCAmelCase__ ) )
| 29 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
A_ = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
A_ = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
A_ = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ):
if concatenate_texts:
return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"]
else:
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 29 | 1 |
"""simple docstring"""
from math import isclose, sqrt
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = point_y / 4 / point_x
lowerCamelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
lowerCamelCase_ = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
lowerCamelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
lowerCamelCase_ = outgoing_gradient**2 + 4
lowerCamelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
lowerCamelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 100
lowerCamelCase_ = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
lowerCamelCase_ = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
lowerCamelCase_ = x_minus if isclose(lowerCAmelCase__ ,lowerCAmelCase__ ) else x_plus
lowerCamelCase_ = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def lowercase ( lowerCAmelCase__ = 1.4 ,lowerCAmelCase__ = -9.6 ):
lowerCamelCase_ = 0
lowerCamelCase_ = first_x_coord
lowerCamelCase_ = first_y_coord
lowerCamelCase_ = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = next_point(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(f"{solution() = }")
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 | 1 |
"""simple docstring"""
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class __lowerCamelCase :
def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=10 , UpperCAmelCase=0.0_2 , UpperCAmelCase=0.9 , UpperCAmelCase=None , ):
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = image_size
lowerCamelCase_ = num_channels
lowerCamelCase_ = patch_size
lowerCamelCase_ = tubelet_size
lowerCamelCase_ = num_frames
lowerCamelCase_ = is_training
lowerCamelCase_ = use_labels
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = type_sequence_label_size
lowerCamelCase_ = initializer_range
lowerCamelCase_ = mask_ratio
lowerCamelCase_ = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
lowerCamelCase_ = (image_size // patch_size) ** 2
lowerCamelCase_ = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
lowerCamelCase_ = int(mask_ratio * self.seq_length )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase_ = None
if self.use_labels:
lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self ):
return VideoMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = VideoMAEModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCamelCase_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = VideoMAEForPreTraining(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
lowerCamelCase_ = torch.ones((self.num_masks,) )
lowerCamelCase_ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] )
lowerCamelCase_ = mask.expand(self.batch_size , -1 ).bool()
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# model only returns predictions for masked patches
lowerCamelCase_ = mask.sum().item()
lowerCamelCase_ = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.prepare_config_and_inputs()
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs
lowerCamelCase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
a__: Optional[Any] = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
a__: List[Any] = (
{'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
a__: Tuple = False
a__: List[str] = False
a__: Optional[Any] = False
a__: List[str] = False
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = VideoMAEModelTester(self )
lowerCamelCase_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ):
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
lowerCamelCase_ = torch.ones((self.model_tester.num_masks,) )
lowerCamelCase_ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] )
lowerCamelCase_ = mask.expand(self.model_tester.batch_size , -1 ).bool()
lowerCamelCase_ = bool_masked_pos.to(UpperCAmelCase )
if return_labels:
if model_class in [
*get_values(UpperCAmelCase ),
]:
lowerCamelCase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase )
return inputs_dict
def UpperCAmelCase__ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''VideoMAE does not use inputs_embeds''' )
def UpperCAmelCase__ ( self ):
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCamelCase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ = model_class(UpperCAmelCase )
lowerCamelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ = [*signature.parameters.keys()]
lowerCamelCase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase )
@slow
def UpperCAmelCase__ ( self ):
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = VideoMAEModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase__ ( self ):
if not self.has_attentions:
pass
else:
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ = True
for model_class in self.all_model_classes:
lowerCamelCase_ = self.model_tester.seq_length - self.model_tester.num_masks
lowerCamelCase_ = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
lowerCamelCase_ = True
lowerCamelCase_ = False
lowerCamelCase_ = True
lowerCamelCase_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowerCamelCase_ = outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCamelCase_ = True
lowerCamelCase_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowerCamelCase_ = outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
lowerCamelCase_ = len(UpperCAmelCase )
# Check attention is always last and order is fine
lowerCamelCase_ = True
lowerCamelCase_ = True
lowerCamelCase_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + 1 , len(UpperCAmelCase ) )
lowerCamelCase_ = outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def UpperCAmelCase__ ( self ):
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowerCamelCase_ = outputs.hidden_states
lowerCamelCase_ = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
lowerCamelCase_ = self.model_tester.seq_length - self.model_tester.num_masks
lowerCamelCase_ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase_ = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase__ ( self ):
pass
def lowercase ( ):
lowerCamelCase_ = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' )
lowerCamelCase_ = np.load(lowerCAmelCase__ )
return list(lowerCAmelCase__ )
@require_torch
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
@cached_property
def UpperCAmelCase__ ( self ):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to(
UpperCAmelCase )
lowerCamelCase_ = self.default_image_processor
lowerCamelCase_ = prepare_video()
lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase_ = model(**UpperCAmelCase )
# verify the logits
lowerCamelCase_ = torch.Size((1, 400) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCamelCase_ = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(UpperCAmelCase )
lowerCamelCase_ = self.default_image_processor
lowerCamelCase_ = prepare_video()
lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase )
# add boolean mask, indicating which patches to mask
lowerCamelCase_ = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' )
lowerCamelCase_ = torch.load(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase_ = model(**UpperCAmelCase )
# verify the logits
lowerCamelCase_ = torch.Size([1, 1408, 1536] )
lowerCamelCase_ = torch.tensor(
[[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=UpperCAmelCase )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `True`)
lowerCamelCase_ = torch.tensor([0.5_1_4_2] , device=UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.loss , UpperCAmelCase , atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `False`)
lowerCamelCase_ = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=UpperCAmelCase ).to(
UpperCAmelCase )
with torch.no_grad():
lowerCamelCase_ = model(**UpperCAmelCase )
lowerCamelCase_ = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.loss , UpperCAmelCase , atol=1e-4 ) )
| 29 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 20
lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create ramp distribution
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy()
lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy()
lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] )
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase_ = ramp_logits[1] * 1_0_0.0
# make sure at least 2 tokens are kept
lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
# check that min length is applied at length 5
lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 )
lowerCamelCase_ = 5
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] )
# check that min length is not applied anymore at length 15
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = 15
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 )
lowerCamelCase_ = 1
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 )
lowerCamelCase_ = 4
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# with processor list
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
# with processor list
def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 29 | 1 |
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
A_ = logging.get_logger(__name__)
@dataclass
class __lowerCamelCase :
a__: str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} )
a__: str = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
a__: int = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.task_name.lower()
class __lowerCamelCase ( lowerCAmelCase ):
a__: Dict = 'train'
a__: str = 'dev'
a__: Union[str, Any] = 'test'
class __lowerCamelCase ( lowerCAmelCase ):
a__: GlueDataTrainingArguments
a__: str
a__: List[InputFeatures]
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = Split.train , UpperCAmelCase = None , ):
warnings.warn(
'''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '''
'''library. You can have a look at this example script for pointers: '''
'''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , UpperCAmelCase , )
lowerCamelCase_ = args
lowerCamelCase_ = glue_processors[args.task_name]()
lowerCamelCase_ = glue_output_modes[args.task_name]
if isinstance(UpperCAmelCase , UpperCAmelCase ):
try:
lowerCamelCase_ = Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
# Load data features from cache or dataset file
lowerCamelCase_ = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}" , )
lowerCamelCase_ = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCamelCase_ , lowerCamelCase_ = label_list[2], label_list[1]
lowerCamelCase_ = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase_ = cached_features_file + '''.lock'''
with FileLock(UpperCAmelCase ):
if os.path.exists(UpperCAmelCase ) and not args.overwrite_cache:
lowerCamelCase_ = time.time()
lowerCamelCase_ = torch.load(UpperCAmelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
else:
logger.info(f"Creating features from dataset file at {args.data_dir}" )
if mode == Split.dev:
lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
lowerCamelCase_ = self.processor.get_test_examples(args.data_dir )
else:
lowerCamelCase_ = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
lowerCamelCase_ = examples[:limit_length]
lowerCamelCase_ = glue_convert_examples_to_features(
UpperCAmelCase , UpperCAmelCase , max_length=args.max_seq_length , label_list=UpperCAmelCase , output_mode=self.output_mode , )
lowerCamelCase_ = time.time()
torch.save(self.features , UpperCAmelCase )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self ):
return len(self.features )
def __getitem__( self , UpperCAmelCase ):
return self.features[i]
def UpperCAmelCase__ ( self ):
return self.label_list
| 29 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def lowercase ( lowerCAmelCase__ ):
def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ):
lowerCamelCase_ = timeit.default_timer()
lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ )
lowerCamelCase_ = timeit.default_timer() - starttime
return delta
lowerCamelCase_ = func.__name__
return wrapper
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = []
lowerCamelCase_ = seq_shapes or {}
for i in range(lowerCAmelCase__ ):
lowerCamelCase_ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(lowerCAmelCase__ ,_ArrayXD ):
lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(lowerCAmelCase__ ,datasets.Value ):
if v.dtype == "string":
lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.'''
else:
lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item()
elif isinstance(lowerCAmelCase__ ,datasets.Sequence ):
while isinstance(lowerCAmelCase__ ,datasets.Sequence ):
lowerCamelCase_ = v.feature
lowerCamelCase_ = seq_shapes[k]
lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype )
lowerCamelCase_ = data
dummy_data.append((i, example) )
return dummy_data
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ )
with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer:
for key, record in dummy_data:
lowerCamelCase_ = features.encode_example(lowerCAmelCase__ )
writer.write(lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." )
lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) )
return dataset
| 29 | 1 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class __lowerCamelCase ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ):
def __init__( self , UpperCAmelCase=None , **UpperCAmelCase ):
super().__init__(features=UpperCAmelCase )
lowerCamelCase_ = torch_tensor_kwargs
import torch # noqa import torch at initialization
def UpperCAmelCase__ ( self , UpperCAmelCase ):
import torch
if isinstance(UpperCAmelCase , UpperCAmelCase ) and column:
if all(
isinstance(UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(UpperCAmelCase )
return column
def UpperCAmelCase__ ( self , UpperCAmelCase ):
import torch
if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ):
return value
elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
lowerCamelCase_ = {}
if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
lowerCamelCase_ = {'''dtype''': torch.intaa}
elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
lowerCamelCase_ = {'''dtype''': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCAmelCase , PIL.Image.Image ):
lowerCamelCase_ = np.asarray(UpperCAmelCase )
return torch.tensor(UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
import torch
# support for torch, tf, jax etc.
if hasattr(UpperCAmelCase , '''__array__''' ) and not isinstance(UpperCAmelCase , torch.Tensor ):
lowerCamelCase_ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCAmelCase , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] )
elif isinstance(UpperCAmelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] )
return self._tensorize(UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = self.numpy_arrow_extractor().extract_row(UpperCAmelCase )
lowerCamelCase_ = self.python_features_decoder.decode_row(UpperCAmelCase )
return self.recursive_tensorize(UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = self.numpy_arrow_extractor().extract_column(UpperCAmelCase )
lowerCamelCase_ = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] )
lowerCamelCase_ = self.recursive_tensorize(UpperCAmelCase )
lowerCamelCase_ = self._consolidate(UpperCAmelCase )
return column
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase )
lowerCamelCase_ = self.python_features_decoder.decode_batch(UpperCAmelCase )
lowerCamelCase_ = self.recursive_tensorize(UpperCAmelCase )
for column_name in batch:
lowerCamelCase_ = self._consolidate(batch[column_name] )
return batch
| 29 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
A_ = [
"""good first issue""",
"""feature request""",
"""wip""",
]
def lowercase ( ):
lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] )
lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' )
lowerCamelCase_ = repo.get_issues(state='''open''' )
for issue in open_issues:
lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ )
lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None
lowerCamelCase_ = dt.utcnow()
lowerCamelCase_ = (current_time - issue.updated_at).days
lowerCamelCase_ = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class __lowerCamelCase :
def __init__( self , UpperCAmelCase = 6 ):
lowerCamelCase_ = None
lowerCamelCase_ = None
self.create_linked_list(UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = Node()
lowerCamelCase_ = current_node
lowerCamelCase_ = current_node
lowerCamelCase_ = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCamelCase_ = Node()
lowerCamelCase_ = current_node
lowerCamelCase_ = previous_node
lowerCamelCase_ = current_node
lowerCamelCase_ = self.front
lowerCamelCase_ = previous_node
def UpperCAmelCase__ ( self ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def UpperCAmelCase__ ( self ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def UpperCAmelCase__ ( self , UpperCAmelCase ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCamelCase_ = self.rear.next
if self.rear:
lowerCamelCase_ = data
def UpperCAmelCase__ ( self ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCamelCase_ = self.front.data
lowerCamelCase_ = None
return data
lowerCamelCase_ = self.front
lowerCamelCase_ = old_front.next
lowerCamelCase_ = old_front.data
lowerCamelCase_ = None
return data
def UpperCAmelCase__ ( self ):
if self.is_empty():
raise Exception('''Empty Queue''' )
def UpperCAmelCase__ ( self ):
if self.rear and self.rear.next == self.front:
raise Exception('''Full Queue''' )
class __lowerCamelCase :
def __init__( self ):
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape
lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ )
lowerCamelCase_ = emb.weight.data
return lin_layer
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ):
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
remove_ignore_keys_(lowerCAmelCase__ )
lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ )
if mbart_aa and finetuned:
lowerCamelCase_ = '''relu'''
lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight''']
lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ )
model.model.load_state_dict(lowerCAmelCase__ )
if finetuned:
lowerCamelCase_ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""",
default="""facebook/mbart-large-cc25""",
type=str,
help="""Which huggingface architecture to use: mbart-large""",
)
parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""")
parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""")
A_ = parser.parse_args()
A_ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 29 | 1 |
"""simple docstring"""
from cva import destroyAllWindows, imread, imshow, waitKey
def lowercase ( lowerCAmelCase__ ):
# getting number of pixels in the image
lowerCamelCase_ , lowerCamelCase_ = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
lowerCamelCase_ = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
A_ = imread("""image_data/lena.jpg""", 1)
# convert to its negative
A_ = convert_to_negative(img)
# show result image
imshow("""negative of original image""", img)
waitKey(0)
destroyAllWindows()
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
A_ = True
except ImportError:
A_ = False
try:
from torch.hub import _get_torch_home
A_ = _get_torch_home()
except ImportError:
A_ = os.path.expanduser(
os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch"""))
)
A_ = os.path.join(torch_cache_home, """transformers""")
A_ = """https://cdn.huggingface.co"""
A_ = """https://s3.amazonaws.com/models.huggingface.co/bert"""
A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1])
A_ = os.path.join(PATH, """config.yaml""")
A_ = os.path.join(PATH, """attributes.txt""")
A_ = os.path.join(PATH, """objects.txt""")
A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path)
A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE)
A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE)
A_ = """pytorch_model.bin"""
A_ = """config.yaml"""
def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ):
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = OrderedDict()
with open(lowerCAmelCase__ ,'''rb''' ) as f:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
lowerCamelCase_ = ckp.pop(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ )
else:
assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ )
lowerCamelCase_ = v
return r
class __lowerCamelCase :
a__: Union[str, Any] = {}
def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ):
lowerCamelCase_ = name
lowerCamelCase_ = level
lowerCamelCase_ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 )
lowerCamelCase_ = v
setattr(self , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = d
def __repr__( self ):
return str(list((self._pointer.keys()) ) )
def __setattr__( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = val
lowerCamelCase_ = val
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ = len(UpperCAmelCase ) - 1
lowerCamelCase_ = self._pointer
if len(UpperCAmelCase ) > 1:
for i, l in enumerate(UpperCAmelCase ):
if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ):
setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase )
if l == last_level:
lowerCamelCase_ = val
else:
lowerCamelCase_ = pointer[l]
def UpperCAmelCase__ ( self ):
return self._pointer
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
json.dump(UpperCAmelCase , UpperCAmelCase )
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase ):
with open(UpperCAmelCase ) as stream:
lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase )
return data
def __str__( self ):
lowerCamelCase_ = ''' '''
if self._name != "root":
lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n"
else:
lowerCamelCase_ = ''''''
lowerCamelCase_ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n"
lowerCamelCase_ = level
return r[:-1]
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
return cls(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase )
if os.path.isdir(UpperCAmelCase ):
lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase )
elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ):
lowerCamelCase_ = pretrained_model_name_or_path
else:
lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase )
try:
# Load from URL or cache if already cached
lowerCamelCase_ = cached_path(
UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowerCamelCase_ = Config.load_yaml(UpperCAmelCase )
except EnvironmentError:
lowerCamelCase_ = '''Can\'t load config for'''
raise EnvironmentError(UpperCAmelCase )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(UpperCAmelCase ), kwargs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device )
lowerCamelCase_ = in_tensor.numpy()
lowerCamelCase_ = out_tensor.numpy()[0]
print(na.shape ,na[0, 0, :5] )
print(na.shape ,na[0, 0, :5] )
assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), (
f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %"
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = urlparse(lowerCAmelCase__ )
return parsed.scheme in ("http", "https")
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ):
lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowerCamelCase_ = '''/''' not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,):
lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + user_agent
lowerCamelCase_ = {'''user-agent''': ua}
if resume_size > 0:
lowerCamelCase_ = '''bytes=%d-''' % (resume_size,)
lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ )
if response.status_code == 416: # Range not satisfiable
return
lowerCamelCase_ = response.headers.get('''Content-Length''' )
lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None
lowerCamelCase_ = tqdm(
unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,)
for chunk in response.iter_content(chunk_size=1_024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowerCAmelCase__ ) )
temp_file.write(lowerCAmelCase__ )
progress.close()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = None
if not local_files_only:
try:
lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ )
if response.status_code == 200:
lowerCamelCase_ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ )
# get cache path to put the file
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowerCAmelCase__ ):
return cache_path
else:
lowerCamelCase_ = [
file
for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(lowerCAmelCase__ ) > 0:
return os.path.join(lowerCAmelCase__ ,matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowerCamelCase_ = cache_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
# If the download just completed while the lock was activated.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowerCamelCase_ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(lowerCAmelCase__ ,'''a+b''' ) as f:
yield f
lowerCamelCase_ = _resumable_file_manager
if os.path.exists(lowerCAmelCase__ ):
lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size
else:
lowerCamelCase_ = 0
else:
lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ )
lowerCamelCase_ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,)
http_get(
lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,)
os.replace(temp_file.name ,lowerCAmelCase__ )
lowerCamelCase_ = {'''url''': url, '''etag''': etag}
lowerCamelCase_ = cache_path + '''.json'''
with open(lowerCAmelCase__ ,'''w''' ) as meta_file:
json.dump(lowerCAmelCase__ ,lowerCAmelCase__ )
return cache_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ):
lowerCamelCase_ = url.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
lowerCamelCase_ = url_hash.hexdigest()
if etag:
lowerCamelCase_ = etag.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if is_remote_url(lowerCAmelCase__ ):
# URL, so get it from the cache (downloading if necessary)
lowerCamelCase_ = get_from_cache(
lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,)
elif os.path.exists(lowerCAmelCase__ ):
# File, and it exists.
lowerCamelCase_ = url_or_filename
elif urlparse(lowerCAmelCase__ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) )
if extract_compressed_file:
if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ )
lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted'''
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowerCamelCase_ = output_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ )
if is_zipfile(lowerCAmelCase__ ):
with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file:
zip_file.extractall(lowerCAmelCase__ )
zip_file.close()
elif tarfile.is_tarfile(lowerCAmelCase__ ):
lowerCamelCase_ = tarfile.open(lowerCAmelCase__ )
tar_file.extractall(lowerCAmelCase__ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) )
return output_path_extracted
return output_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = eval(f.read() )
else:
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
try:
lowerCamelCase_ = requests.json()
except Exception:
lowerCamelCase_ = req.content.decode()
assert data is not None, "could not connect"
try:
lowerCamelCase_ = eval(lowerCAmelCase__ )
except Exception:
lowerCamelCase_ = data.split('''\n''' )
req.close()
return data
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowerCAmelCase__ )
with open(lowerCAmelCase__ ,'''rb''' ) as stream:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )
lowerCamelCase_ = weights.pop('''model''' )
lowerCamelCase_ = {}
for k, v in model.items():
lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ )
if "running_var" in k:
lowerCamelCase_ = torch.tensor([0] )
lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' )
lowerCamelCase_ = zero
return new
def lowercase ( ):
print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
lowerCamelCase_ = cva.imread(lowerCAmelCase__ )
else:
lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ )
assert img is not None, f"could not connect to: {im}"
lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowerCamelCase_ = img[:, :, ::-1]
return img
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ):
return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
| 29 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCamelCase ( lowerCAmelCase ):
a__: Any = (DDPMScheduler,)
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
lowerCamelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCAmelCase )
return config
def UpperCAmelCase__ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
self.check_over_configs(thresholding=UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase )
lowerCamelCase_ = scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase ):
if i == len(UpperCAmelCase ) - 1:
lowerCamelCase_ = -1
else:
lowerCamelCase_ = timesteps[i + 1]
lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase )
lowerCamelCase_ = prev_t.item()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
lowerCamelCase_ = len(UpperCAmelCase )
with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
A_ = torch.device("""cpu""")
def lowercase ( ):
lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw )
return im
def lowercase ( lowerCAmelCase__ ):
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = dct.pop(lowerCAmelCase__ )
lowerCamelCase_ = val
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = []
for k in state_dict.keys():
lowerCamelCase_ = k
if ".pwconv" in k:
lowerCamelCase_ = k_new.replace('''.pwconv''' ,'''.point_wise_conv''' )
if ".dwconv" in k:
lowerCamelCase_ = k_new.replace('''.dwconv''' ,'''.depth_wise_conv''' )
if ".Proj." in k:
lowerCamelCase_ = k_new.replace('''.Proj.''' ,'''.proj.''' )
if "patch_embed" in k_new:
lowerCamelCase_ = k_new.replace('''patch_embed''' ,'''swiftformer.patch_embed.patch_embedding''' )
if "network" in k_new:
lowerCamelCase_ = k_new.split('''.''' )
if ls[2].isdigit():
lowerCamelCase_ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] )
else:
lowerCamelCase_ = k_new.replace('''network''' ,'''swiftformer.encoder.network''' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
lowerCamelCase_ = 1_000
lowerCamelCase_ = '''huggingface/label-files'''
lowerCamelCase_ = '''imagenet-1k-id2label.json'''
lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) )
lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
lowerCamelCase_ = idalabel
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
lowerCamelCase_ = [3, 3, 6, 4]
lowerCamelCase_ = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
lowerCamelCase_ = [3, 3, 9, 6]
lowerCamelCase_ = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
lowerCamelCase_ = [4, 3, 10, 5]
lowerCamelCase_ = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
lowerCamelCase_ = [4, 4, 12, 6]
lowerCamelCase_ = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('''https''' ):
lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' ,check_hash=lowerCAmelCase__ )
else:
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )
lowerCamelCase_ = checkpoint
lowerCamelCase_ = create_rename_keys(lowerCAmelCase__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
# load HuggingFace model
lowerCamelCase_ = SwiftFormerForImageClassification(lowerCAmelCase__ ).eval()
hf_model.load_state_dict(lowerCAmelCase__ )
# prepare test inputs
lowerCamelCase_ = prepare_img()
lowerCamelCase_ = ViTImageProcessor.from_pretrained('''preprocessor_config''' )
lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' )
# compare outputs from both models
lowerCamelCase_ = get_expected_output(lowerCAmelCase__ )
lowerCamelCase_ = hf_model(inputs['''pixel_values'''] ).logits
assert hf_logits.shape == torch.Size([1, 1_000] )
assert torch.allclose(hf_logits[0, 0:5] ,lowerCAmelCase__ ,atol=1E-3 )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" )
hf_model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swiftformer_name""",
default="""swiftformer_xs""",
choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""],
type=str,
help="""Name of the SwiftFormer model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""./converted_outputs/""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""")
A_ = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 29 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
A_ = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase ( lowerCAmelCase ):
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `max_length` value of the model configuration.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `num_beams` value of the model configuration.'
)
} , )
a__: Optional[Union[str, Path, GenerationConfig]] = field(
default=lowerCAmelCase , metadata={
'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'
} , )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = v.to_dict()
return d
| 29 | 1 |
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
A_ = logging.get_logger(__name__)
# General docstring
A_ = """ResNetConfig"""
# Base docstring
A_ = """microsoft/resnet-50"""
A_ = [1, 2048, 7, 7]
# Image classification docstring
A_ = """microsoft/resnet-50"""
A_ = """tiger cat"""
A_ = [
"""microsoft/resnet-50""",
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCamelCase ( nn.Module ):
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 3 , UpperCAmelCase = 1 , UpperCAmelCase = "relu" ):
super().__init__()
lowerCamelCase_ = nn.Convad(
UpperCAmelCase , UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=kernel_size // 2 , bias=UpperCAmelCase )
lowerCamelCase_ = nn.BatchNormad(UpperCAmelCase )
lowerCamelCase_ = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = self.convolution(UpperCAmelCase )
lowerCamelCase_ = self.normalization(UpperCAmelCase )
lowerCamelCase_ = self.activation(UpperCAmelCase )
return hidden_state
class __lowerCamelCase ( nn.Module ):
def __init__( self , UpperCAmelCase ):
super().__init__()
lowerCamelCase_ = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
lowerCamelCase_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
lowerCamelCase_ = config.num_channels
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
lowerCamelCase_ = self.embedder(UpperCAmelCase )
lowerCamelCase_ = self.pooler(UpperCAmelCase )
return embedding
class __lowerCamelCase ( nn.Module ):
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 ):
super().__init__()
lowerCamelCase_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , stride=UpperCAmelCase , bias=UpperCAmelCase )
lowerCamelCase_ = nn.BatchNormad(UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = self.convolution(UpperCAmelCase )
lowerCamelCase_ = self.normalization(UpperCAmelCase )
return hidden_state
class __lowerCamelCase ( nn.Module ):
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "relu" ):
super().__init__()
lowerCamelCase_ = in_channels != out_channels or stride != 1
lowerCamelCase_ = (
ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
lowerCamelCase_ = nn.Sequential(
ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , activation=UpperCAmelCase ) , )
lowerCamelCase_ = ACTaFN[activation]
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = hidden_state
lowerCamelCase_ = self.layer(UpperCAmelCase )
lowerCamelCase_ = self.shortcut(UpperCAmelCase )
hidden_state += residual
lowerCamelCase_ = self.activation(UpperCAmelCase )
return hidden_state
class __lowerCamelCase ( nn.Module ):
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "relu" , UpperCAmelCase = 4 ):
super().__init__()
lowerCamelCase_ = in_channels != out_channels or stride != 1
lowerCamelCase_ = out_channels // reduction
lowerCamelCase_ = (
ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
lowerCamelCase_ = nn.Sequential(
ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase ) , )
lowerCamelCase_ = ACTaFN[activation]
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = hidden_state
lowerCamelCase_ = self.layer(UpperCAmelCase )
lowerCamelCase_ = self.shortcut(UpperCAmelCase )
hidden_state += residual
lowerCamelCase_ = self.activation(UpperCAmelCase )
return hidden_state
class __lowerCamelCase ( nn.Module ):
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 2 , ):
super().__init__()
lowerCamelCase_ = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
lowerCamelCase_ = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase , activation=config.hidden_act ) , *[layer(UpperCAmelCase , UpperCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = input
for layer in self.layers:
lowerCamelCase_ = layer(UpperCAmelCase )
return hidden_state
class __lowerCamelCase ( nn.Module ):
def __init__( self , UpperCAmelCase ):
super().__init__()
lowerCamelCase_ = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
lowerCamelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(UpperCAmelCase , config.depths[1:] ):
self.stages.append(ResNetStage(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , depth=UpperCAmelCase ) )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True ):
lowerCamelCase_ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowerCamelCase_ = hidden_states + (hidden_state,)
lowerCamelCase_ = stage_module(UpperCAmelCase )
if output_hidden_states:
lowerCamelCase_ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase , )
class __lowerCamelCase ( lowerCAmelCase ):
a__: Tuple = ResNetConfig
a__: Tuple = 'resnet'
a__: List[Any] = 'pixel_values'
a__: Union[str, Any] = True
def UpperCAmelCase__ ( self , UpperCAmelCase ):
if isinstance(UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = value
A_ = R"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
A_ = R"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , lowerCAmelCase , )
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase ):
super().__init__(UpperCAmelCase )
lowerCamelCase_ = config
lowerCamelCase_ = ResNetEmbeddings(UpperCAmelCase )
lowerCamelCase_ = ResNetEncoder(UpperCAmelCase )
lowerCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ):
lowerCamelCase_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase_ = self.embedder(UpperCAmelCase )
lowerCamelCase_ = self.encoder(
UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase )
lowerCamelCase_ = encoder_outputs[0]
lowerCamelCase_ = self.pooler(UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase , )
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase ):
super().__init__(UpperCAmelCase )
lowerCamelCase_ = config.num_labels
lowerCamelCase_ = ResNetModel(UpperCAmelCase )
# classification head
lowerCamelCase_ = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ):
lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase_ = self.resnet(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase )
lowerCamelCase_ = outputs.pooler_output if return_dict else outputs[1]
lowerCamelCase_ = self.classifier(UpperCAmelCase )
lowerCamelCase_ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowerCamelCase_ = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowerCamelCase_ = '''single_label_classification'''
else:
lowerCamelCase_ = '''multi_label_classification'''
if self.config.problem_type == "regression":
lowerCamelCase_ = MSELoss()
if self.num_labels == 1:
lowerCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
lowerCamelCase_ = loss_fct(UpperCAmelCase , UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
lowerCamelCase_ = CrossEntropyLoss()
lowerCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
lowerCamelCase_ = BCEWithLogitsLoss()
lowerCamelCase_ = loss_fct(UpperCAmelCase , UpperCAmelCase )
if not return_dict:
lowerCamelCase_ = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , lowerCAmelCase , )
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase ):
def __init__( self , UpperCAmelCase ):
super().__init__(UpperCAmelCase )
super()._init_backbone(UpperCAmelCase )
lowerCamelCase_ = [config.embedding_size] + config.hidden_sizes
lowerCamelCase_ = ResNetEmbeddings(UpperCAmelCase )
lowerCamelCase_ = ResNetEncoder(UpperCAmelCase )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase )
@replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ):
lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCamelCase_ = self.embedder(UpperCAmelCase )
lowerCamelCase_ = self.encoder(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase )
lowerCamelCase_ = outputs.hidden_states
lowerCamelCase_ = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
lowerCamelCase_ = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase , )
| 29 |
"""simple docstring"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
A_ = True
except ImportError:
A_ = False
try:
from torch.hub import _get_torch_home
A_ = _get_torch_home()
except ImportError:
A_ = os.path.expanduser(
os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch"""))
)
A_ = os.path.join(torch_cache_home, """transformers""")
A_ = """https://cdn.huggingface.co"""
A_ = """https://s3.amazonaws.com/models.huggingface.co/bert"""
A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1])
A_ = os.path.join(PATH, """config.yaml""")
A_ = os.path.join(PATH, """attributes.txt""")
A_ = os.path.join(PATH, """objects.txt""")
A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path)
A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE)
A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE)
A_ = """pytorch_model.bin"""
A_ = """config.yaml"""
def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ):
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = OrderedDict()
with open(lowerCAmelCase__ ,'''rb''' ) as f:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
lowerCamelCase_ = ckp.pop(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ )
else:
assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ )
lowerCamelCase_ = v
return r
class __lowerCamelCase :
a__: Union[str, Any] = {}
def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ):
lowerCamelCase_ = name
lowerCamelCase_ = level
lowerCamelCase_ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 )
lowerCamelCase_ = v
setattr(self , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = d
def __repr__( self ):
return str(list((self._pointer.keys()) ) )
def __setattr__( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = val
lowerCamelCase_ = val
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ = len(UpperCAmelCase ) - 1
lowerCamelCase_ = self._pointer
if len(UpperCAmelCase ) > 1:
for i, l in enumerate(UpperCAmelCase ):
if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ):
setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase )
if l == last_level:
lowerCamelCase_ = val
else:
lowerCamelCase_ = pointer[l]
def UpperCAmelCase__ ( self ):
return self._pointer
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
json.dump(UpperCAmelCase , UpperCAmelCase )
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase ):
with open(UpperCAmelCase ) as stream:
lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase )
return data
def __str__( self ):
lowerCamelCase_ = ''' '''
if self._name != "root":
lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n"
else:
lowerCamelCase_ = ''''''
lowerCamelCase_ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n"
lowerCamelCase_ = level
return r[:-1]
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
return cls(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase )
if os.path.isdir(UpperCAmelCase ):
lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase )
elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ):
lowerCamelCase_ = pretrained_model_name_or_path
else:
lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase )
try:
# Load from URL or cache if already cached
lowerCamelCase_ = cached_path(
UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowerCamelCase_ = Config.load_yaml(UpperCAmelCase )
except EnvironmentError:
lowerCamelCase_ = '''Can\'t load config for'''
raise EnvironmentError(UpperCAmelCase )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(UpperCAmelCase ), kwargs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device )
lowerCamelCase_ = in_tensor.numpy()
lowerCamelCase_ = out_tensor.numpy()[0]
print(na.shape ,na[0, 0, :5] )
print(na.shape ,na[0, 0, :5] )
assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), (
f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %"
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = urlparse(lowerCAmelCase__ )
return parsed.scheme in ("http", "https")
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ):
lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowerCamelCase_ = '''/''' not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,):
lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + user_agent
lowerCamelCase_ = {'''user-agent''': ua}
if resume_size > 0:
lowerCamelCase_ = '''bytes=%d-''' % (resume_size,)
lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ )
if response.status_code == 416: # Range not satisfiable
return
lowerCamelCase_ = response.headers.get('''Content-Length''' )
lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None
lowerCamelCase_ = tqdm(
unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,)
for chunk in response.iter_content(chunk_size=1_024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowerCAmelCase__ ) )
temp_file.write(lowerCAmelCase__ )
progress.close()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = None
if not local_files_only:
try:
lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ )
if response.status_code == 200:
lowerCamelCase_ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ )
# get cache path to put the file
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowerCAmelCase__ ):
return cache_path
else:
lowerCamelCase_ = [
file
for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(lowerCAmelCase__ ) > 0:
return os.path.join(lowerCAmelCase__ ,matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowerCamelCase_ = cache_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
# If the download just completed while the lock was activated.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowerCamelCase_ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(lowerCAmelCase__ ,'''a+b''' ) as f:
yield f
lowerCamelCase_ = _resumable_file_manager
if os.path.exists(lowerCAmelCase__ ):
lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size
else:
lowerCamelCase_ = 0
else:
lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ )
lowerCamelCase_ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,)
http_get(
lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,)
os.replace(temp_file.name ,lowerCAmelCase__ )
lowerCamelCase_ = {'''url''': url, '''etag''': etag}
lowerCamelCase_ = cache_path + '''.json'''
with open(lowerCAmelCase__ ,'''w''' ) as meta_file:
json.dump(lowerCAmelCase__ ,lowerCAmelCase__ )
return cache_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ):
lowerCamelCase_ = url.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
lowerCamelCase_ = url_hash.hexdigest()
if etag:
lowerCamelCase_ = etag.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if is_remote_url(lowerCAmelCase__ ):
# URL, so get it from the cache (downloading if necessary)
lowerCamelCase_ = get_from_cache(
lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,)
elif os.path.exists(lowerCAmelCase__ ):
# File, and it exists.
lowerCamelCase_ = url_or_filename
elif urlparse(lowerCAmelCase__ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) )
if extract_compressed_file:
if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ )
lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted'''
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowerCamelCase_ = output_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ )
if is_zipfile(lowerCAmelCase__ ):
with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file:
zip_file.extractall(lowerCAmelCase__ )
zip_file.close()
elif tarfile.is_tarfile(lowerCAmelCase__ ):
lowerCamelCase_ = tarfile.open(lowerCAmelCase__ )
tar_file.extractall(lowerCAmelCase__ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) )
return output_path_extracted
return output_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = eval(f.read() )
else:
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
try:
lowerCamelCase_ = requests.json()
except Exception:
lowerCamelCase_ = req.content.decode()
assert data is not None, "could not connect"
try:
lowerCamelCase_ = eval(lowerCAmelCase__ )
except Exception:
lowerCamelCase_ = data.split('''\n''' )
req.close()
return data
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowerCAmelCase__ )
with open(lowerCAmelCase__ ,'''rb''' ) as stream:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )
lowerCamelCase_ = weights.pop('''model''' )
lowerCamelCase_ = {}
for k, v in model.items():
lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ )
if "running_var" in k:
lowerCamelCase_ = torch.tensor([0] )
lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' )
lowerCamelCase_ = zero
return new
def lowercase ( ):
print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
lowerCamelCase_ = cva.imread(lowerCAmelCase__ )
else:
lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ )
assert img is not None, f"could not connect to: {im}"
lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowerCamelCase_ = img[:, :, ::-1]
return img
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ):
return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
| 29 | 1 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
A_ = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
A_ = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
A_ = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ):
if concatenate_texts:
return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"]
else:
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 29 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
A_ = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
a__: int = field(
default=1024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} )
a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
lowerCamelCase_ = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowerCamelCase_ = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __lowerCamelCase :
a__: str = field(
default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
a__: str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,)
lowerCamelCase_ = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
datasets.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCamelCase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCamelCase_ = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowerCamelCase_ = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowerCamelCase_ = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names
lowerCamelCase_ = len(lowerCAmelCase__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# load tapex tokenizer
lowerCamelCase_ = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,)
lowerCamelCase_ = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# Padding strategy
if data_args.pad_to_max_length:
lowerCamelCase_ = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCamelCase_ = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1}
lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length )
def preprocess_tabfact_function(lowerCAmelCase__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowerCAmelCase__ ):
lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] )
return _table_pd
lowerCamelCase_ = examples['''statement''']
lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) )
lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ )
lowerCamelCase_ = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
lowerCamelCase_ = raw_datasets.map(
lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
lowerCamelCase_ = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCAmelCase__ ):
lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCamelCase_ = default_data_collator
elif training_args.fpaa:
lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 )
else:
lowerCamelCase_ = None
# Initialize our Trainer
lowerCamelCase_ = Trainer(
model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,)
# Training
if training_args.do_train:
lowerCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ = last_checkpoint
lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
lowerCamelCase_ = train_result.metrics
lowerCamelCase_ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ )
)
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ )
lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ )
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.log_metrics('''eval''' ,lowerCAmelCase__ )
trainer.save_metrics('''eval''' ,lowerCAmelCase__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowerCamelCase_ = predict_dataset.remove_columns('''label''' )
lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(lowerCAmelCase__ ,'''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(lowerCAmelCase__ ):
lowerCamelCase_ = label_list[item]
writer.write(f"{index}\t{item}\n" )
lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = MobileNetVaConfig(layer_norm_eps=0.001 )
if "_quant" in model_name:
raise ValueError('''Quantized models are not supported.''' )
lowerCamelCase_ = re.match(R'''^mobilenet_v1_([^_]*)_([^_]*)$''' ,lowerCAmelCase__ )
if matches:
lowerCamelCase_ = float(matches[1] )
lowerCamelCase_ = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
lowerCamelCase_ = 1_001
lowerCamelCase_ = '''imagenet-1k-id2label.json'''
lowerCamelCase_ = '''huggingface/label-files'''
lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) )
lowerCamelCase_ = {int(lowerCAmelCase__ ) + 1: v for k, v in idalabel.items()}
lowerCamelCase_ = '''background'''
lowerCamelCase_ = idalabel
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
return config
def lowercase ( ):
lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ):
lowerCamelCase_ = get_mobilenet_va_config(lowerCAmelCase__ )
# Load 🤗 model
lowerCamelCase_ = MobileNetVaForImageClassification(lowerCAmelCase__ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
lowerCamelCase_ = MobileNetVaImageProcessor(
crop_size={'''width''': config.image_size, '''height''': config.image_size} ,size={'''shortest_edge''': config.image_size + 32} ,)
lowerCamelCase_ = image_processor(images=prepare_img() ,return_tensors='''pt''' )
lowerCamelCase_ = model(**lowerCAmelCase__ )
lowerCamelCase_ = outputs.logits
assert logits.shape == (1, 1_001)
if model_name == "mobilenet_v1_1.0_224":
lowerCamelCase_ = torch.tensor([-4.1_739, -1.1_233, 3.1_205] )
elif model_name == "mobilenet_v1_0.75_192":
lowerCamelCase_ = torch.tensor([-3.9_440, -2.3_141, -0.3_333] )
else:
lowerCamelCase_ = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowerCAmelCase__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print('''Pushing to the hub...''' )
lowerCamelCase_ = '''google/''' + model_name
image_processor.push_to_hub(lowerCAmelCase__ )
model.push_to_hub(lowerCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
A_ = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 29 |
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
lowerCamelCase_ = -(labels.shape[-1] * loss.item())
lowerCamelCase_ = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 29 | 1 |
"""simple docstring"""
import argparse
A_ = """docs/source/_static/js/custom.js"""
def lowercase ( lowerCAmelCase__ ):
with open(lowerCAmelCase__ ,encoding='''utf-8''' ,newline='''\n''' ) as f:
lowerCamelCase_ = f.readlines()
lowerCamelCase_ = 0
# First let's put the right version
while not lines[index].startswith('''const stableVersion =''' ):
index += 1
lowerCamelCase_ = f"const stableVersion = \"v{version}\"\n"
# Then update the dictionary
while not lines[index].startswith('''const versionMapping = {''' ):
index += 1
# We go until the end
while not lines[index].startswith('''}''' ):
index += 1
# We add the new version at the end
lines[index - 1] += f" \"v{version}\": \"v{version}\",\n"
with open(lowerCAmelCase__ ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f:
f.writelines(lowerCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A_ = parser.parse_args()
update_custom_js(args.version)
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ )
for row_idx in range(lowerCAmelCase__ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] ,end=''' ''' )
else:
print(triangle[row_idx][col_idx] ,end='''''' )
print()
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowerCamelCase_ = []
for current_row_idx in range(lowerCAmelCase__ ):
lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ )
triangle.append(lowerCAmelCase__ )
return triangle
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
lowerCamelCase_ , lowerCamelCase_ = 1, 1
for current_col_idx in range(1 ,lowerCAmelCase__ ):
calculate_current_element(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
return current_row
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,):
lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1]
lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx]
lowerCamelCase_ = above_to_left_elt + above_to_right_elt
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowerCamelCase_ = [[1]]
for row_index in range(1 ,lowerCAmelCase__ ):
lowerCamelCase_ = [0] + result[-1] + [0]
lowerCamelCase_ = row_index + 1
# Calculate the number of distinct elements in a row
lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) )
lowerCamelCase_ = [
temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 )
]
lowerCamelCase_ = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
lowerCamelCase_ = row_first_half + row_second_half
result.append(lowerCAmelCase__ )
return result
def lowercase ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None:
lowerCamelCase_ = f"{func.__name__}({value})"
lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 29 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: List[Any] = MgpstrTokenizer
a__: Dict = False
a__: Union[str, Any] = {}
a__: List[str] = False
def UpperCAmelCase__ ( self ):
super().setUp()
# fmt: off
lowerCamelCase_ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
lowerCamelCase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(UpperCAmelCase ) + '''\n''' )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = '''tester'''
lowerCamelCase_ = '''tester'''
return input_text, output_text
@unittest.skip('''MGP-STR always lower cases letters.''' )
def UpperCAmelCase__ ( self ):
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
lowerCamelCase_ = '''[SPECIAL_TOKEN]'''
tokenizer.add_special_tokens({'''cls_token''': special_token} )
lowerCamelCase_ = tokenizer.encode([special_token] , add_special_tokens=UpperCAmelCase )
self.assertEqual(len(UpperCAmelCase ) , 1 )
lowerCamelCase_ = tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
lowerCamelCase_ , lowerCamelCase_ = self.get_input_output_texts(UpperCAmelCase )
lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertNotEqual(len(UpperCAmelCase ) , 0 )
lowerCamelCase_ = tokenizer.decode(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(text_a.replace(''' ''' , '''''' ) , UpperCAmelCase )
@unittest.skip('''MGP-STR tokenizer only handles one sequence.''' )
def UpperCAmelCase__ ( self ):
pass
@unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' )
def UpperCAmelCase__ ( self ):
pass
| 29 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = self.get_rust_tokenizer()
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase )
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
lowerCamelCase_ = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' )
lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = processor(text=UpperCAmelCase )
lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ = processor.batch_decode(UpperCAmelCase )
lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 29 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
A_ = logging.get_logger(__name__)
@dataclass
class __lowerCamelCase ( lowerCAmelCase ):
a__: Dict = [
'no_inference',
'no_cuda',
'no_tpu',
'no_speed',
'no_memory',
'no_env_print',
'no_multi_process',
]
def __init__( self , **UpperCAmelCase ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowerCamelCase_ = deprecated_arg[3:]
setattr(self , UpperCAmelCase , not kwargs.pop(UpperCAmelCase ) )
logger.warning(
f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or"
f" {positive_arg}={kwargs[positive_arg]}" )
lowerCamelCase_ = kwargs.pop('''torchscript''' , self.torchscript )
lowerCamelCase_ = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics )
lowerCamelCase_ = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level )
super().__init__(**UpperCAmelCase )
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Trace the models using torchscript'} )
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Print Xla/PyTorch tpu metrics'} )
a__: str = field(
default='O1' , metadata={
'help': (
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '
'See details at https://nvidia.github.io/apex/amp.html'
)
} , )
@cached_property
def UpperCAmelCase__ ( self ):
requires_backends(self , ['''torch'''] )
logger.info('''PyTorch: setting up devices''' )
if not self.cuda:
lowerCamelCase_ = torch.device('''cpu''' )
lowerCamelCase_ = 0
elif is_torch_tpu_available():
lowerCamelCase_ = xm.xla_device()
lowerCamelCase_ = 0
else:
lowerCamelCase_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
lowerCamelCase_ = torch.cuda.device_count()
return device, n_gpu
@property
def UpperCAmelCase__ ( self ):
return is_torch_tpu_available() and self.tpu
@property
def UpperCAmelCase__ ( self ):
requires_backends(self , ['''torch'''] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def UpperCAmelCase__ ( self ):
requires_backends(self , ['''torch'''] )
return self._setup_devices[0]
@property
def UpperCAmelCase__ ( self ):
requires_backends(self , ['''torch'''] )
return self._setup_devices[1]
@property
def UpperCAmelCase__ ( self ):
return self.n_gpu > 0
| 29 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
lowerCamelCase_ = [5, 5, 5, 5]
elif "fl4" in model_name:
lowerCamelCase_ = [4, 4, 4, 4]
lowerCamelCase_ = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
if "lrf" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
else:
lowerCamelCase_ = [2, 2, 2, 2]
if "tiny" in model_name:
lowerCamelCase_ = 96
elif "small" in model_name:
lowerCamelCase_ = 96
elif "base" in model_name:
lowerCamelCase_ = 128
elif "large" in model_name:
lowerCamelCase_ = 192
elif "xlarge" in model_name:
lowerCamelCase_ = 256
elif "huge" in model_name:
lowerCamelCase_ = 352
# set label information
lowerCamelCase_ = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowerCamelCase_ = '''imagenet-22k-id2label.json'''
else:
lowerCamelCase_ = '''imagenet-1k-id2label.json'''
lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) )
lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
lowerCamelCase_ = FocalNetConfig(
embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,)
return config
def lowercase ( lowerCAmelCase__ ):
if "patch_embed.proj" in name:
lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' )
if "layers" in name:
lowerCamelCase_ = '''encoder.''' + name
if "encoder.layers" in name:
lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' )
if "downsample.proj" in name:
lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' )
if "blocks" in name:
lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' )
if name == "norm.weight":
lowerCamelCase_ = '''layernorm.weight'''
if name == "norm.bias":
lowerCamelCase_ = '''layernorm.bias'''
if "head" in name:
lowerCamelCase_ = name.replace('''head''' ,'''classifier''' )
else:
lowerCamelCase_ = '''focalnet.''' + name
return name
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ):
# fmt: off
lowerCamelCase_ = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowerCamelCase_ = model_name_to_url[model_name]
print('''Checkpoint URL: ''' ,lowerCAmelCase__ )
lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ )
lowerCamelCase_ = val
lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ )
lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ )
model.eval()
# load state dict
model.load_state_dict(lowerCAmelCase__ )
# verify conversion
lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ = BitImageProcessor(
do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,)
lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw )
lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' )
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ),
] )
lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 )
lowerCamelCase_ = model(**lowerCAmelCase__ )
lowerCamelCase_ = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' ,outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub..." )
model.push_to_hub(f"{model_name}" )
processor.push_to_hub(f"{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
A_ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {
"""configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""],
"""feature_extraction_whisper""": ["""WhisperFeatureExtractor"""],
"""processing_whisper""": ["""WhisperProcessor"""],
"""tokenization_whisper""": ["""WhisperTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["""WhisperTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""WhisperForConditionalGeneration""",
"""WhisperModel""",
"""WhisperPreTrainedModel""",
"""WhisperForAudioClassification""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWhisperForConditionalGeneration""",
"""TFWhisperModel""",
"""TFWhisperPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""FlaxWhisperForConditionalGeneration""",
"""FlaxWhisperModel""",
"""FlaxWhisperPreTrainedModel""",
"""FlaxWhisperForAudioClassification""",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: Tuple = RoCBertTokenizer
a__: int = None
a__: Optional[Any] = False
a__: Optional[int] = True
a__: Tuple = filter_non_english
def UpperCAmelCase__ ( self ):
super().setUp()
lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d''']
lowerCamelCase_ = {}
lowerCamelCase_ = {}
for i, value in enumerate(UpperCAmelCase ):
lowerCamelCase_ = i
lowerCamelCase_ = i
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
lowerCamelCase_ = {}
for i, token in enumerate(UpperCAmelCase ):
lowerCamelCase_ = i
lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
lowerCamelCase_ = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def UpperCAmelCase__ ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
lowerCamelCase_ = tokenizer_r.encode_plus(
UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , )
lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False
lowerCamelCase_ = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''的''', '''人''', '''有''']
lowerCamelCase_ = ''''''.join(UpperCAmelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = True
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = False
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase )
# it is expected that only the first Chinese character is not preceded by "##".
lowerCamelCase_ = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase )
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
lowerCamelCase_ = '''你好,你是谁'''
lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.prepare_for_model(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
A_ = logging.get_logger(__name__)
A_ = {
"""openai/imagegpt-small""": """""",
"""openai/imagegpt-medium""": """""",
"""openai/imagegpt-large""": """""",
}
class __lowerCamelCase ( lowerCAmelCase ):
a__: Union[str, Any] = 'imagegpt'
a__: List[str] = ['past_key_values']
a__: Dict = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , UpperCAmelCase=512 + 1 , UpperCAmelCase=32 * 32 , UpperCAmelCase=512 , UpperCAmelCase=24 , UpperCAmelCase=8 , UpperCAmelCase=None , UpperCAmelCase="quick_gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0_2 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , **UpperCAmelCase , ):
lowerCamelCase_ = vocab_size
lowerCamelCase_ = n_positions
lowerCamelCase_ = n_embd
lowerCamelCase_ = n_layer
lowerCamelCase_ = n_head
lowerCamelCase_ = n_inner
lowerCamelCase_ = activation_function
lowerCamelCase_ = resid_pdrop
lowerCamelCase_ = embd_pdrop
lowerCamelCase_ = attn_pdrop
lowerCamelCase_ = layer_norm_epsilon
lowerCamelCase_ = initializer_range
lowerCamelCase_ = scale_attn_weights
lowerCamelCase_ = use_cache
lowerCamelCase_ = scale_attn_by_inverse_layer_idx
lowerCamelCase_ = reorder_and_upcast_attn
lowerCamelCase_ = tie_word_embeddings
super().__init__(tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __lowerCamelCase ( lowerCAmelCase ):
@property
def UpperCAmelCase__ ( self ):
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
] )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 32 , UpperCAmelCase = 32 , ):
lowerCamelCase_ = self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) )
return inputs
| 29 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
A_ = datasets.logging.get_logger(__name__)
A_ = """\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",
author = \"Moosavi, Nafise Sadat and
Strube, Michael\",
booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",
month = aug,
year = \"2016\",
address = \"Berlin, Germany\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/P16-1060\",
doi = \"10.18653/v1/P16-1060\",
pages = \"632--642\",
}
"""
A_ = """\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
"""
A_ = """
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting 'keep_singletons=False', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
'mentions': mentions
'muc': MUC metric [Vilain et al, 1995]
'bcub': B-cubed [Bagga and Baldwin, 1998]
'ceafe': CEAFe [Luo et al., 2005]
'lea': LEA [Moosavi and Strube, 2016]
'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric('coval')
>>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',
... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',
... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',
... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',
... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',
... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{'mentions/recall': 1.0,[...] 'conll_score': 100.0}
"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ):
lowerCamelCase_ = {doc: key_lines}
lowerCamelCase_ = {doc: sys_lines}
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ )
key_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ )
sys_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
if remove_nested:
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'''Number of removed nested coreferring mentions in the key '''
f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" )
logger.info(
'''Number of resulting singleton clusters in the key '''
f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" )
if not keep_singletons:
logger.info(
f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system "
'''files, respectively''' )
return doc_coref_infos
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for name, metric in metrics:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} )
logger.info(
name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,)
if conll_subparts_num == 3:
lowerCamelCase_ = (conll / 3) * 100
logger.info(f"CoNLL score: {conll:.2f}" )
output_scores.update({'''conll_score''': conll} )
return output_scores
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = False
for line in key_lines:
if not line.startswith('''#''' ):
if len(line.split() ) > 6:
lowerCamelCase_ = line.split()[5]
if not parse_col == "-":
lowerCamelCase_ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Sequence(datasets.Value('''string''' ) ),
} ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[
'''https://github.com/ns-moosavi/coval''',
'''https://www.aclweb.org/anthology/P16-1060''',
'''http://www.conll.cemantix.org/2012/data.html''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ):
lowerCamelCase_ = [
('''mentions''', evaluator.mentions),
('''muc''', evaluator.muc),
('''bcub''', evaluator.b_cubed),
('''ceafe''', evaluator.ceafe),
('''lea''', evaluator.lea),
]
if min_span:
lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
lowerCamelCase_ = evaluate(
key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , )
return score
| 29 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
a__: str = AltDiffusionPipeline
a__: List[str] = TEXT_TO_IMAGE_PARAMS
a__: Any = TEXT_TO_IMAGE_BATCH_PARAMS
a__: int = TEXT_TO_IMAGE_IMAGE_PARAMS
a__: Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase__ ( self ):
torch.manual_seed(0 )
lowerCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
lowerCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , )
torch.manual_seed(0 )
lowerCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
lowerCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
lowerCamelCase_ = CLIPTextModel(UpperCAmelCase )
lowerCamelCase_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ = 77
lowerCamelCase_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ):
if str(UpperCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ = torch.manual_seed(UpperCAmelCase )
else:
lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def UpperCAmelCase__ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ = self.get_dummy_components()
torch.manual_seed(0 )
lowerCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCamelCase_ = RobertaSeriesModelWithTransformation(UpperCAmelCase )
lowerCamelCase_ = text_encoder
lowerCamelCase_ = AltDiffusionPipeline(**UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = '''A photo of an astronaut'''
lowerCamelCase_ = alt_pipe(**UpperCAmelCase )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase_ = np.array(
[0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase )
torch.manual_seed(0 )
lowerCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCamelCase_ = RobertaSeriesModelWithTransformation(UpperCAmelCase )
lowerCamelCase_ = text_encoder
lowerCamelCase_ = AltDiffusionPipeline(**UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = alt_pipe(**UpperCAmelCase )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase_ = np.array(
[0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self ):
# make sure here that pndm scheduler skips prk
lowerCamelCase_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = alt_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
lowerCamelCase_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = alt_pipe([prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type='''numpy''' )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 29 |
"""simple docstring"""
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(UpperCAmelCase , UpperCAmelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = {
'''max_new_tokens''': 1024,
'''foo''': '''bar''',
}
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = generation_config.update(**UpperCAmelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , UpperCAmelCase )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , UpperCAmelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ ( cls ):
lowerCamelCase_ = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
| 29 | 1 |
"""simple docstring"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = RobertaPreLayerNormConfig.from_pretrained(
lowerCAmelCase__ ,architectures=['''RobertaPreLayerNormForMaskedLM'''] )
# convert state_dict
lowerCamelCase_ = torch.load(hf_hub_download(repo_id=lowerCAmelCase__ ,filename='''pytorch_model.bin''' ) )
lowerCamelCase_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('''roberta.''' ):
lowerCamelCase_ = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ):
continue
lowerCamelCase_ = tensor_value
lowerCamelCase_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=lowerCAmelCase__ ,config=lowerCAmelCase__ ,state_dict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
# convert tokenizer
lowerCamelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
tokenizer.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint-repo""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
A_ = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 29 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __lowerCamelCase :
a__: List[str]
a__: Optional[str] = None
# Automatically constructed
a__: ClassVar[str] = "dict"
a__: ClassVar[Any] = None
a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase )
def __call__( self ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def UpperCAmelCase__ ( self ):
from .features import Value
return {k: Value('''string''' ) for k in sorted(self.languages )}
@dataclass
class __lowerCamelCase :
a__: Optional[List] = None
a__: Optional[int] = None
a__: Optional[str] = None
# Automatically constructed
a__: ClassVar[str] = "dict"
a__: ClassVar[Any] = None
a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None
lowerCamelCase_ = len(self.languages ) if self.languages else None
def __call__( self ):
return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = set(self.languages )
if self.languages and set(UpperCAmelCase ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
lowerCamelCase_ = []
for lang, text in translation_dict.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def UpperCAmelCase__ ( self ):
from .features import Sequence, Value
return {
"language": Sequence(Value('''string''' ) ),
"translation": Sequence(Value('''string''' ) ),
}
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {
"""configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""],
"""convert_funnel_original_tf_checkpoint_to_pytorch""": [],
"""tokenization_funnel""": ["""FunnelTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["""FunnelTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FunnelBaseModel""",
"""FunnelForMaskedLM""",
"""FunnelForMultipleChoice""",
"""FunnelForPreTraining""",
"""FunnelForQuestionAnswering""",
"""FunnelForSequenceClassification""",
"""FunnelForTokenClassification""",
"""FunnelModel""",
"""FunnelPreTrainedModel""",
"""load_tf_weights_in_funnel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFFunnelBaseModel""",
"""TFFunnelForMaskedLM""",
"""TFFunnelForMultipleChoice""",
"""TFFunnelForPreTraining""",
"""TFFunnelForQuestionAnswering""",
"""TFFunnelForSequenceClassification""",
"""TFFunnelForTokenClassification""",
"""TFFunnelModel""",
"""TFFunnelPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
A_ = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class __lowerCamelCase ( lowerCAmelCase ):
a__: List[Any] = (DPMSolverSDEScheduler,)
a__: Any = 10
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
lowerCamelCase_ = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''noise_sampler_seed''': 0,
}
config.update(**UpperCAmelCase )
return config
def UpperCAmelCase__ ( self ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCamelCase_ = sample.to(UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase_ = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = output.prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1e-2
assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3
else:
assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2
assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCamelCase_ = sample.to(UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase_ = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = output.prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1e-2
assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1e-2
assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3
else:
assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1e-2
assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter.to(UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
lowerCamelCase_ = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = output.prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1e-2
assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1e-2
assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3
else:
assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2
assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase , use_karras_sigmas=UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter.to(UpperCAmelCase ) * scheduler.init_noise_sigma
lowerCamelCase_ = sample.to(UpperCAmelCase )
for t in scheduler.timesteps:
lowerCamelCase_ = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = output.prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1e-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1e-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
else:
assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1e-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
| 29 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [True] * n
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = True
for i in range(3 ,int(n**0.5 + 1 ) ,2 ):
lowerCamelCase_ = i * 2
while index < n:
lowerCamelCase_ = False
lowerCamelCase_ = index + i
lowerCamelCase_ = [2]
for i in range(3 ,lowerCAmelCase__ ,2 ):
if is_prime[i]:
primes.append(lowerCAmelCase__ )
return primes
def lowercase ( lowerCAmelCase__ = 999_966_663_333 ):
lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100
lowerCamelCase_ = prime_sieve(lowerCAmelCase__ )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = primes[prime_index]
while (last_prime**2) <= limit:
lowerCamelCase_ = primes[prime_index + 1]
lowerCamelCase_ = last_prime**2
lowerCamelCase_ = next_prime**2
# Get numbers divisible by lps(current)
lowerCamelCase_ = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
lowerCamelCase_ = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
lowerCamelCase_ = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
lowerCamelCase_ = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 29 | 1 |
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
A_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
def constraint_to_multiple_of(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ):
lowerCamelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCamelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCamelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCamelCase_ = (output_size, output_size) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else output_size
lowerCamelCase_ , lowerCamelCase_ = get_image_size(lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = output_size
# determine new height and width
lowerCamelCase_ = output_height / input_height
lowerCamelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCamelCase_ = scale_width
else:
# fit height
lowerCamelCase_ = scale_height
lowerCamelCase_ = constraint_to_multiple_of(scale_height * input_height ,multiple=lowerCAmelCase__ )
lowerCamelCase_ = constraint_to_multiple_of(scale_width * input_width ,multiple=lowerCAmelCase__ )
return (new_height, new_width)
class __lowerCamelCase ( lowerCAmelCase ):
a__: int = ['pixel_values']
def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = False , UpperCAmelCase = 1 , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
super().__init__(**UpperCAmelCase )
lowerCamelCase_ = size if size is not None else {'''height''': 384, '''width''': 384}
lowerCamelCase_ = get_size_dict(UpperCAmelCase )
lowerCamelCase_ = do_resize
lowerCamelCase_ = size
lowerCamelCase_ = keep_aspect_ratio
lowerCamelCase_ = ensure_multiple_of
lowerCamelCase_ = resample
lowerCamelCase_ = do_rescale
lowerCamelCase_ = rescale_factor
lowerCamelCase_ = do_normalize
lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = 1 , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ):
lowerCamelCase_ = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" )
lowerCamelCase_ = get_resize_output_image_size(
UpperCAmelCase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCAmelCase , multiple=UpperCAmelCase , )
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ):
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ):
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ):
lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCamelCase_ = size if size is not None else self.size
lowerCamelCase_ = get_size_dict(UpperCAmelCase )
lowerCamelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCamelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCamelCase_ = resample if resample is not None else self.resample
lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCamelCase_ = image_std if image_std is not None else self.image_std
lowerCamelCase_ = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
lowerCamelCase_ = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
lowerCamelCase_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_rescale:
lowerCamelCase_ = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
lowerCamelCase_ = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
lowerCamelCase_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
lowerCamelCase_ = {'''pixel_values''': images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ):
lowerCamelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(UpperCAmelCase ):
lowerCamelCase_ = target_sizes.numpy()
lowerCamelCase_ = []
for idx in range(len(UpperCAmelCase ) ):
lowerCamelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCAmelCase )
lowerCamelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(UpperCAmelCase )
else:
lowerCamelCase_ = logits.argmax(dim=1 )
lowerCamelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 29 |
"""simple docstring"""
import os
from collections import namedtuple
import pytest
from datasets import ClassLabel, Features, Sequence, Value
from datasets.commands.test import TestCommand
from datasets.info import DatasetInfo, DatasetInfosDict
A_ = namedtuple(
"""_TestCommandArgs""",
[
"""dataset""",
"""name""",
"""cache_dir""",
"""data_dir""",
"""all_configs""",
"""save_infos""",
"""ignore_verifications""",
"""force_redownload""",
"""clear_cache""",
],
defaults=[None, None, None, False, False, False, False, False],
)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return (abs(source - target ) / target) < 0.01
@pytest.mark.integration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ )
lowerCamelCase_ = TestCommand(*lowerCAmelCase__ )
test_command.run()
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' )
assert os.path.exists(lowerCAmelCase__ )
lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ )
lowerCamelCase_ = DatasetInfosDict(
{
'''default''': DatasetInfo(
features=Features(
{
'''tokens''': Sequence(Value('''string''' ) ),
'''ner_tags''': Sequence(
ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ),
'''langs''': Sequence(Value('''string''' ) ),
'''spans''': Sequence(Value('''string''' ) ),
} ) ,splits=[
{
'''name''': '''train''',
'''num_bytes''': 2_351_563,
'''num_examples''': 10_000,
},
{
'''name''': '''validation''',
'''num_bytes''': 238_418,
'''num_examples''': 1_000,
},
] ,download_size=3_940_680 ,dataset_size=2_589_981 ,)
} )
assert dataset_infos.keys() == expected_dataset_infos.keys()
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ )
if key == "num_bytes":
assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ )
elif key == "splits":
assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ )
for split in result:
assert result[split].name == expected[split].name
assert result[split].num_examples == expected[split].num_examples
assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes )
else:
result == expected
| 29 | 1 |
"""simple docstring"""
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class __lowerCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , UpperCAmelCase = None , ):
super().__init__()
lowerCamelCase_ = initial_learning_rate
lowerCamelCase_ = warmup_steps
lowerCamelCase_ = power
lowerCamelCase_ = decay_schedule_fn
lowerCamelCase_ = name
def __call__( self , UpperCAmelCase ):
with tf.name_scope(self.name or '''WarmUp''' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
lowerCamelCase_ = tf.cast(UpperCAmelCase , tf.floataa )
lowerCamelCase_ = tf.cast(self.warmup_steps , tf.floataa )
lowerCamelCase_ = global_step_float / warmup_steps_float
lowerCamelCase_ = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = 0.0 ,lowerCAmelCase__ = 0.9 ,lowerCAmelCase__ = 0.999 ,lowerCAmelCase__ = 1E-8 ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,lowerCAmelCase__ = 0.0 ,lowerCAmelCase__ = 1.0 ,lowerCAmelCase__ = None ,):
lowerCamelCase_ = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=lowerCAmelCase__ ,decay_steps=num_train_steps - num_warmup_steps ,end_learning_rate=init_lr * min_lr_ratio ,power=lowerCAmelCase__ ,)
if num_warmup_steps:
lowerCamelCase_ = WarmUp(
initial_learning_rate=lowerCAmelCase__ ,decay_schedule_fn=lowerCAmelCase__ ,warmup_steps=lowerCAmelCase__ ,)
if weight_decay_rate > 0.0:
lowerCamelCase_ = AdamWeightDecay(
learning_rate=lowerCAmelCase__ ,weight_decay_rate=lowerCAmelCase__ ,beta_a=lowerCAmelCase__ ,beta_a=lowerCAmelCase__ ,epsilon=lowerCAmelCase__ ,clipnorm=lowerCAmelCase__ ,global_clipnorm=lowerCAmelCase__ ,exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] ,include_in_weight_decay=lowerCAmelCase__ ,)
else:
lowerCamelCase_ = tf.keras.optimizers.Adam(
learning_rate=lowerCAmelCase__ ,beta_a=lowerCAmelCase__ ,beta_a=lowerCAmelCase__ ,epsilon=lowerCAmelCase__ ,clipnorm=lowerCAmelCase__ ,global_clipnorm=lowerCAmelCase__ ,)
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase = 0.0_0_1 , UpperCAmelCase = 0.9 , UpperCAmelCase = 0.9_9_9 , UpperCAmelCase = 1e-7 , UpperCAmelCase = False , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "AdamWeightDecay" , **UpperCAmelCase , ):
super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = weight_decay_rate
lowerCamelCase_ = include_in_weight_decay
lowerCamelCase_ = exclude_from_weight_decay
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase ):
lowerCamelCase_ = {'''WarmUp''': WarmUp}
return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = tf.constant(
self.weight_decay_rate , name='''adam_weight_decay_rate''' )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , )
return tf.no_op()
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ = list(zip(*UpperCAmelCase ) )
return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
lowerCamelCase_ = apply_state or {}
lowerCamelCase_ = apply_state.get((var_device, var_dtype) )
if coefficients is None:
lowerCamelCase_ = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ):
lowerCamelCase_ , lowerCamelCase_ = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase )
lowerCamelCase_ = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
with tf.control_dependencies([decay] ):
return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ):
lowerCamelCase_ , lowerCamelCase_ = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase )
lowerCamelCase_ = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
with tf.control_dependencies([decay] ):
return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = super().get_config()
config.update({'''weight_decay_rate''': self.weight_decay_rate} )
return config
def UpperCAmelCase__ ( self , UpperCAmelCase ):
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(UpperCAmelCase , UpperCAmelCase ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(UpperCAmelCase , UpperCAmelCase ) is not None:
return False
return True
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self ):
lowerCamelCase_ = []
lowerCamelCase_ = None
@property
def UpperCAmelCase__ ( self ):
if self._accum_steps is None:
lowerCamelCase_ = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def UpperCAmelCase__ ( self ):
if not self._gradients:
raise ValueError('''The accumulator should be called first to initialize the gradients''' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , UpperCAmelCase ):
if not self._gradients:
lowerCamelCase_ = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(UpperCAmelCase ) != len(self._gradients ):
raise ValueError(f"Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}" )
for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(UpperCAmelCase )
self._accum_steps.assign_add(1 )
def UpperCAmelCase__ ( self ):
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(UpperCAmelCase ) )
| 29 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
A_ = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
A_ = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
A_ = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ):
if concatenate_texts:
return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"]
else:
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 29 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""],
"""processing_git""": ["""GitProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""GIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GitForCausalLM""",
"""GitModel""",
"""GitPreTrainedModel""",
"""GitVisionModel""",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 | 1 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
A_ = """\
Text data.
Second line of data."""
A_ = """file"""
@pytest.fixture(scope='''session''' )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''')
lowerCamelCase_ = bytes(lowerCAmelCase__ ,'''utf-8''' )
with zstd.open(lowerCAmelCase__ ,'''wb''' ) as f:
f.write(lowerCAmelCase__ )
return path
@pytest.fixture
def lowercase ( lowerCAmelCase__ ):
with open(os.path.join(tmpfs.local_root_dir ,lowerCAmelCase__ ) ,'''w''' ) as f:
f.write(lowerCAmelCase__ )
return FILE_PATH
@pytest.mark.parametrize('''compression_format''' ,['''gzip''', '''xz''', '''zstd'''] )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path}
lowerCamelCase_ = input_paths[compression_format]
lowerCamelCase_ = tmp_path / '''cache'''
lowerCamelCase_ = DownloadConfig(cache_dir=lowerCAmelCase__ ,extract_compressed_file=lowerCAmelCase__ )
lowerCamelCase_ = cached_path(lowerCAmelCase__ ,download_config=lowerCAmelCase__ )
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = f.read()
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('''default_extracted''' ,[True, False] )
@pytest.mark.parametrize('''default_cache_dir''' ,[True, False] )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = '''custom_cache'''
lowerCamelCase_ = '''custom_extracted_dir'''
lowerCamelCase_ = tmp_path / '''custom_extracted_path'''
if default_extracted:
lowerCamelCase_ = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''')
else:
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' ,lowerCAmelCase__ )
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' ,str(lowerCAmelCase__ ) )
lowerCamelCase_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
lowerCamelCase_ = xz_file
lowerCamelCase_ = (
DownloadConfig(extract_compressed_file=lowerCAmelCase__ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir ,extract_compressed_file=lowerCAmelCase__ )
)
lowerCamelCase_ = cached_path(lowerCAmelCase__ ,download_config=lowerCAmelCase__ )
assert Path(lowerCAmelCase__ ).parent.parts[-2:] == expected
def lowercase ( lowerCAmelCase__ ):
# absolute path
lowerCamelCase_ = str(Path(lowerCAmelCase__ ).resolve() )
assert cached_path(lowerCAmelCase__ ) == text_file
# relative path
lowerCamelCase_ = str(Path(lowerCAmelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(lowerCAmelCase__ ) == text_file
def lowercase ( lowerCAmelCase__ ):
# absolute path
lowerCamelCase_ = str(tmp_path.resolve() / '''__missing_file__.txt''' )
with pytest.raises(lowerCAmelCase__ ):
cached_path(lowerCAmelCase__ )
# relative path
lowerCamelCase_ = '''./__missing_file__.txt'''
with pytest.raises(lowerCAmelCase__ ):
cached_path(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = get_from_cache(f"tmp://{tmpfs_file}" )
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = f.read()
assert output_file_content == FILE_CONTENT
@patch('''datasets.config.HF_DATASETS_OFFLINE''' ,lowerCAmelCase__ )
def lowercase ( ):
with pytest.raises(lowerCAmelCase__ ):
cached_path('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowerCAmelCase__ ):
http_get('''https://huggingface.co''' ,temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
http_head('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowerCAmelCase__ ):
ftp_get('''ftp://huggingface.co''' ,temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
ftp_head('''ftp://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowerCAmelCase__ ):
fsspec_get('''s3://huggingface.co''' ,temp_file=lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
fsspec_head('''s3://huggingface.co''' )
| 29 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 20
lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create ramp distribution
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy()
lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy()
lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] )
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase_ = ramp_logits[1] * 1_0_0.0
# make sure at least 2 tokens are kept
lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
# check that min length is applied at length 5
lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 )
lowerCamelCase_ = 5
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] )
# check that min length is not applied anymore at length 15
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = 15
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 )
lowerCamelCase_ = 1
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 )
lowerCamelCase_ = 4
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# with processor list
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
# with processor list
def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 29 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,):
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,):
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
lowerCAmelCase__ ,nominal_annual_percentage_rate / 365 ,number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def lowercase ( lowerCAmelCase__ ):
def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ):
lowerCamelCase_ = timeit.default_timer()
lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ )
lowerCamelCase_ = timeit.default_timer() - starttime
return delta
lowerCamelCase_ = func.__name__
return wrapper
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = []
lowerCamelCase_ = seq_shapes or {}
for i in range(lowerCAmelCase__ ):
lowerCamelCase_ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(lowerCAmelCase__ ,_ArrayXD ):
lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(lowerCAmelCase__ ,datasets.Value ):
if v.dtype == "string":
lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.'''
else:
lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item()
elif isinstance(lowerCAmelCase__ ,datasets.Sequence ):
while isinstance(lowerCAmelCase__ ,datasets.Sequence ):
lowerCamelCase_ = v.feature
lowerCamelCase_ = seq_shapes[k]
lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype )
lowerCamelCase_ = data
dummy_data.append((i, example) )
return dummy_data
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ )
with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer:
for key, record in dummy_data:
lowerCamelCase_ = features.encode_example(lowerCAmelCase__ )
writer.write(lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." )
lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) )
return dataset
| 29 | 1 |
"""simple docstring"""
import random
from typing import Any
def lowercase ( lowerCAmelCase__ ):
for _ in range(len(lowerCAmelCase__ ) ):
lowerCamelCase_ = random.randint(0 ,len(lowerCAmelCase__ ) - 1 )
lowerCamelCase_ = random.randint(0 ,len(lowerCAmelCase__ ) - 1 )
lowerCamelCase_ , lowerCamelCase_ = data[b], data[a]
return data
if __name__ == "__main__":
A_ = [0, 1, 2, 3, 4, 5, 6, 7]
A_ = ["""python""", """says""", """hello""", """!"""]
print("""Fisher-Yates Shuffle:""")
print("""List""", integers, strings)
print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 29 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
A_ = [
"""good first issue""",
"""feature request""",
"""wip""",
]
def lowercase ( ):
lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] )
lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' )
lowerCamelCase_ = repo.get_issues(state='''open''' )
for issue in open_issues:
lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ )
lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None
lowerCamelCase_ = dt.utcnow()
lowerCamelCase_ = (current_time - issue.updated_at).days
lowerCamelCase_ = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCamelCase_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCAmelCase )
lowerCamelCase_ = -1
lowerCamelCase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase )
lowerCamelCase_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase )
lowerCamelCase_ = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCamelCase_ = TextStreamer(UpperCAmelCase )
model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCamelCase_ = cs.out[:-1]
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCamelCase_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCAmelCase )
lowerCamelCase_ = -1
lowerCamelCase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase )
lowerCamelCase_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase )
lowerCamelCase_ = tokenizer.decode(greedy_ids[0] )
lowerCamelCase_ = TextIteratorStreamer(UpperCAmelCase )
lowerCamelCase_ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
lowerCamelCase_ = Thread(target=model.generate , kwargs=UpperCAmelCase )
thread.start()
lowerCamelCase_ = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCamelCase_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCAmelCase )
lowerCamelCase_ = -1
lowerCamelCase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase )
lowerCamelCase_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase )
lowerCamelCase_ = greedy_ids[:, input_ids.shape[1] :]
lowerCamelCase_ = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCamelCase_ = TextStreamer(UpperCAmelCase , skip_prompt=UpperCAmelCase )
model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCamelCase_ = cs.out[:-1]
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCamelCase_ = AutoTokenizer.from_pretrained('''distilgpt2''' )
lowerCamelCase_ = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCAmelCase )
lowerCamelCase_ = -1
lowerCamelCase_ = torch.ones((1, 5) , device=UpperCAmelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCamelCase_ = TextStreamer(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
model.generate(UpperCAmelCase , max_new_tokens=1 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCamelCase_ = cs.out[:-1] # Remove the final "\n"
lowerCamelCase_ = tokenizer(UpperCAmelCase , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCamelCase_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCAmelCase )
lowerCamelCase_ = -1
lowerCamelCase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase )
lowerCamelCase_ = TextIteratorStreamer(UpperCAmelCase , timeout=0.0_0_1 )
lowerCamelCase_ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
lowerCamelCase_ = Thread(target=model.generate , kwargs=UpperCAmelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCAmelCase ):
lowerCamelCase_ = ''''''
for new_text in streamer:
streamer_text += new_text
| 29 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape
lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ )
lowerCamelCase_ = emb.weight.data
return lin_layer
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ):
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
remove_ignore_keys_(lowerCAmelCase__ )
lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ )
if mbart_aa and finetuned:
lowerCamelCase_ = '''relu'''
lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight''']
lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ )
model.model.load_state_dict(lowerCAmelCase__ )
if finetuned:
lowerCamelCase_ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""",
default="""facebook/mbart-large-cc25""",
type=str,
help="""Which huggingface architecture to use: mbart-large""",
)
parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""")
parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""")
A_ = parser.parse_args()
A_ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 29 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import pow, sqrt
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance == 0:
return {"resistance": sqrt(pow(lowerCAmelCase__ ,2 ) - pow(lowerCAmelCase__ ,2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(lowerCAmelCase__ ,2 ) - pow(lowerCAmelCase__ ,2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(lowerCAmelCase__ ,2 ) + pow(lowerCAmelCase__ ,2 ) )}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape
lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ )
lowerCamelCase_ = emb.weight.data
return lin_layer
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ):
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
remove_ignore_keys_(lowerCAmelCase__ )
lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ )
if mbart_aa and finetuned:
lowerCamelCase_ = '''relu'''
lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight''']
lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ )
model.model.load_state_dict(lowerCAmelCase__ )
if finetuned:
lowerCamelCase_ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""",
default="""facebook/mbart-large-cc25""",
type=str,
help="""Which huggingface architecture to use: mbart-large""",
)
parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""")
parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""")
A_ = parser.parse_args()
A_ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 29 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCamelCase ( lowerCAmelCase ):
a__: Any = (DDPMScheduler,)
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
lowerCamelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCAmelCase )
return config
def UpperCAmelCase__ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
self.check_over_configs(thresholding=UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase )
lowerCamelCase_ = scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase ):
if i == len(UpperCAmelCase ) - 1:
lowerCamelCase_ = -1
else:
lowerCamelCase_ = timesteps[i + 1]
lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase )
lowerCamelCase_ = prev_t.item()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
lowerCamelCase_ = len(UpperCAmelCase )
with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
A_ = logging.get_logger(__name__)
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase=None , **UpperCAmelCase ):
warnings.warn(
'''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` '''
'''instead.''' , UpperCAmelCase , )
super().__init__(args=UpperCAmelCase , **UpperCAmelCase )
| 29 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
A_ = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase ( lowerCAmelCase ):
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `max_length` value of the model configuration.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `num_beams` value of the model configuration.'
)
} , )
a__: Optional[Union[str, Path, GenerationConfig]] = field(
default=lowerCAmelCase , metadata={
'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'
} , )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = v.to_dict()
return d
| 29 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=lowerCAmelCase ):
a__: Tuple = ['torch', 'scipy']
def __init__( self , *UpperCAmelCase , **UpperCAmelCase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def UpperCAmelCase__ ( cls , *UpperCAmelCase , **UpperCAmelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def UpperCAmelCase__ ( cls , *UpperCAmelCase , **UpperCAmelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
| 29 |
"""simple docstring"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
A_ = True
except ImportError:
A_ = False
try:
from torch.hub import _get_torch_home
A_ = _get_torch_home()
except ImportError:
A_ = os.path.expanduser(
os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch"""))
)
A_ = os.path.join(torch_cache_home, """transformers""")
A_ = """https://cdn.huggingface.co"""
A_ = """https://s3.amazonaws.com/models.huggingface.co/bert"""
A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1])
A_ = os.path.join(PATH, """config.yaml""")
A_ = os.path.join(PATH, """attributes.txt""")
A_ = os.path.join(PATH, """objects.txt""")
A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path)
A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE)
A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE)
A_ = """pytorch_model.bin"""
A_ = """config.yaml"""
def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ):
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = OrderedDict()
with open(lowerCAmelCase__ ,'''rb''' ) as f:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
lowerCamelCase_ = ckp.pop(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ )
else:
assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ )
lowerCamelCase_ = v
return r
class __lowerCamelCase :
a__: Union[str, Any] = {}
def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ):
lowerCamelCase_ = name
lowerCamelCase_ = level
lowerCamelCase_ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 )
lowerCamelCase_ = v
setattr(self , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = d
def __repr__( self ):
return str(list((self._pointer.keys()) ) )
def __setattr__( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = val
lowerCamelCase_ = val
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ = len(UpperCAmelCase ) - 1
lowerCamelCase_ = self._pointer
if len(UpperCAmelCase ) > 1:
for i, l in enumerate(UpperCAmelCase ):
if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ):
setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase )
if l == last_level:
lowerCamelCase_ = val
else:
lowerCamelCase_ = pointer[l]
def UpperCAmelCase__ ( self ):
return self._pointer
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
json.dump(UpperCAmelCase , UpperCAmelCase )
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase ):
with open(UpperCAmelCase ) as stream:
lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase )
return data
def __str__( self ):
lowerCamelCase_ = ''' '''
if self._name != "root":
lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n"
else:
lowerCamelCase_ = ''''''
lowerCamelCase_ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n"
lowerCamelCase_ = level
return r[:-1]
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
return cls(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase )
if os.path.isdir(UpperCAmelCase ):
lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase )
elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ):
lowerCamelCase_ = pretrained_model_name_or_path
else:
lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase )
try:
# Load from URL or cache if already cached
lowerCamelCase_ = cached_path(
UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowerCamelCase_ = Config.load_yaml(UpperCAmelCase )
except EnvironmentError:
lowerCamelCase_ = '''Can\'t load config for'''
raise EnvironmentError(UpperCAmelCase )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(UpperCAmelCase ), kwargs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device )
lowerCamelCase_ = in_tensor.numpy()
lowerCamelCase_ = out_tensor.numpy()[0]
print(na.shape ,na[0, 0, :5] )
print(na.shape ,na[0, 0, :5] )
assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), (
f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %"
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = urlparse(lowerCAmelCase__ )
return parsed.scheme in ("http", "https")
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ):
lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowerCamelCase_ = '''/''' not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,):
lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + user_agent
lowerCamelCase_ = {'''user-agent''': ua}
if resume_size > 0:
lowerCamelCase_ = '''bytes=%d-''' % (resume_size,)
lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ )
if response.status_code == 416: # Range not satisfiable
return
lowerCamelCase_ = response.headers.get('''Content-Length''' )
lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None
lowerCamelCase_ = tqdm(
unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,)
for chunk in response.iter_content(chunk_size=1_024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowerCAmelCase__ ) )
temp_file.write(lowerCAmelCase__ )
progress.close()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = None
if not local_files_only:
try:
lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ )
if response.status_code == 200:
lowerCamelCase_ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ )
# get cache path to put the file
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowerCAmelCase__ ):
return cache_path
else:
lowerCamelCase_ = [
file
for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(lowerCAmelCase__ ) > 0:
return os.path.join(lowerCAmelCase__ ,matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowerCamelCase_ = cache_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
# If the download just completed while the lock was activated.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowerCamelCase_ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(lowerCAmelCase__ ,'''a+b''' ) as f:
yield f
lowerCamelCase_ = _resumable_file_manager
if os.path.exists(lowerCAmelCase__ ):
lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size
else:
lowerCamelCase_ = 0
else:
lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ )
lowerCamelCase_ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,)
http_get(
lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,)
os.replace(temp_file.name ,lowerCAmelCase__ )
lowerCamelCase_ = {'''url''': url, '''etag''': etag}
lowerCamelCase_ = cache_path + '''.json'''
with open(lowerCAmelCase__ ,'''w''' ) as meta_file:
json.dump(lowerCAmelCase__ ,lowerCAmelCase__ )
return cache_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ):
lowerCamelCase_ = url.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
lowerCamelCase_ = url_hash.hexdigest()
if etag:
lowerCamelCase_ = etag.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if is_remote_url(lowerCAmelCase__ ):
# URL, so get it from the cache (downloading if necessary)
lowerCamelCase_ = get_from_cache(
lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,)
elif os.path.exists(lowerCAmelCase__ ):
# File, and it exists.
lowerCamelCase_ = url_or_filename
elif urlparse(lowerCAmelCase__ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) )
if extract_compressed_file:
if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ )
lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted'''
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowerCamelCase_ = output_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ )
if is_zipfile(lowerCAmelCase__ ):
with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file:
zip_file.extractall(lowerCAmelCase__ )
zip_file.close()
elif tarfile.is_tarfile(lowerCAmelCase__ ):
lowerCamelCase_ = tarfile.open(lowerCAmelCase__ )
tar_file.extractall(lowerCAmelCase__ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) )
return output_path_extracted
return output_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = eval(f.read() )
else:
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
try:
lowerCamelCase_ = requests.json()
except Exception:
lowerCamelCase_ = req.content.decode()
assert data is not None, "could not connect"
try:
lowerCamelCase_ = eval(lowerCAmelCase__ )
except Exception:
lowerCamelCase_ = data.split('''\n''' )
req.close()
return data
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowerCAmelCase__ )
with open(lowerCAmelCase__ ,'''rb''' ) as stream:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )
lowerCamelCase_ = weights.pop('''model''' )
lowerCamelCase_ = {}
for k, v in model.items():
lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ )
if "running_var" in k:
lowerCamelCase_ = torch.tensor([0] )
lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' )
lowerCamelCase_ = zero
return new
def lowercase ( ):
print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
lowerCamelCase_ = cva.imread(lowerCAmelCase__ )
else:
lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ )
assert img is not None, f"could not connect to: {im}"
lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowerCamelCase_ = img[:, :, ::-1]
return img
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ):
return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
| 29 | 1 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
A_ = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase ( lowerCAmelCase ):
a__: Optional[float] = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} )
a__: Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
a__: Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
a__: Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} )
a__: Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
a__: Optional[str] = field(
default='linear' , metadata={'help': f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
| 29 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
A_ = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
a__: int = field(
default=1024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} )
a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
lowerCamelCase_ = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowerCamelCase_ = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __lowerCamelCase :
a__: str = field(
default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
a__: str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,)
lowerCamelCase_ = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
datasets.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCamelCase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCamelCase_ = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowerCamelCase_ = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowerCamelCase_ = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names
lowerCamelCase_ = len(lowerCAmelCase__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# load tapex tokenizer
lowerCamelCase_ = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,)
lowerCamelCase_ = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# Padding strategy
if data_args.pad_to_max_length:
lowerCamelCase_ = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCamelCase_ = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1}
lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length )
def preprocess_tabfact_function(lowerCAmelCase__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowerCAmelCase__ ):
lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] )
return _table_pd
lowerCamelCase_ = examples['''statement''']
lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) )
lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ )
lowerCamelCase_ = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
lowerCamelCase_ = raw_datasets.map(
lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
lowerCamelCase_ = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCAmelCase__ ):
lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCamelCase_ = default_data_collator
elif training_args.fpaa:
lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 )
else:
lowerCamelCase_ = None
# Initialize our Trainer
lowerCamelCase_ = Trainer(
model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,)
# Training
if training_args.do_train:
lowerCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ = last_checkpoint
lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
lowerCamelCase_ = train_result.metrics
lowerCamelCase_ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ )
)
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ )
lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ )
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.log_metrics('''eval''' ,lowerCAmelCase__ )
trainer.save_metrics('''eval''' ,lowerCAmelCase__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowerCamelCase_ = predict_dataset.remove_columns('''label''' )
lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(lowerCAmelCase__ ,'''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(lowerCAmelCase__ ):
lowerCamelCase_ = label_list[item]
writer.write(f"{index}\t{item}\n" )
lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
A_ = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class __lowerCamelCase ( datasets.BuilderConfig ):
a__: Optional[datasets.Features] = None
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,):
import pyspark
def generate_fn():
lowerCamelCase_ = df.select('''*''' ,pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) )
for partition_id in partition_order:
lowerCamelCase_ = df_with_partition_id.select('''*''' ).where(f"part_id = {partition_id}" ).drop('''part_id''' )
lowerCamelCase_ = partition_df.collect()
lowerCamelCase_ = 0
for row in rows:
yield f"{partition_id}_{row_id}", row.asDict()
row_id += 1
return generate_fn
class __lowerCamelCase ( _BaseExamplesIterable ):
def __init__( self , UpperCAmelCase , UpperCAmelCase=None , ):
lowerCamelCase_ = df
lowerCamelCase_ = partition_order or range(self.df.rdd.getNumPartitions() )
lowerCamelCase_ = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self ):
yield from self.generate_examples_fn()
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(UpperCAmelCase )
return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = self.split_shard_indices_by_worker(UpperCAmelCase , UpperCAmelCase )
return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase )
@property
def UpperCAmelCase__ ( self ):
return len(self.partition_order )
class __lowerCamelCase ( datasets.DatasetBuilder ):
a__: Optional[Any] = SparkConfig
def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
import pyspark
lowerCamelCase_ = pyspark.sql.SparkSession.builder.getOrCreate()
lowerCamelCase_ = df
lowerCamelCase_ = working_dir
super().__init__(
cache_dir=UpperCAmelCase , config_name=str(self.df.semanticHash() ) , **UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
# Returns the path of the created file.
def create_cache_and_write_probe(UpperCAmelCase ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=UpperCAmelCase )
lowerCamelCase_ = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(UpperCAmelCase , '''a''' )
return [probe_file]
if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
lowerCamelCase_ = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCAmelCase ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' )
def UpperCAmelCase__ ( self ):
return datasets.DatasetInfo(features=self.config.features )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def UpperCAmelCase__ ( self , UpperCAmelCase ):
import pyspark
def get_arrow_batch_size(UpperCAmelCase ):
for batch in it:
yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} )
lowerCamelCase_ = self.df.count()
lowerCamelCase_ = df_num_rows if df_num_rows <= 100 else 100
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
lowerCamelCase_ = (
self.df.limit(UpperCAmelCase )
.repartition(1 )
.mapInArrow(UpperCAmelCase , '''batch_bytes: long''' )
.agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
lowerCamelCase_ = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
lowerCamelCase_ = min(UpperCAmelCase , int(approx_total_size / max_shard_size ) )
lowerCamelCase_ = self.df.repartition(UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ):
import pyspark
lowerCamelCase_ = ParquetWriter if file_format == '''parquet''' else ArrowWriter
lowerCamelCase_ = os.path.join(self._working_dir , os.path.basename(UpperCAmelCase ) ) if self._working_dir else fpath
lowerCamelCase_ = file_format == '''parquet'''
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
lowerCamelCase_ = self.config.features
lowerCamelCase_ = self._writer_batch_size
lowerCamelCase_ = self._fs.storage_options
def write_arrow(UpperCAmelCase ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
lowerCamelCase_ = pyspark.TaskContext().taskAttemptId()
lowerCamelCase_ = next(UpperCAmelCase , UpperCAmelCase )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
lowerCamelCase_ = 0
lowerCamelCase_ = writer_class(
features=UpperCAmelCase , path=working_fpath.replace('''SSSSS''' , f"{shard_id:05d}" ).replace('''TTTTT''' , f"{task_id:05d}" ) , writer_batch_size=UpperCAmelCase , storage_options=UpperCAmelCase , embed_local_files=UpperCAmelCase , )
lowerCamelCase_ = pa.Table.from_batches([first_batch] )
writer.write_table(UpperCAmelCase )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
lowerCamelCase_ , lowerCamelCase_ = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
shard_id += 1
lowerCamelCase_ = writer_class(
features=writer._features , path=working_fpath.replace('''SSSSS''' , f"{shard_id:05d}" ).replace('''TTTTT''' , f"{task_id:05d}" ) , writer_batch_size=UpperCAmelCase , storage_options=UpperCAmelCase , embed_local_files=UpperCAmelCase , )
lowerCamelCase_ = pa.Table.from_batches([batch] )
writer.write_table(UpperCAmelCase )
if writer._num_bytes > 0:
lowerCamelCase_ , lowerCamelCase_ = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(UpperCAmelCase ) ):
lowerCamelCase_ = os.path.join(os.path.dirname(UpperCAmelCase ) , os.path.basename(UpperCAmelCase ) )
shutil.move(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = (
self.df.mapInArrow(UpperCAmelCase , '''task_id: long, num_examples: long, num_bytes: long''' )
.groupBy('''task_id''' )
.agg(
pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = "arrow" , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
self._validate_cache_dir()
lowerCamelCase_ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(UpperCAmelCase )
lowerCamelCase_ = not is_remote_filesystem(self._fs )
lowerCamelCase_ = os.path.join if is_local else posixpath.join
lowerCamelCase_ = '''-TTTTT-SSSSS-of-NNNNN'''
lowerCamelCase_ = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}"
lowerCamelCase_ = path_join(self._output_dir , UpperCAmelCase )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = []
lowerCamelCase_ = []
for task_id, content in self._prepare_split_single(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
(
(
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) ,
) = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(UpperCAmelCase )
lowerCamelCase_ = total_num_examples
lowerCamelCase_ = total_num_bytes
# should rename everything at the end
logger.debug(f"Renaming {total_shards} shards." )
if total_shards > 1:
lowerCamelCase_ = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
lowerCamelCase_ = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ):
rename(
UpperCAmelCase , fpath.replace('''SSSSS''' , f"{shard_id:05d}" ).replace('''TTTTT''' , f"{task_id:05d}" ) , fpath.replace('''TTTTT-SSSSS''' , f"{global_shard_id:05d}" ).replace('''NNNNN''' , f"{total_shards:05d}" ) , )
lowerCamelCase_ = []
lowerCamelCase_ = 0
for i in range(len(UpperCAmelCase ) ):
lowerCamelCase_ , lowerCamelCase_ = task_id_and_num_shards[i]
for shard_id in range(UpperCAmelCase ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(UpperCAmelCase , len(UpperCAmelCase ) ).map(lambda UpperCAmelCase : _rename_shard(*UpperCAmelCase ) ).collect()
else:
# don't use any pattern
lowerCamelCase_ = 0
lowerCamelCase_ = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('''SSSSS''' , f"{shard_id:05d}" ).replace('''TTTTT''' , f"{task_id:05d}" ) , fpath.replace(UpperCAmelCase , '''''' ) , )
def UpperCAmelCase__ ( self , UpperCAmelCase , ):
return SparkExamplesIterable(self.df )
| 29 |
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
lowerCamelCase_ = -(labels.shape[-1] * loss.item())
lowerCamelCase_ = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 29 | 1 |
"""simple docstring"""
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(UpperCAmelCase , UpperCAmelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = {
'''max_new_tokens''': 1024,
'''foo''': '''bar''',
}
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = generation_config.update(**UpperCAmelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , UpperCAmelCase )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , UpperCAmelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ ( cls ):
lowerCamelCase_ = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ )
for row_idx in range(lowerCAmelCase__ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] ,end=''' ''' )
else:
print(triangle[row_idx][col_idx] ,end='''''' )
print()
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowerCamelCase_ = []
for current_row_idx in range(lowerCAmelCase__ ):
lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ )
triangle.append(lowerCAmelCase__ )
return triangle
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
lowerCamelCase_ , lowerCamelCase_ = 1, 1
for current_col_idx in range(1 ,lowerCAmelCase__ ):
calculate_current_element(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
return current_row
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,):
lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1]
lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx]
lowerCamelCase_ = above_to_left_elt + above_to_right_elt
def lowercase ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowerCamelCase_ = [[1]]
for row_index in range(1 ,lowerCAmelCase__ ):
lowerCamelCase_ = [0] + result[-1] + [0]
lowerCamelCase_ = row_index + 1
# Calculate the number of distinct elements in a row
lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) )
lowerCamelCase_ = [
temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 )
]
lowerCamelCase_ = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
lowerCamelCase_ = row_first_half + row_second_half
result.append(lowerCAmelCase__ )
return result
def lowercase ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None:
lowerCamelCase_ = f"{func.__name__}({value})"
lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 29 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Generic, TypeVar
A_ = TypeVar("""T""")
class __lowerCamelCase ( Generic[T] ):
def __init__( self , UpperCAmelCase ):
lowerCamelCase_ = data
lowerCamelCase_ = self
lowerCamelCase_ = 0
class __lowerCamelCase ( Generic[T] ):
def __init__( self ):
# map from node name to the node object
lowerCamelCase_ = {}
def UpperCAmelCase__ ( self , UpperCAmelCase ):
# create a new set with x as its member
lowerCamelCase_ = DisjointSetTreeNode(UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
# find the set x belongs to (with path-compression)
lowerCamelCase_ = self.map[data]
if elem_ref != elem_ref.parent:
lowerCamelCase_ = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
# helper function for union operation
if nodea.rank > nodea.rank:
lowerCamelCase_ = nodea
else:
lowerCamelCase_ = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
# merge 2 disjoint sets
self.link(self.find_set(UpperCAmelCase ) , self.find_set(UpperCAmelCase ) )
class __lowerCamelCase ( Generic[T] ):
def __init__( self ):
# connections: map from the node to the neighbouring nodes (with weights)
lowerCamelCase_ = {}
def UpperCAmelCase__ ( self , UpperCAmelCase ):
# add a node ONLY if its not present in the graph
if node not in self.connections:
lowerCamelCase_ = {}
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
# add an edge with the given weight
self.add_node(UpperCAmelCase )
self.add_node(UpperCAmelCase )
lowerCamelCase_ = weight
lowerCamelCase_ = weight
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = []
lowerCamelCase_ = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda UpperCAmelCase : x[2] )
# creating the disjoint set
lowerCamelCase_ = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(UpperCAmelCase )
# MST generation
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edges[index]
index += 1
lowerCamelCase_ = disjoint_set.find_set(UpperCAmelCase )
lowerCamelCase_ = disjoint_set.find_set(UpperCAmelCase )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
disjoint_set.union(UpperCAmelCase , UpperCAmelCase )
return graph
| 29 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase__ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = self.get_rust_tokenizer()
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase )
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
lowerCamelCase_ = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' )
lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = processor(text=UpperCAmelCase )
lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ = processor.batch_decode(UpperCAmelCase )
lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
lowerCamelCase_ = '''lower newer'''
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 29 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
a__: List[Any] = StableDiffusionXLImgaImgPipeline
a__: Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
a__: Dict = PipelineTesterMixin.required_optional_params - {'latents'}
a__: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
a__: Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS
a__: str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase__ ( self ):
torch.manual_seed(0 )
lowerCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
lowerCamelCase_ = EulerDiscreteScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , )
torch.manual_seed(0 )
lowerCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
lowerCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , )
lowerCamelCase_ = CLIPTextModel(UpperCAmelCase )
lowerCamelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCAmelCase )
lowerCamelCase_ = CLIPTextModelWithProjection(UpperCAmelCase )
lowerCamelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCAmelCase )
lowerCamelCase_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''text_encoder_2''': text_encoder_a,
'''tokenizer_2''': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ):
lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
lowerCamelCase_ = image / 2 + 0.5
if str(UpperCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ = torch.manual_seed(UpperCAmelCase )
else:
lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 5.0,
'''output_type''': '''numpy''',
'''strength''': 0.7_5,
}
return inputs
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase )
lowerCamelCase_ = sd_pipe.to(UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = sd_pipe(**UpperCAmelCase ).images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCamelCase_ = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCAmelCase__ ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def UpperCAmelCase__ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def UpperCAmelCase__ ( self ):
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase )
lowerCamelCase_ = sd_pipe.to(UpperCAmelCase )
lowerCamelCase_ = sd_pipe.to(UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase )
# forward without prompt embeds
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = 3 * ['''this is a negative prompt''']
lowerCamelCase_ = negative_prompt
lowerCamelCase_ = 3 * [inputs['''prompt''']]
lowerCamelCase_ = sd_pipe(**UpperCAmelCase )
lowerCamelCase_ = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = 3 * ['''this is a negative prompt''']
lowerCamelCase_ = 3 * [inputs.pop('''prompt''' )]
(
(
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) ,
) = sd_pipe.encode_prompt(UpperCAmelCase , negative_prompt=UpperCAmelCase )
lowerCamelCase_ = sd_pipe(
**UpperCAmelCase , prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , pooled_prompt_embeds=UpperCAmelCase , negative_pooled_prompt_embeds=UpperCAmelCase , )
lowerCamelCase_ = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase="cpu" , UpperCAmelCase=torch.floataa , UpperCAmelCase=0 ):
lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase_ = np.random.RandomState(UpperCAmelCase ).standard_normal((1, 4, 64, 64) )
lowerCamelCase_ = torch.from_numpy(UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase )
lowerCamelCase_ = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_inputs(UpperCAmelCase )
lowerCamelCase_ = pipe(**UpperCAmelCase ).images
lowerCamelCase_ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] )
assert np.abs(image_slice - expected_slice ).max() < 7e-3
| 29 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
lowerCamelCase_ = [5, 5, 5, 5]
elif "fl4" in model_name:
lowerCamelCase_ = [4, 4, 4, 4]
lowerCamelCase_ = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
if "lrf" in model_name:
lowerCamelCase_ = [3, 3, 3, 3]
else:
lowerCamelCase_ = [2, 2, 2, 2]
if "tiny" in model_name:
lowerCamelCase_ = 96
elif "small" in model_name:
lowerCamelCase_ = 96
elif "base" in model_name:
lowerCamelCase_ = 128
elif "large" in model_name:
lowerCamelCase_ = 192
elif "xlarge" in model_name:
lowerCamelCase_ = 256
elif "huge" in model_name:
lowerCamelCase_ = 352
# set label information
lowerCamelCase_ = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowerCamelCase_ = '''imagenet-22k-id2label.json'''
else:
lowerCamelCase_ = '''imagenet-1k-id2label.json'''
lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) )
lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
lowerCamelCase_ = FocalNetConfig(
embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,)
return config
def lowercase ( lowerCAmelCase__ ):
if "patch_embed.proj" in name:
lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' )
if "layers" in name:
lowerCamelCase_ = '''encoder.''' + name
if "encoder.layers" in name:
lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' )
if "downsample.proj" in name:
lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' )
if "blocks" in name:
lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' )
if name == "norm.weight":
lowerCamelCase_ = '''layernorm.weight'''
if name == "norm.bias":
lowerCamelCase_ = '''layernorm.bias'''
if "head" in name:
lowerCamelCase_ = name.replace('''head''' ,'''classifier''' )
else:
lowerCamelCase_ = '''focalnet.''' + name
return name
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ):
# fmt: off
lowerCamelCase_ = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowerCamelCase_ = model_name_to_url[model_name]
print('''Checkpoint URL: ''' ,lowerCAmelCase__ )
lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ )
lowerCamelCase_ = val
lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ )
lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ )
model.eval()
# load state dict
model.load_state_dict(lowerCAmelCase__ )
# verify conversion
lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ = BitImageProcessor(
do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,)
lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw )
lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' )
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ),
] )
lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 )
lowerCamelCase_ = model(**lowerCAmelCase__ )
lowerCamelCase_ = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' ,outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub..." )
model.push_to_hub(f"{model_name}" )
processor.push_to_hub(f"{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
A_ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 29 | 1 |
"""simple docstring"""
def lowercase ( ):
for n in range(1 ,1_000_000 ):
yield n * (n + 1) // 2
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = 1
lowerCamelCase_ = 2
while i * i <= n:
lowerCamelCase_ = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def lowercase ( ):
return next(i for i in triangle_number_generator() if count_divisors(lowerCAmelCase__ ) > 500 )
if __name__ == "__main__":
print(solution())
| 29 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ):
a__: Tuple = RoCBertTokenizer
a__: int = None
a__: Optional[Any] = False
a__: Optional[int] = True
a__: Tuple = filter_non_english
def UpperCAmelCase__ ( self ):
super().setUp()
lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d''']
lowerCamelCase_ = {}
lowerCamelCase_ = {}
for i, value in enumerate(UpperCAmelCase ):
lowerCamelCase_ = i
lowerCamelCase_ = i
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
lowerCamelCase_ = {}
for i, token in enumerate(UpperCAmelCase ):
lowerCamelCase_ = i
lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def UpperCAmelCase__ ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
lowerCamelCase_ = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def UpperCAmelCase__ ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
lowerCamelCase_ = tokenizer_r.encode_plus(
UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , )
lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False
lowerCamelCase_ = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''的''', '''人''', '''有''']
lowerCamelCase_ = ''''''.join(UpperCAmelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase_ = True
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = False
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase )
# it is expected that only the first Chinese character is not preceded by "##".
lowerCamelCase_ = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase )
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
lowerCamelCase_ = '''你好,你是谁'''
lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase )
lowerCamelCase_ = tokenizer.prepare_for_model(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __lowerCamelCase ( lowerCAmelCase ):
a__: Optional[Any] = DistilBertTokenizer
a__: Optional[Any] = DistilBertTokenizerFast
a__: Optional[Any] = True
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' )
lowerCamelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 29 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
A_ = datasets.logging.get_logger(__name__)
A_ = """\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",
author = \"Moosavi, Nafise Sadat and
Strube, Michael\",
booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",
month = aug,
year = \"2016\",
address = \"Berlin, Germany\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/P16-1060\",
doi = \"10.18653/v1/P16-1060\",
pages = \"632--642\",
}
"""
A_ = """\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
"""
A_ = """
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting 'keep_singletons=False', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
'mentions': mentions
'muc': MUC metric [Vilain et al, 1995]
'bcub': B-cubed [Bagga and Baldwin, 1998]
'ceafe': CEAFe [Luo et al., 2005]
'lea': LEA [Moosavi and Strube, 2016]
'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric('coval')
>>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',
... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',
... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',
... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',
... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',
... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{'mentions/recall': 1.0,[...] 'conll_score': 100.0}
"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ):
lowerCamelCase_ = {doc: key_lines}
lowerCamelCase_ = {doc: sys_lines}
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ )
key_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ )
sys_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
if remove_nested:
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'''Number of removed nested coreferring mentions in the key '''
f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" )
logger.info(
'''Number of resulting singleton clusters in the key '''
f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" )
if not keep_singletons:
logger.info(
f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system "
'''files, respectively''' )
return doc_coref_infos
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for name, metric in metrics:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} )
logger.info(
name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,)
if conll_subparts_num == 3:
lowerCamelCase_ = (conll / 3) * 100
logger.info(f"CoNLL score: {conll:.2f}" )
output_scores.update({'''conll_score''': conll} )
return output_scores
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = False
for line in key_lines:
if not line.startswith('''#''' ):
if len(line.split() ) > 6:
lowerCamelCase_ = line.split()[5]
if not parse_col == "-":
lowerCamelCase_ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Sequence(datasets.Value('''string''' ) ),
} ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[
'''https://github.com/ns-moosavi/coval''',
'''https://www.aclweb.org/anthology/P16-1060''',
'''http://www.conll.cemantix.org/2012/data.html''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ):
lowerCamelCase_ = [
('''mentions''', evaluator.mentions),
('''muc''', evaluator.muc),
('''bcub''', evaluator.b_cubed),
('''ceafe''', evaluator.ceafe),
('''lea''', evaluator.lea),
]
if min_span:
lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
lowerCamelCase_ = evaluate(
key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , )
return score
| 29 | 1 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
A_ = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
a__: int = field(
default=1024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} )
a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
lowerCamelCase_ = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowerCamelCase_ = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __lowerCamelCase :
a__: str = field(
default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
a__: str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,)
lowerCamelCase_ = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
datasets.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCamelCase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCamelCase_ = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowerCamelCase_ = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowerCamelCase_ = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names
lowerCamelCase_ = len(lowerCAmelCase__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# load tapex tokenizer
lowerCamelCase_ = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,)
lowerCamelCase_ = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# Padding strategy
if data_args.pad_to_max_length:
lowerCamelCase_ = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCamelCase_ = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1}
lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length )
def preprocess_tabfact_function(lowerCAmelCase__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowerCAmelCase__ ):
lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] )
return _table_pd
lowerCamelCase_ = examples['''statement''']
lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) )
lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ )
lowerCamelCase_ = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
lowerCamelCase_ = raw_datasets.map(
lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
lowerCamelCase_ = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCAmelCase__ ):
lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCamelCase_ = default_data_collator
elif training_args.fpaa:
lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 )
else:
lowerCamelCase_ = None
# Initialize our Trainer
lowerCamelCase_ = Trainer(
model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,)
# Training
if training_args.do_train:
lowerCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ = last_checkpoint
lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
lowerCamelCase_ = train_result.metrics
lowerCamelCase_ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ )
)
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ )
lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ )
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.log_metrics('''eval''' ,lowerCAmelCase__ )
trainer.save_metrics('''eval''' ,lowerCAmelCase__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowerCamelCase_ = predict_dataset.remove_columns('''label''' )
lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(lowerCAmelCase__ ,'''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(lowerCAmelCase__ ):
lowerCamelCase_ = label_list[item]
writer.write(f"{index}\t{item}\n" )
lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 29 |
"""simple docstring"""
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(UpperCAmelCase , UpperCAmelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = {
'''max_new_tokens''': 1024,
'''foo''': '''bar''',
}
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = generation_config.update(**UpperCAmelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
lowerCamelCase_ = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase )
assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , UpperCAmelCase )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , UpperCAmelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase )
lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , UpperCAmelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowerCamelCase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ ( cls ):
lowerCamelCase_ = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = GenerationConfig(
do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
| 29 | 1 |
"""simple docstring"""
class __lowerCamelCase :
def __init__( self ):
lowerCamelCase_ = ''''''
lowerCamelCase_ = ''''''
lowerCamelCase_ = []
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
if m == -1:
return n + 1
elif n == -1:
return m + 1
elif self.dp[m][n] > -1:
return self.dp[m][n]
else:
if self.worda[m] == self.worda[n]:
lowerCamelCase_ = self.__min_dist_top_down_dp(m - 1 , n - 1 )
else:
lowerCamelCase_ = self.__min_dist_top_down_dp(UpperCAmelCase , n - 1 )
lowerCamelCase_ = self.__min_dist_top_down_dp(m - 1 , UpperCAmelCase )
lowerCamelCase_ = self.__min_dist_top_down_dp(m - 1 , n - 1 )
lowerCamelCase_ = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return self.dp[m][n]
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = worda
lowerCamelCase_ = worda
lowerCamelCase_ = [[-1 for _ in range(len(UpperCAmelCase ) )] for _ in range(len(UpperCAmelCase ) )]
return self.__min_dist_top_down_dp(len(UpperCAmelCase ) - 1 , len(UpperCAmelCase ) - 1 )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = worda
lowerCamelCase_ = worda
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )]
for i in range(m + 1 ):
for j in range(n + 1 ):
if i == 0: # first string is empty
lowerCamelCase_ = j
elif j == 0: # second string is empty
lowerCamelCase_ = i
elif worda[i - 1] == worda[j - 1]: # last characters are equal
lowerCamelCase_ = self.dp[i - 1][j - 1]
else:
lowerCamelCase_ = self.dp[i][j - 1]
lowerCamelCase_ = self.dp[i - 1][j]
lowerCamelCase_ = self.dp[i - 1][j - 1]
lowerCamelCase_ = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return self.dp[m][n]
if __name__ == "__main__":
A_ = EditDistance()
print("""****************** Testing Edit Distance DP Algorithm ******************""")
print()
A_ = input("""Enter the first string: """).strip()
A_ = input("""Enter the second string: """).strip()
print()
print(f"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}")
print(f"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}")
print()
print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
| 29 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __lowerCamelCase :
a__: List[str]
a__: Optional[str] = None
# Automatically constructed
a__: ClassVar[str] = "dict"
a__: ClassVar[Any] = None
a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase )
def __call__( self ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def UpperCAmelCase__ ( self ):
from .features import Value
return {k: Value('''string''' ) for k in sorted(self.languages )}
@dataclass
class __lowerCamelCase :
a__: Optional[List] = None
a__: Optional[int] = None
a__: Optional[str] = None
# Automatically constructed
a__: ClassVar[str] = "dict"
a__: ClassVar[Any] = None
a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None
lowerCamelCase_ = len(self.languages ) if self.languages else None
def __call__( self ):
return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = set(self.languages )
if self.languages and set(UpperCAmelCase ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
lowerCamelCase_ = []
for lang, text in translation_dict.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def UpperCAmelCase__ ( self ):
from .features import Sequence, Value
return {
"language": Sequence(Value('''string''' ) ),
"translation": Sequence(Value('''string''' ) ),
}
| 29 | 1 |
"""simple docstring"""
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = int(lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = t // 3_600, (t // 60) % 60, t % 60
return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=300 ):
# docstyle-ignore
return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n "
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = '''<table border="1" class="dataframe">\n'''
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f" <th>{i}</th>\n"
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
lowerCamelCase_ = f"{elt:.6f}" if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else str(lowerCAmelCase__ )
html_code += f" <td>{elt}</td>\n"
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class __lowerCamelCase :
a__: List[Any] = 5
a__: List[Any] = 0.2
def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 300 , ):
lowerCamelCase_ = total
lowerCamelCase_ = '''''' if prefix is None else prefix
lowerCamelCase_ = leave
lowerCamelCase_ = parent
lowerCamelCase_ = width
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = None
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None ):
lowerCamelCase_ = value
if comment is not None:
lowerCamelCase_ = comment
if self.last_value is None:
lowerCamelCase_ = lowerCamelCase_ = time.time()
lowerCamelCase_ = lowerCamelCase_ = value
lowerCamelCase_ = lowerCamelCase_ = None
lowerCamelCase_ = self.warmup
lowerCamelCase_ = 1
self.update_bar(UpperCAmelCase )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
lowerCamelCase_ = time.time()
lowerCamelCase_ = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
lowerCamelCase_ = self.elapsed_time / (value - self.start_value)
else:
lowerCamelCase_ = None
if value >= self.total:
lowerCamelCase_ = self.total
lowerCamelCase_ = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
lowerCamelCase_ = self.average_time_per_item * (self.total - value)
self.update_bar(UpperCAmelCase )
lowerCamelCase_ = value
lowerCamelCase_ = current_time
if self.average_time_per_item is None:
lowerCamelCase_ = 1
else:
lowerCamelCase_ = max(int(self.update_every / self.average_time_per_item ) , 1 )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None ):
lowerCamelCase_ = ''' ''' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase )
if self.elapsed_time is None:
lowerCamelCase_ = f"[{spaced_value}/{self.total} : < :"
elif self.predicted_remaining is None:
lowerCamelCase_ = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time )}"
else:
lowerCamelCase_ = (
f"[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <"
f" {format_time(self.predicted_remaining )}"
)
self.label += f", {1/self.average_time_per_item:.2f} it/s"
self.label += "]" if self.comment is None or len(self.comment ) == 0 else f", {self.comment}]"
self.display()
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
lowerCamelCase_ = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def UpperCAmelCase__ ( self ):
if self.parent is None and self.output is not None:
self.output.update(disp.HTML('''''' ) )
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase=None ):
super().__init__(UpperCAmelCase )
lowerCamelCase_ = None if column_names is None else [column_names]
lowerCamelCase_ = None
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
lowerCamelCase_ = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
if self.inner_table is None:
lowerCamelCase_ = [list(values.keys() ), list(values.values() )]
else:
lowerCamelCase_ = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(UpperCAmelCase )
lowerCamelCase_ = columns
self.inner_table.append([values[c] for c in columns] )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=300 ):
lowerCamelCase_ = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase )
return self.child_bar
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
self.display()
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self ):
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = False
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step'''
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = [self.first_column] + ['''Training Loss''']
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append('''Validation Loss''' )
lowerCamelCase_ = NotebookTrainingTracker(state.max_steps , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = int(state.epoch ) if int(state.epoch ) == state.epoch else f"{state.epoch:.2f}"
self.training_tracker.update(
state.global_step + 1 , comment=f"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , )
lowerCamelCase_ = False
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
if not has_length(UpperCAmelCase ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
lowerCamelCase_ = self.training_tracker.add_child(len(UpperCAmelCase ) )
else:
lowerCamelCase_ = NotebookProgressBar(len(UpperCAmelCase ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
if self.prediction_bar is not None:
self.prediction_bar.close()
lowerCamelCase_ = None
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
lowerCamelCase_ = {'''Training Loss''': logs['''loss''']}
# First column is necessarily Step sine we're not in epoch eval strategy
lowerCamelCase_ = state.global_step
self.training_tracker.write_line(UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
if self.training_tracker is not None:
lowerCamelCase_ = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''}
for log in reversed(state.log_history ):
if "loss" in log:
lowerCamelCase_ = log['''loss''']
break
if self.first_column == "Epoch":
lowerCamelCase_ = int(state.epoch )
else:
lowerCamelCase_ = state.global_step
lowerCamelCase_ = '''eval'''
for k in metrics:
if k.endswith('''_loss''' ):
lowerCamelCase_ = re.sub(r'''\_loss$''' , '''''' , UpperCAmelCase )
lowerCamelCase_ = metrics.pop('''total_flos''' , UpperCAmelCase )
lowerCamelCase_ = metrics.pop('''epoch''' , UpperCAmelCase )
lowerCamelCase_ = metrics.pop(f"{metric_key_prefix}_runtime" , UpperCAmelCase )
lowerCamelCase_ = metrics.pop(f"{metric_key_prefix}_samples_per_second" , UpperCAmelCase )
lowerCamelCase_ = metrics.pop(f"{metric_key_prefix}_steps_per_second" , UpperCAmelCase )
lowerCamelCase_ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time" , UpperCAmelCase )
for k, v in metrics.items():
if k == f"{metric_key_prefix}_loss":
lowerCamelCase_ = v
else:
lowerCamelCase_ = k.split('''_''' )
lowerCamelCase_ = ''' '''.join([part.capitalize() for part in splits[1:]] )
lowerCamelCase_ = v
self.training_tracker.write_line(UpperCAmelCase )
self.training_tracker.remove_child()
lowerCamelCase_ = None
# Evaluation takes a long time so we should force the next update.
lowerCamelCase_ = True
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ):
self.training_tracker.update(
state.global_step , comment=f"Epoch {int(state.epoch )}/{state.num_train_epochs}" , force_update=UpperCAmelCase )
lowerCamelCase_ = None
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
A_ = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
A_ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
A_ = [ord(letter) for letter in string.ascii_lowercase]
A_ = {ord(char) for char in VALID_CHARS}
A_ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = ""
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
for keychar, cipherchar in zip(cycle(lowerCAmelCase__ ) ,lowerCAmelCase__ ):
lowerCamelCase_ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(lowerCAmelCase__ )
return decoded
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = []
for key in product(lowerCAmelCase__ ,repeat=3 ):
lowerCamelCase_ = try_key(lowerCAmelCase__ ,lowerCAmelCase__ )
if encoded is not None:
possibles.append(lowerCAmelCase__ )
return possibles
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return [possible for possible in possibles if common_word in possible.lower()]
def lowercase ( lowerCAmelCase__ = "p059_cipher.txt" ):
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = Path(lowerCAmelCase__ ).parent.joinpath(lowerCAmelCase__ ).read_text(encoding='''utf-8''' )
lowerCamelCase_ = [int(lowerCAmelCase__ ) for number in data.strip().split(''',''' )]
lowerCamelCase_ = filter_valid_chars(lowerCAmelCase__ )
for common_word in COMMON_WORDS:
lowerCamelCase_ = filter_common_word(lowerCAmelCase__ ,lowerCAmelCase__ )
if len(lowerCAmelCase__ ) == 1:
break
lowerCamelCase_ = possibles[0]
return sum(ord(lowerCAmelCase__ ) for char in decoded_text )
if __name__ == "__main__":
print(f"{solution() = }")
| 29 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [True] * n
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = True
for i in range(3 ,int(n**0.5 + 1 ) ,2 ):
lowerCamelCase_ = i * 2
while index < n:
lowerCamelCase_ = False
lowerCamelCase_ = index + i
lowerCamelCase_ = [2]
for i in range(3 ,lowerCAmelCase__ ,2 ):
if is_prime[i]:
primes.append(lowerCAmelCase__ )
return primes
def lowercase ( lowerCAmelCase__ = 999_966_663_333 ):
lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100
lowerCamelCase_ = prime_sieve(lowerCAmelCase__ )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = primes[prime_index]
while (last_prime**2) <= limit:
lowerCamelCase_ = primes[prime_index + 1]
lowerCamelCase_ = last_prime**2
lowerCamelCase_ = next_prime**2
# Get numbers divisible by lps(current)
lowerCamelCase_ = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
lowerCamelCase_ = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
lowerCamelCase_ = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
lowerCamelCase_ = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 29 | 1 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
A_ = datasets.logging.get_logger(__name__)
A_ = """\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",
author = \"Moosavi, Nafise Sadat and
Strube, Michael\",
booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",
month = aug,
year = \"2016\",
address = \"Berlin, Germany\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/P16-1060\",
doi = \"10.18653/v1/P16-1060\",
pages = \"632--642\",
}
"""
A_ = """\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
"""
A_ = """
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting 'keep_singletons=False', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
'mentions': mentions
'muc': MUC metric [Vilain et al, 1995]
'bcub': B-cubed [Bagga and Baldwin, 1998]
'ceafe': CEAFe [Luo et al., 2005]
'lea': LEA [Moosavi and Strube, 2016]
'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric('coval')
>>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',
... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',
... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',
... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',
... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',
... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{'mentions/recall': 1.0,[...] 'conll_score': 100.0}
"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ):
lowerCamelCase_ = {doc: key_lines}
lowerCamelCase_ = {doc: sys_lines}
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ )
key_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ )
sys_singletons_num += singletons_num
if NP_only or min_span:
lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ )
if remove_nested:
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'''Number of removed nested coreferring mentions in the key '''
f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" )
logger.info(
'''Number of resulting singleton clusters in the key '''
f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" )
if not keep_singletons:
logger.info(
f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system "
'''files, respectively''' )
return doc_coref_infos
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = {}
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for name, metric in metrics:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} )
logger.info(
name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,)
if conll_subparts_num == 3:
lowerCamelCase_ = (conll / 3) * 100
logger.info(f"CoNLL score: {conll:.2f}" )
output_scores.update({'''conll_score''': conll} )
return output_scores
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = False
for line in key_lines:
if not line.startswith('''#''' ):
if len(line.split() ) > 6:
lowerCamelCase_ = line.split()[5]
if not parse_col == "-":
lowerCamelCase_ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Sequence(datasets.Value('''string''' ) ),
} ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[
'''https://github.com/ns-moosavi/coval''',
'''https://www.aclweb.org/anthology/P16-1060''',
'''http://www.conll.cemantix.org/2012/data.html''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ):
lowerCamelCase_ = [
('''mentions''', evaluator.mentions),
('''muc''', evaluator.muc),
('''bcub''', evaluator.b_cubed),
('''ceafe''', evaluator.ceafe),
('''lea''', evaluator.lea),
]
if min_span:
lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
lowerCamelCase_ = evaluate(
key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , )
return score
| 29 |
"""simple docstring"""
import os
from collections import namedtuple
import pytest
from datasets import ClassLabel, Features, Sequence, Value
from datasets.commands.test import TestCommand
from datasets.info import DatasetInfo, DatasetInfosDict
A_ = namedtuple(
"""_TestCommandArgs""",
[
"""dataset""",
"""name""",
"""cache_dir""",
"""data_dir""",
"""all_configs""",
"""save_infos""",
"""ignore_verifications""",
"""force_redownload""",
"""clear_cache""",
],
defaults=[None, None, None, False, False, False, False, False],
)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return (abs(source - target ) / target) < 0.01
@pytest.mark.integration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ )
lowerCamelCase_ = TestCommand(*lowerCAmelCase__ )
test_command.run()
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' )
assert os.path.exists(lowerCAmelCase__ )
lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ )
lowerCamelCase_ = DatasetInfosDict(
{
'''default''': DatasetInfo(
features=Features(
{
'''tokens''': Sequence(Value('''string''' ) ),
'''ner_tags''': Sequence(
ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ),
'''langs''': Sequence(Value('''string''' ) ),
'''spans''': Sequence(Value('''string''' ) ),
} ) ,splits=[
{
'''name''': '''train''',
'''num_bytes''': 2_351_563,
'''num_examples''': 10_000,
},
{
'''name''': '''validation''',
'''num_bytes''': 238_418,
'''num_examples''': 1_000,
},
] ,download_size=3_940_680 ,dataset_size=2_589_981 ,)
} )
assert dataset_infos.keys() == expected_dataset_infos.keys()
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ )
if key == "num_bytes":
assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ )
elif key == "splits":
assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ )
for split in result:
assert result[split].name == expected[split].name
assert result[split].num_examples == expected[split].num_examples
assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes )
else:
result == expected
| 29 | 1 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
A_ = pytest.mark.integration
@require_faiss
class __lowerCamelCase ( lowerCAmelCase ):
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def UpperCAmelCase__ ( self ):
import faiss
lowerCamelCase_ = self._create_dummy_dataset()
lowerCamelCase_ = dset.map(
lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase )
lowerCamelCase_ = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def UpperCAmelCase__ ( self ):
import faiss
lowerCamelCase_ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def UpperCAmelCase__ ( self ):
import faiss
lowerCamelCase_ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def UpperCAmelCase__ ( self ):
from elasticsearch import Elasticsearch
lowerCamelCase_ = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
lowerCamelCase_ = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
lowerCamelCase_ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
lowerCamelCase_ = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=UpperCAmelCase )
lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class __lowerCamelCase ( lowerCAmelCase ):
def UpperCAmelCase__ ( self ):
import faiss
lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
lowerCamelCase_ = np.zeros(5 , dtype=np.floataa )
lowerCamelCase_ = 1
lowerCamelCase_ , lowerCamelCase_ = index.search(UpperCAmelCase )
self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1]
lowerCamelCase_ , lowerCamelCase_ = index.search_batch(UpperCAmelCase )
self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] )
lowerCamelCase_ = [scores[0] for scores in total_scores]
lowerCamelCase_ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(UpperCAmelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
import faiss
lowerCamelCase_ = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
lowerCamelCase_ = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(UpperCAmelCase ):
lowerCamelCase_ = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def UpperCAmelCase__ ( self ):
import faiss
lowerCamelCase_ = faiss.IndexFlat(5 )
lowerCamelCase_ = FaissIndex(custom_index=UpperCAmelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def UpperCAmelCase__ ( self ):
import faiss
lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file:
index.save(tmp_file.name )
lowerCamelCase_ = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
lowerCamelCase_ = np.zeros(5 , dtype=np.floataa )
lowerCamelCase_ = 1
lowerCamelCase_ , lowerCamelCase_ = index.search(UpperCAmelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def lowercase ( lowerCAmelCase__ ):
import faiss
lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
lowerCamelCase_ = '''index.faiss'''
lowerCamelCase_ = f"mock://{index_name}"
index.save(lowerCAmelCase__ ,storage_options=mockfs.storage_options )
lowerCamelCase_ = FaissIndex.load(lowerCAmelCase__ ,storage_options=mockfs.storage_options )
lowerCamelCase_ = np.zeros(5 ,dtype=np.floataa )
lowerCamelCase_ = 1
lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCAmelCase__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class __lowerCamelCase ( lowerCAmelCase ):
def UpperCAmelCase__ ( self ):
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
lowerCamelCase_ = Elasticsearch()
lowerCamelCase_ = {'''acknowledged''': True}
lowerCamelCase_ = ElasticSearchIndex(es_client=UpperCAmelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
lowerCamelCase_ = '''foo'''
lowerCamelCase_ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
lowerCamelCase_ , lowerCamelCase_ = index.search(UpperCAmelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
lowerCamelCase_ = '''foo'''
lowerCamelCase_ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
lowerCamelCase_ , lowerCamelCase_ = index.search(UpperCAmelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
lowerCamelCase_ = ['''foo''', '''bar''', '''foobar''']
lowerCamelCase_ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
lowerCamelCase_ , lowerCamelCase_ = index.search_batch(UpperCAmelCase )
lowerCamelCase_ = [scores[0] for scores in total_scores]
lowerCamelCase_ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , UpperCAmelCase )
# batched queries with timeout
lowerCamelCase_ = ['''foo''', '''bar''', '''foobar''']
lowerCamelCase_ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
lowerCamelCase_ , lowerCamelCase_ = index.search_batch(UpperCAmelCase , request_timeout=30 )
lowerCamelCase_ = [scores[0] for scores in total_scores]
lowerCamelCase_ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(UpperCAmelCase ) , 0 )
self.assertListEqual([1, 1, 1] , UpperCAmelCase )
| 29 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
A_ = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
A_ = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
A_ = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def UpperCAmelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ):
if concatenate_texts:
return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"]
else:
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 29 | 1 |
"""simple docstring"""
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=() ,lowerCAmelCase__=None ,lowerCAmelCase__="no" ,lowerCAmelCase__="29500" ):
lowerCamelCase_ = False
lowerCamelCase_ = False
if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ):
lowerCamelCase_ = True
elif "IPython" in sys.modules:
lowerCamelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() )
try:
lowerCamelCase_ = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." )
if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' ,lowerCAmelCase__ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
'''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside '''
'''your training function. Restart your notebook and make sure no cells initializes an '''
'''`Accelerator`.''' )
if num_processes is None:
lowerCamelCase_ = 8
lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,distributed_type='''TPU''' )
print(f"Launching a training on {num_processes} TPU cores." )
xmp.spawn(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print('''Launching training on one GPU.''' )
else:
print('''Launching training on one CPU.''' )
function(*lowerCAmelCase__ )
else:
if num_processes is None:
raise ValueError(
'''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
'''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized '''
'''inside your training function. Restart your notebook and make sure no cells initializes an '''
'''`Accelerator`.''' )
if torch.cuda.is_initialized():
raise ValueError(
'''To launch a multi-GPU training from your notebook, you need to avoid running any instruction '''
'''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA '''
'''function.''' )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=lowerCAmelCase__ ,master_addr='''127.0.01''' ,master_port=lowerCAmelCase__ ,mixed_precision=lowerCAmelCase__ ):
lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,distributed_type='''MULTI_GPU''' )
print(f"Launching training on {num_processes} GPUs." )
try:
start_processes(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
'''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. '''
'''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. '''
'''Please review your imports and test them when running the `notebook_launcher()` to identify '''
'''which one is problematic.''' ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
lowerCamelCase_ = '''1'''
print('''Launching training on MPS.''' )
elif torch.cuda.is_available():
print('''Launching training on one GPU.''' )
else:
print('''Launching training on CPU.''' )
function(*lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=() ,lowerCAmelCase__=2 ):
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=lowerCAmelCase__ ,master_addr='''127.0.01''' ,master_port='''29500''' ,accelerate_mixed_precision='''no''' ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu='''yes''' ,):
lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,debug=lowerCAmelCase__ )
start_processes(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' )
| 29 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
"""facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""",
"""facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""",
"""facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""",
"""facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""",
"""facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""",
"""facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""",
"""facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""",
"""facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""",
"""facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""",
}
class __lowerCamelCase ( lowerCAmelCase ):
a__: Dict = 'xmod'
def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=("en_XX",) , UpperCAmelCase=None , **UpperCAmelCase , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = vocab_size
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = hidden_act
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = max_position_embeddings
lowerCamelCase_ = type_vocab_size
lowerCamelCase_ = initializer_range
lowerCamelCase_ = layer_norm_eps
lowerCamelCase_ = position_embedding_type
lowerCamelCase_ = use_cache
lowerCamelCase_ = classifier_dropout
lowerCamelCase_ = pre_norm
lowerCamelCase_ = adapter_reduction_factor
lowerCamelCase_ = adapter_layer_norm
lowerCamelCase_ = adapter_reuse_layer_norm
lowerCamelCase_ = ln_before_adapter
lowerCamelCase_ = list(UpperCAmelCase )
lowerCamelCase_ = default_language
class __lowerCamelCase ( lowerCAmelCase ):
@property
def UpperCAmelCase__ ( self ):
if self.task == "multiple-choice":
lowerCamelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowerCamelCase_ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 29 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 20
lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create ramp distribution
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy()
lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy()
lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = None
lowerCamelCase_ = 10
lowerCamelCase_ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] )
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase_ = ramp_logits[1] * 1_0_0.0
# make sure at least 2 tokens are kept
lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
# check that min length is applied at length 5
lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 )
lowerCamelCase_ = 5
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] )
# check that min length is not applied anymore at length 15
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = 15
lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 )
lowerCamelCase_ = 1
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 20
lowerCamelCase_ = 4
lowerCamelCase_ = 0
lowerCamelCase_ = 5
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 )
lowerCamelCase_ = 4
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase_ = 3
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
self.assertFalse(jnp.isinf(UpperCAmelCase ).any() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# with processor list
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = 4
lowerCamelCase_ = 10
lowerCamelCase_ = 15
lowerCamelCase_ = 2
lowerCamelCase_ = 1
lowerCamelCase_ = 15
# dummy input_ids and scores
lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase )
lowerCamelCase_ = input_ids.copy()
lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = scores.copy()
# instantiate all dist processors
lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase )
lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase )
lowerCamelCase_ = 10
# no processor list
def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
# with processor list
def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase )
return scores
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jax.jit(UpperCAmelCase )
lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 29 | 1 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
}
A_ = {
"""vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""},
"""merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""},
}
A_ = {
"""ctrl""": 256,
}
A_ = {
"""Pregnancy""": 16_8629,
"""Christianity""": 7675,
"""Explain""": 10_6423,
"""Fitness""": 6_3440,
"""Saving""": 6_3163,
"""Ask""": 2_7171,
"""Ass""": 9_5985,
"""Joke""": 16_3509,
"""Questions""": 4_5622,
"""Thoughts""": 4_9605,
"""Retail""": 5_2342,
"""Feminism""": 16_4338,
"""Writing""": 1_1992,
"""Atheism""": 19_2263,
"""Netflix""": 4_8616,
"""Computing""": 3_9639,
"""Opinion""": 4_3213,
"""Alone""": 4_4967,
"""Funny""": 5_8917,
"""Gaming""": 4_0358,
"""Human""": 4088,
"""India""": 1331,
"""Joker""": 7_7138,
"""Diet""": 3_6206,
"""Legal""": 1_1859,
"""Norman""": 4939,
"""Tip""": 7_2689,
"""Weight""": 5_2343,
"""Movies""": 4_6273,
"""Running""": 2_3425,
"""Science""": 2090,
"""Horror""": 3_7793,
"""Confession""": 6_0572,
"""Finance""": 1_2250,
"""Politics""": 1_6360,
"""Scary""": 19_1985,
"""Support""": 1_2654,
"""Technologies""": 3_2516,
"""Teenage""": 6_6160,
"""Event""": 3_2769,
"""Learned""": 6_7460,
"""Notion""": 18_2770,
"""Wikipedia""": 3_7583,
"""Books""": 6665,
"""Extract""": 7_6050,
"""Confessions""": 10_2701,
"""Conspiracy""": 7_5932,
"""Links""": 6_3674,
"""Narcissus""": 15_0425,
"""Relationship""": 5_4766,
"""Relationships""": 13_4796,
"""Reviews""": 4_1671,
"""News""": 4256,
"""Translation""": 2_6820,
"""multilingual""": 12_8406,
}
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = set()
lowerCamelCase_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase_ = char
lowerCamelCase_ = set(lowerCAmelCase__ )
return pairs
class __lowerCamelCase ( lowerCAmelCase ):
a__: Optional[Any] = VOCAB_FILES_NAMES
a__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
a__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__: str = CONTROL_CODES
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="<unk>" , **UpperCAmelCase ):
super().__init__(unk_token=UpperCAmelCase , **UpperCAmelCase )
with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
lowerCamelCase_ = json.load(UpperCAmelCase )
lowerCamelCase_ = {v: k for k, v in self.encoder.items()}
with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
lowerCamelCase_ = merges_handle.read().split('''\n''' )[1:-1]
lowerCamelCase_ = [tuple(merge.split() ) for merge in merges]
lowerCamelCase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
lowerCamelCase_ = {}
@property
def UpperCAmelCase__ ( self ):
return len(self.encoder )
def UpperCAmelCase__ ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
if token in self.cache:
return self.cache[token]
lowerCamelCase_ = tuple(UpperCAmelCase )
lowerCamelCase_ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
lowerCamelCase_ = get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
lowerCamelCase_ = min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase_ , lowerCamelCase_ = bigram
lowerCamelCase_ = []
lowerCamelCase_ = 0
while i < len(UpperCAmelCase ):
try:
lowerCamelCase_ = word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase_ = j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase_ = tuple(UpperCAmelCase )
lowerCamelCase_ = new_word
if len(UpperCAmelCase ) == 1:
break
else:
lowerCamelCase_ = get_pairs(UpperCAmelCase )
lowerCamelCase_ = '''@@ '''.join(UpperCAmelCase )
lowerCamelCase_ = word[:-4]
lowerCamelCase_ = word
return word
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = []
lowerCamelCase_ = re.findall(r'''\S+\n?''' , UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(''' ''' ) ) )
return split_tokens
def UpperCAmelCase__ ( self , UpperCAmelCase ):
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
return self.decoder.get(UpperCAmelCase , self.unk_token )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
lowerCamelCase_ = ''' '''.join(UpperCAmelCase ).replace('''@@ ''' , '''''' ).strip()
return out_string
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ):
if not os.path.isdir(UpperCAmelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase_ = os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase_ = os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' )
lowerCamelCase_ = 0
with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
''' Please check that the tokenizer is not corrupted!''' )
lowerCamelCase_ = token_index
writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 29 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def lowercase ( lowerCAmelCase__ ):
def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ):
lowerCamelCase_ = timeit.default_timer()
lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ )
lowerCamelCase_ = timeit.default_timer() - starttime
return delta
lowerCamelCase_ = func.__name__
return wrapper
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = []
lowerCamelCase_ = seq_shapes or {}
for i in range(lowerCAmelCase__ ):
lowerCamelCase_ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(lowerCAmelCase__ ,_ArrayXD ):
lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(lowerCAmelCase__ ,datasets.Value ):
if v.dtype == "string":
lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.'''
else:
lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item()
elif isinstance(lowerCAmelCase__ ,datasets.Sequence ):
while isinstance(lowerCAmelCase__ ,datasets.Sequence ):
lowerCamelCase_ = v.feature
lowerCamelCase_ = seq_shapes[k]
lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype )
lowerCamelCase_ = data
dummy_data.append((i, example) )
return dummy_data
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ):
lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ )
with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer:
for key, record in dummy_data:
lowerCamelCase_ = features.encode_example(lowerCAmelCase__ )
writer.write(lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." )
lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) )
return dataset
| 29 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class __lowerCamelCase ( lowerCAmelCase ):
a__: torch.FloatTensor
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase ):
@register_to_config
def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ):
super().__init__()
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = attention_head_dim
lowerCamelCase_ = num_attention_heads * attention_head_dim
lowerCamelCase_ = in_channels
lowerCamelCase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase )
lowerCamelCase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase )
# 3. Define transformers blocks
lowerCamelCase_ = nn.ModuleList(
[
BasicTransformerBlock(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , )
for d in range(UpperCAmelCase )
] )
lowerCamelCase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ):
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = hidden_states.shape
lowerCamelCase_ = batch_frames // num_frames
lowerCamelCase_ = hidden_states
lowerCamelCase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 )
lowerCamelCase_ = self.norm(UpperCAmelCase )
lowerCamelCase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = self.proj_in(UpperCAmelCase )
# 2. Blocks
for block in self.transformer_blocks:
lowerCamelCase_ = block(
UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , )
# 3. Output
lowerCamelCase_ = self.proj_out(UpperCAmelCase )
lowerCamelCase_ = (
hidden_states[None, None, :]
.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
.permute(0 , 3 , 4 , 1 , 2 )
.contiguous()
)
lowerCamelCase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=UpperCAmelCase )
| 29 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
A_ = [
"""good first issue""",
"""feature request""",
"""wip""",
]
def lowercase ( ):
lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] )
lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' )
lowerCamelCase_ = repo.get_issues(state='''open''' )
for issue in open_issues:
lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ )
lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None
lowerCamelCase_ = dt.utcnow()
lowerCamelCase_ = (current_time - issue.updated_at).days
lowerCamelCase_ = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCamelCase ( lowerCAmelCase ):
a__: int = 0
a__: bool = False
a__: float = 3.0
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} )
self.assertDictEqual(MockClass(a=2 , b=UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} )
self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} )
@require_cuda
def UpperCAmelCase__ ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
lowerCamelCase_ = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
lowerCamelCase_ = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
lowerCamelCase_ = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_0_2_4.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , UpperCAmelCase )
@require_multi_gpu
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = ['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
if __name__ == "__main__":
A_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
A_ = Accelerator(kwargs_handlers=[ddp_scaler])
A_ = torch.nn.Linear(100, 200)
A_ = accelerator.prepare(model)
# Check the values changed in kwargs
A_ = """"""
A_ = model.bucket_bytes_cap // (1024 * 1024)
if observed_bucket_cap_map != 15:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 29 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape
lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ )
lowerCamelCase_ = emb.weight.data
return lin_layer
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ):
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
remove_ignore_keys_(lowerCAmelCase__ )
lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0]
lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ )
if mbart_aa and finetuned:
lowerCamelCase_ = '''relu'''
lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight''']
lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ )
model.model.load_state_dict(lowerCAmelCase__ )
if finetuned:
lowerCamelCase_ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""",
default="""facebook/mbart-large-cc25""",
type=str,
help="""Which huggingface architecture to use: mbart-large""",
)
parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""")
parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""")
A_ = parser.parse_args()
A_ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 29 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class __lowerCamelCase ( lowerCAmelCase ):
a__: Tuple = 'microsoft/speecht5_tts'
a__: Optional[Any] = (
'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '
'text to read (in English) and returns a waveform object containing the sound.'
)
a__: Dict = 'text_reader'
a__: Tuple = SpeechTaProcessor
a__: int = SpeechTaForTextToSpeech
a__: str = SpeechTaHifiGan
a__: Any = ['text']
a__: Union[str, Any] = ['audio']
def UpperCAmelCase__ ( self ):
if self.post_processor is None:
lowerCamelCase_ = '''microsoft/speecht5_hifigan'''
super().setup()
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None ):
lowerCamelCase_ = self.pre_processor(text=UpperCAmelCase , return_tensors='''pt''' , truncation=UpperCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' )
lowerCamelCase_ = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' )
lowerCamelCase_ = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def UpperCAmelCase__ ( self , UpperCAmelCase ):
with torch.no_grad():
return self.model.generate_speech(**UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase ):
with torch.no_grad():
return self.post_processor(UpperCAmelCase ).cpu().detach()
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 | 1 |
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = "x" ,lowerCAmelCase__ = 10**-10 ,lowerCAmelCase__ = 1 ,):
lowerCamelCase_ = symbols(lowerCAmelCase__ )
lowerCamelCase_ = lambdify(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = lambdify(lowerCAmelCase__ ,diff(lowerCAmelCase__ ,lowerCAmelCase__ ) )
lowerCamelCase_ = starting_point
while True:
if diff_function(lowerCAmelCase__ ) != 0:
lowerCamelCase_ = prev_guess - multiplicity * func(lowerCAmelCase__ ) / diff_function(
lowerCAmelCase__ )
else:
raise ZeroDivisionError('''Could not find root''' ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowerCamelCase_ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
# Find root of polynomial
# Find fourth Root of 5
print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}")
# Find value of e
print(
"""The root of log(y) - 1 = 0 is """,
f"{newton_raphson('log(y) - 1', 2, variable='y')}",
)
# Exponential Roots
print(
"""The root of exp(x) - 1 = 0 is""",
f"{newton_raphson('exp(x) - 1', 10, precision=0.005)}",
)
# Find root of cos(x)
print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
| 29 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCamelCase ( lowerCAmelCase ):
a__: Any = (DDPMScheduler,)
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
lowerCamelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCAmelCase )
return config
def UpperCAmelCase__ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
self.check_over_configs(thresholding=UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase )
lowerCamelCase_ = scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase ):
if i == len(UpperCAmelCase ) - 1:
lowerCamelCase_ = -1
else:
lowerCamelCase_ = timesteps[i + 1]
lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase )
lowerCamelCase_ = prev_t.item()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
lowerCamelCase_ = len(UpperCAmelCase )
with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
A_ = logging.get_logger("""transformers.models.speecht5""")
A_ = {
"""speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""",
"""speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""",
"""speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""",
"""speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""",
}
A_ = {
"""text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""",
"""text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""",
}
A_ = {
"""speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""",
"""speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""",
"""speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""",
"""speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""",
"""speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""",
}
A_ = {
"""speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""",
"""speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""",
"""speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""",
"""speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""",
"""speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""",
"""speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""",
"""speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""",
"""speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""",
"""speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""",
"""speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""",
"""speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""",
"""speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""",
}
A_ = {
"""text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""",
}
A_ = {
"""text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""",
}
A_ = {
"""encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""",
"""encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""",
"""encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""",
"""encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""",
"""encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""",
"""encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""",
"""encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""",
"""encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""",
"""encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""",
}
A_ = {
"""decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""",
"""decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""",
"""decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""",
"""decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""",
"""decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""",
"""decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""",
"""decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""",
"""decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""",
"""decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""",
"""decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""",
"""decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""",
"""decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""",
"""decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""",
}
A_ = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
A_ = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
A_ = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
A_ = []
A_ = [
"""encoder.version""",
"""encoder.layers.*.norm_k.weight""",
"""encoder.layers.*.norm_k.bias""",
"""decoder.version""",
"""decoder.layers.*.norm_k.weight""",
"""decoder.layers.*.norm_k.bias""",
"""decoder.pos_emb.pe_k""",
"""speech_encoder_prenet.embed_positions._float_tensor""",
"""text_decoder_prenet.embed_positions._float_tensor""",
]
A_ = IGNORE_KEYS + [
"""encoder.proj""",
"""text_encoder_prenet.*""",
"""speech_decoder_prenet.*""",
"""speech_decoder_postnet.*""",
]
A_ = IGNORE_KEYS + [
"""encoder.proj""",
"""speech_encoder_prenet.*""",
"""text_decoder_prenet.*""",
"""text_decoder_postnet.*""",
]
A_ = IGNORE_KEYS + [
"""encoder.proj""",
"""text_encoder_prenet.*""",
"""text_decoder_prenet.*""",
"""text_decoder_postnet.*""",
]
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
for attribute in key.split('''.''' ):
lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ )
if weight_type is not None:
lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ).shape
else:
lowerCamelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
lowerCamelCase_ = value
elif weight_type == "weight_g":
lowerCamelCase_ = value
elif weight_type == "weight_v":
lowerCamelCase_ = value
elif weight_type == "bias":
lowerCamelCase_ = value
elif weight_type == "running_mean":
lowerCamelCase_ = value
elif weight_type == "running_var":
lowerCamelCase_ = value
elif weight_type == "num_batches_tracked":
lowerCamelCase_ = value
else:
lowerCamelCase_ = value
logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
lowerCamelCase_ , lowerCamelCase_ = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = []
if task == "s2t":
lowerCamelCase_ = hf_model.speechta.encoder.prenet.feature_encoder
lowerCamelCase_ = MAPPING_S2T
lowerCamelCase_ = IGNORE_KEYS_S2T
elif task == "t2s":
lowerCamelCase_ = None
lowerCamelCase_ = MAPPING_T2S
lowerCamelCase_ = IGNORE_KEYS_T2S
elif task == "s2s":
lowerCamelCase_ = hf_model.speechta.encoder.prenet.feature_encoder
lowerCamelCase_ = MAPPING_S2S
lowerCamelCase_ = IGNORE_KEYS_S2S
else:
raise ValueError(f"Unsupported task: {task}" )
for name, value in fairseq_dict.items():
if should_ignore(lowerCAmelCase__ ,lowerCAmelCase__ ):
logger.info(f"{name} was ignored" )
continue
lowerCamelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,hf_model.config.feat_extract_norm == '''group''' ,)
lowerCamelCase_ = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
lowerCamelCase_ , lowerCamelCase_ = key.split('''.*.''' )
if prefix in name and suffix in name:
lowerCamelCase_ = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
lowerCamelCase_ = True
if "*" in mapped_key:
lowerCamelCase_ = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2]
lowerCamelCase_ = mapped_key.replace('''*''' ,lowerCAmelCase__ )
if "weight_g" in name:
lowerCamelCase_ = '''weight_g'''
elif "weight_v" in name:
lowerCamelCase_ = '''weight_v'''
elif "bias" in name:
lowerCamelCase_ = '''bias'''
elif "weight" in name:
lowerCamelCase_ = '''weight'''
elif "running_mean" in name:
lowerCamelCase_ = '''running_mean'''
elif "running_var" in name:
lowerCamelCase_ = '''running_var'''
elif "num_batches_tracked" in name:
lowerCamelCase_ = '''num_batches_tracked'''
else:
lowerCamelCase_ = None
set_recursively(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"Unused weights: {unused_weights}" )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = full_name.split('''conv_layers.''' )[-1]
lowerCamelCase_ = name.split('''.''' )
lowerCamelCase_ = int(items[0] )
lowerCamelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
lowerCamelCase_ = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
lowerCamelCase_ = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
lowerCamelCase_ = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
lowerCamelCase_ = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,):
if config_path is not None:
lowerCamelCase_ = SpeechTaConfig.from_pretrained(lowerCAmelCase__ )
else:
lowerCamelCase_ = SpeechTaConfig()
if task == "s2t":
lowerCamelCase_ = config.max_text_positions
lowerCamelCase_ = SpeechTaForSpeechToText(lowerCAmelCase__ )
elif task == "t2s":
lowerCamelCase_ = 1_876
lowerCamelCase_ = 600
lowerCamelCase_ = config.max_speech_positions
lowerCamelCase_ = SpeechTaForTextToSpeech(lowerCAmelCase__ )
elif task == "s2s":
lowerCamelCase_ = 1_876
lowerCamelCase_ = config.max_speech_positions
lowerCamelCase_ = SpeechTaForSpeechToSpeech(lowerCAmelCase__ )
else:
raise ValueError(f"Unknown task name: {task}" )
if vocab_path:
lowerCamelCase_ = SpeechTaTokenizer(lowerCAmelCase__ ,model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
lowerCamelCase_ = AddedToken('''<mask>''' ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ )
lowerCamelCase_ = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
lowerCamelCase_ = SpeechTaFeatureExtractor()
lowerCamelCase_ = SpeechTaProcessor(tokenizer=lowerCAmelCase__ ,feature_extractor=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
lowerCamelCase_ = torch.load(lowerCAmelCase__ )
recursively_load_weights(fairseq_checkpoint['''model'''] ,lowerCAmelCase__ ,lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(lowerCAmelCase__ )
model.push_to_hub(lowerCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
"""--task""",
default="""s2t""",
type=str,
help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""",
)
parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
A_ = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 29 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
A_ = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCamelCase ( lowerCAmelCase ):
a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `max_length` value of the model configuration.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `num_beams` value of the model configuration.'
)
} , )
a__: Optional[Union[str, Path, GenerationConfig]] = field(
default=lowerCAmelCase , metadata={
'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'
} , )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = super().to_dict()
for k, v in d.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = v.to_dict()
return d
| 29 | 1 |
"""simple docstring"""
import os
from distutils.util import strtobool
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
for e in env_keys:
lowerCamelCase_ = int(os.environ.get(lowerCAmelCase__ ,-1 ) )
if val >= 0:
return val
return default
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=False ):
lowerCamelCase_ = os.environ.get(lowerCAmelCase__ ,str(lowerCAmelCase__ ) )
return strtobool(lowerCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int...
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="no" ):
lowerCamelCase_ = os.environ.get(lowerCAmelCase__ ,str(lowerCAmelCase__ ) )
return value
| 29 |
"""simple docstring"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
A_ = True
except ImportError:
A_ = False
try:
from torch.hub import _get_torch_home
A_ = _get_torch_home()
except ImportError:
A_ = os.path.expanduser(
os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch"""))
)
A_ = os.path.join(torch_cache_home, """transformers""")
A_ = """https://cdn.huggingface.co"""
A_ = """https://s3.amazonaws.com/models.huggingface.co/bert"""
A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1])
A_ = os.path.join(PATH, """config.yaml""")
A_ = os.path.join(PATH, """attributes.txt""")
A_ = os.path.join(PATH, """objects.txt""")
A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path)
A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE)
A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE)
A_ = """pytorch_model.bin"""
A_ = """config.yaml"""
def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ):
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = OrderedDict()
with open(lowerCAmelCase__ ,'''rb''' ) as f:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
lowerCamelCase_ = ckp.pop(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ )
else:
assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ )
lowerCamelCase_ = v
return r
class __lowerCamelCase :
a__: Union[str, Any] = {}
def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ):
lowerCamelCase_ = name
lowerCamelCase_ = level
lowerCamelCase_ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 )
lowerCamelCase_ = v
setattr(self , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = d
def __repr__( self ):
return str(list((self._pointer.keys()) ) )
def __setattr__( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = val
lowerCamelCase_ = val
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ = len(UpperCAmelCase ) - 1
lowerCamelCase_ = self._pointer
if len(UpperCAmelCase ) > 1:
for i, l in enumerate(UpperCAmelCase ):
if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ):
setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase )
if l == last_level:
lowerCamelCase_ = val
else:
lowerCamelCase_ = pointer[l]
def UpperCAmelCase__ ( self ):
return self._pointer
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
json.dump(UpperCAmelCase , UpperCAmelCase )
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase ):
with open(UpperCAmelCase ) as stream:
lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase )
return data
def __str__( self ):
lowerCamelCase_ = ''' '''
if self._name != "root":
lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n"
else:
lowerCamelCase_ = ''''''
lowerCamelCase_ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n"
lowerCamelCase_ = level
return r[:-1]
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
return cls(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase )
if os.path.isdir(UpperCAmelCase ):
lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase )
elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ):
lowerCamelCase_ = pretrained_model_name_or_path
else:
lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase )
try:
# Load from URL or cache if already cached
lowerCamelCase_ = cached_path(
UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowerCamelCase_ = Config.load_yaml(UpperCAmelCase )
except EnvironmentError:
lowerCamelCase_ = '''Can\'t load config for'''
raise EnvironmentError(UpperCAmelCase )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(UpperCAmelCase ), kwargs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device )
lowerCamelCase_ = in_tensor.numpy()
lowerCamelCase_ = out_tensor.numpy()[0]
print(na.shape ,na[0, 0, :5] )
print(na.shape ,na[0, 0, :5] )
assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), (
f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %"
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = urlparse(lowerCAmelCase__ )
return parsed.scheme in ("http", "https")
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ):
lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowerCamelCase_ = '''/''' not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,):
lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + user_agent
lowerCamelCase_ = {'''user-agent''': ua}
if resume_size > 0:
lowerCamelCase_ = '''bytes=%d-''' % (resume_size,)
lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ )
if response.status_code == 416: # Range not satisfiable
return
lowerCamelCase_ = response.headers.get('''Content-Length''' )
lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None
lowerCamelCase_ = tqdm(
unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,)
for chunk in response.iter_content(chunk_size=1_024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowerCAmelCase__ ) )
temp_file.write(lowerCAmelCase__ )
progress.close()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = None
if not local_files_only:
try:
lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ )
if response.status_code == 200:
lowerCamelCase_ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ )
# get cache path to put the file
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowerCAmelCase__ ):
return cache_path
else:
lowerCamelCase_ = [
file
for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(lowerCAmelCase__ ) > 0:
return os.path.join(lowerCAmelCase__ ,matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowerCamelCase_ = cache_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
# If the download just completed while the lock was activated.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowerCamelCase_ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(lowerCAmelCase__ ,'''a+b''' ) as f:
yield f
lowerCamelCase_ = _resumable_file_manager
if os.path.exists(lowerCAmelCase__ ):
lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size
else:
lowerCamelCase_ = 0
else:
lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ )
lowerCamelCase_ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,)
http_get(
lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,)
os.replace(temp_file.name ,lowerCAmelCase__ )
lowerCamelCase_ = {'''url''': url, '''etag''': etag}
lowerCamelCase_ = cache_path + '''.json'''
with open(lowerCAmelCase__ ,'''w''' ) as meta_file:
json.dump(lowerCAmelCase__ ,lowerCAmelCase__ )
return cache_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ):
lowerCamelCase_ = url.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
lowerCamelCase_ = url_hash.hexdigest()
if etag:
lowerCamelCase_ = etag.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if is_remote_url(lowerCAmelCase__ ):
# URL, so get it from the cache (downloading if necessary)
lowerCamelCase_ = get_from_cache(
lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,)
elif os.path.exists(lowerCAmelCase__ ):
# File, and it exists.
lowerCamelCase_ = url_or_filename
elif urlparse(lowerCAmelCase__ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) )
if extract_compressed_file:
if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ )
lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted'''
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowerCamelCase_ = output_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ )
if is_zipfile(lowerCAmelCase__ ):
with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file:
zip_file.extractall(lowerCAmelCase__ )
zip_file.close()
elif tarfile.is_tarfile(lowerCAmelCase__ ):
lowerCamelCase_ = tarfile.open(lowerCAmelCase__ )
tar_file.extractall(lowerCAmelCase__ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) )
return output_path_extracted
return output_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = eval(f.read() )
else:
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
try:
lowerCamelCase_ = requests.json()
except Exception:
lowerCamelCase_ = req.content.decode()
assert data is not None, "could not connect"
try:
lowerCamelCase_ = eval(lowerCAmelCase__ )
except Exception:
lowerCamelCase_ = data.split('''\n''' )
req.close()
return data
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowerCAmelCase__ )
with open(lowerCAmelCase__ ,'''rb''' ) as stream:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )
lowerCamelCase_ = weights.pop('''model''' )
lowerCamelCase_ = {}
for k, v in model.items():
lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ )
if "running_var" in k:
lowerCamelCase_ = torch.tensor([0] )
lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' )
lowerCamelCase_ = zero
return new
def lowercase ( ):
print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
lowerCamelCase_ = cva.imread(lowerCAmelCase__ )
else:
lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ )
assert img is not None, f"could not connect to: {im}"
lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowerCamelCase_ = img[:, :, ::-1]
return img
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ):
return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
| 29 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError('''The length of profit and weight must be same.''' )
if max_weight <= 0:
raise ValueError('''max_weight must greater than zero.''' )
if any(p < 0 for p in profit ):
raise ValueError('''Profit can not be negative.''' )
if any(w < 0 for w in weight ):
raise ValueError('''Weight can not be negative.''' )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
lowerCamelCase_ = [p / w for p, w in zip(lowerCAmelCase__ ,lowerCAmelCase__ )]
# Creating a copy of the list and sorting profit/weight in ascending order
lowerCamelCase_ = sorted(lowerCAmelCase__ )
# declaring useful variables
lowerCamelCase_ = len(lowerCAmelCase__ )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
lowerCamelCase_ = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
lowerCamelCase_ = sorted_profit_by_weight[length - i - 1]
lowerCamelCase_ = profit_by_weight.index(lowerCAmelCase__ )
lowerCamelCase_ = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
A_ = [int(x) for x in input("""Input profits separated by spaces: """).split()]
A_ = [int(x) for x in input("""Input weights separated by spaces: """).split()]
A_ = int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 29 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
A_ = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
a__: Optional[str] = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
a__: int = field(
default=1024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a__: Optional[int] = field(
default=lowerCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} )
a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
lowerCamelCase_ = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowerCamelCase_ = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __lowerCamelCase :
a__: str = field(
default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a__: Optional[str] = field(
default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
a__: str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a__: bool = field(
default=lowerCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,)
lowerCamelCase_ = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase__ )
datasets.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.set_verbosity(lowerCAmelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCamelCase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCamelCase_ = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowerCamelCase_ = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowerCamelCase_ = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names
lowerCamelCase_ = len(lowerCAmelCase__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# load tapex tokenizer
lowerCamelCase_ = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,)
lowerCamelCase_ = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# Padding strategy
if data_args.pad_to_max_length:
lowerCamelCase_ = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCamelCase_ = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1}
lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length )
def preprocess_tabfact_function(lowerCAmelCase__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowerCAmelCase__ ):
lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] )
return _table_pd
lowerCamelCase_ = examples['''statement''']
lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) )
lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ )
lowerCamelCase_ = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
lowerCamelCase_ = raw_datasets.map(
lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
lowerCamelCase_ = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCAmelCase__ ):
lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCamelCase_ = default_data_collator
elif training_args.fpaa:
lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 )
else:
lowerCamelCase_ = None
# Initialize our Trainer
lowerCamelCase_ = Trainer(
model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,)
# Training
if training_args.do_train:
lowerCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ = last_checkpoint
lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ )
lowerCamelCase_ = train_result.metrics
lowerCamelCase_ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ )
)
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_metrics('''train''' ,lowerCAmelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ )
lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ )
lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) )
trainer.log_metrics('''eval''' ,lowerCAmelCase__ )
trainer.save_metrics('''eval''' ,lowerCAmelCase__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowerCamelCase_ = predict_dataset.remove_columns('''label''' )
lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions
lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 )
lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(lowerCAmelCase__ ,'''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(lowerCAmelCase__ ):
lowerCamelCase_ = label_list[item]
writer.write(f"{index}\t{item}\n" )
lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase__ )
else:
trainer.create_model_card(**lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 29 | 1 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
A_ = [
"""good first issue""",
"""feature request""",
"""wip""",
]
def lowercase ( ):
lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] )
lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' )
lowerCamelCase_ = repo.get_issues(state='''open''' )
for issue in open_issues:
lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ )
lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None
lowerCamelCase_ = dt.utcnow()
lowerCamelCase_ = (current_time - issue.updated_at).days
lowerCamelCase_ = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 29 |
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
lowerCamelCase_ = -(labels.shape[-1] * loss.item())
lowerCamelCase_ = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 29 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.