code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
20
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Dict = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def snake_case_ (UpperCamelCase : str = "isbn/0140328726" ): '''simple docstring''' _a = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: _a = f'{olid} is not a valid Open Library olid' raise ValueError(UpperCamelCase ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def snake_case_ (UpperCamelCase : dict ): '''simple docstring''' _a = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } _a = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _a = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] _a = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(UpperCamelCase , UpperCamelCase ): _a = ''', '''.join(UpperCamelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _snake_case : str = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: _snake_case : str = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print('\n'.join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
22
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> int: debug_launcher(test_script.main ) def _UpperCAmelCase ( self ) -> Any: debug_launcher(test_ops.main )
23
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Optional[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
from collections.abc import Callable import numpy as np def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : List[Any] = int(np.ceil((x_end - xa) / step_size)) SCREAMING_SNAKE_CASE : Tuple = np.zeros((n + 1,)) SCREAMING_SNAKE_CASE : List[Any] = ya SCREAMING_SNAKE_CASE : str = xa for k in range(_a): SCREAMING_SNAKE_CASE : Optional[int] = y[k] + step_size * ode_func(_a , y[k]) SCREAMING_SNAKE_CASE : Union[str, Any] = y[k] + ( (step_size / 2) * (ode_func(_a , y[k]) + ode_func(x + step_size , _a)) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
25
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any]=13 , __magic_name__ : Optional[Any]=32 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Dict=[10, 20, 30, 40] , __magic_name__ : str=[2, 2, 3, 2] , __magic_name__ : Tuple=True , __magic_name__ : Any=True , __magic_name__ : Tuple=37 , __magic_name__ : int="gelu" , __magic_name__ : Union[str, Any]=10 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : int=["stage2", "stage3", "stage4"] , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=None , ) -> Tuple: """simple docstring""" __snake_case : str = parent __snake_case : List[Any] = batch_size __snake_case : Any = image_size __snake_case : int = num_channels __snake_case : List[Any] = num_stages __snake_case : Union[str, Any] = hidden_sizes __snake_case : Dict = depths __snake_case : Optional[int] = is_training __snake_case : Any = use_labels __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = type_sequence_label_size __snake_case : Any = initializer_range __snake_case : str = out_features __snake_case : str = num_labels __snake_case : Dict = scope __snake_case : Optional[int] = num_stages def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase__ ( self : int ) -> int: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__magic_name__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__magic_name__ , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = UperNetForSemanticSegmentation(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : Tuple = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__: Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__: int = False lowercase__: str = False lowercase__: Optional[Any] = False lowercase__: List[str] = False lowercase__: str = False lowercase__: str = False def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = UperNetModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase__ ( self : int ) -> int: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Any ): __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Any = _config_zero_init(__magic_name__ ) __snake_case : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = UperNetForSemanticSegmentation.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Any: """simple docstring""" __snake_case : Dict = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) __snake_case : List[str] = Image.open(_lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) __snake_case : int = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(__magic_name__ ) __snake_case : Tuple = prepare_img() __snake_case : int = processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) with torch.no_grad(): __snake_case : Union[str, Any] = model(**__magic_name__ ) __snake_case : str = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : List[str] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) __snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(__magic_name__ ) __snake_case : Union[str, Any] = prepare_img() __snake_case : Optional[int] = processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) __snake_case : Optional[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : str = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) )
26
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
0
import os from collections.abc import Iterator def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): _A = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip('./' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return F"{i * ' '}*" if i else "\n##" def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = "." ) -> None: """simple docstring""" _A = '' for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): _A, _A = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: _A = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = (filepath.count(os.sep ) + 1) if filepath else 0 _A = F"{filepath}/{filename}".replace(' ' , '%20' ) _A = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F"{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(".")
27
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = MvpTokenizer A : Union[str, Any] = MvpTokenizerFast A : Tuple = True A : List[Any] = filter_roberta_detectors def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Optional[Any] = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] SCREAMING_SNAKE_CASE : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(A, max_length=len(A ), padding=A, return_tensors='pt' ) self.assertIsInstance(A, A ) self.assertEqual((2, 9), batch.input_ids.shape ) self.assertEqual((2, 9), batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : Dict = batch.input_ids.tolist()[0] self.assertListEqual(A, A ) # Test that special tokens are reset @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Dict = tokenizer(A, padding=A, return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids', A ) self.assertIn('attention_mask', A ) self.assertNotIn('labels', A ) self.assertNotIn('decoder_attention_mask', A ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : int = tokenizer(text_target=A, max_length=32, padding='max_length', return_tensors='pt' ) self.assertEqual(32, targets['input_ids'].shape[1] ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Tuple = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'], padding=A, truncation=A, return_tensors='pt' ) self.assertIsInstance(A, A ) self.assertEqual(batch.input_ids.shape, (2, 1_024) ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ['A long paragraph for summarization.'] SCREAMING_SNAKE_CASE : Dict = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Tuple = tokenizer(A, text_target=A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs['input_ids'] SCREAMING_SNAKE_CASE : List[Any] = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : List[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : int = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
28
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
0
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __a( _a ): """simple docstring""" lowerCAmelCase = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase = True lowerCAmelCase = '''ml.p3.2xlarge''' lowerCAmelCase = '''accelerate_sagemaker_execution_role''' lowerCAmelCase = '''hf-sm''' lowerCAmelCase = '''us-east-1''' lowerCAmelCase = 1 lowerCAmelCase = '''accelerate-sagemaker-1''' lowerCAmelCase = '''1.6''' lowerCAmelCase = '''4.4''' lowerCAmelCase = '''train.py''' lowerCAmelCase = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] lowerCAmelCase = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCAmelCase_ : Union[str, Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] ,_SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['''do_train'''] ,_SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['''epochs'''] ,_SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['''learning_rate'''] ,_SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['''max_steps'''] ,_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
30
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "openai-gpt" lowercase_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _lowerCAmelCase : Union[str, Any]=40_478 , _lowerCAmelCase : Union[str, Any]=512 , _lowerCAmelCase : int=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Tuple=1E-5 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Any="cls_index" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=0.1 , **_lowerCAmelCase : Optional[int] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = n_positions SCREAMING_SNAKE_CASE_ = n_embd SCREAMING_SNAKE_CASE_ = n_layer SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = afn SCREAMING_SNAKE_CASE_ = resid_pdrop SCREAMING_SNAKE_CASE_ = embd_pdrop SCREAMING_SNAKE_CASE_ = attn_pdrop SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = summary_type SCREAMING_SNAKE_CASE_ = summary_use_proj SCREAMING_SNAKE_CASE_ = summary_activation SCREAMING_SNAKE_CASE_ = summary_first_dropout SCREAMING_SNAKE_CASE_ = summary_proj_to_labels super().__init__(**_lowerCAmelCase )
31
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) _UpperCAmelCase = '''A painting of a squirrel eating a burger''' _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = sd_pipe.prepare_inputs(_UpperCamelCase ) _UpperCAmelCase = replicate(_UpperCamelCase ) _UpperCAmelCase = shard(_UpperCamelCase ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = jax.random.split(_UpperCamelCase , jax.device_count() ) _UpperCAmelCase = sd_pipe(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , num_inference_steps=25 , jit=_UpperCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase = images[0, 253:256, 253:256, -1] _UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = '''stabilityai/stable-diffusion-2''' _UpperCAmelCase , _UpperCAmelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(_UpperCamelCase , subfolder='''scheduler''' ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( _UpperCamelCase , scheduler=_UpperCamelCase , revision='''bf16''' , dtype=jnp.bfloataa , ) _UpperCAmelCase = scheduler_params _UpperCAmelCase = '''A painting of a squirrel eating a burger''' _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = sd_pipe.prepare_inputs(_UpperCamelCase ) _UpperCAmelCase = replicate(_UpperCamelCase ) _UpperCAmelCase = shard(_UpperCamelCase ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = jax.random.split(_UpperCamelCase , jax.device_count() ) _UpperCAmelCase = sd_pipe(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , num_inference_steps=25 , jit=_UpperCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase = images[0, 253:256, 253:256, -1] _UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
32
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Union[str, Any] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ['''pixel_values'''] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PIL.Image.BICUBIC , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = 1 / 2_5_5 , lowerCamelCase_ = True , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} UpperCamelCase = get_size_dict(lowerCamelCase_) UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCamelCase = get_size_dict(lowerCamelCase_ , param_name='''crop_size''') UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = PIL.Image.BICUBIC , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: UpperCamelCase = get_size_dict(lowerCamelCase_) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}') return resize( lowerCamelCase_ , size=(size['''height'''], size['''width''']) , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: UpperCamelCase = get_size_dict(lowerCamelCase_) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}') return center_crop(lowerCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> Tuple: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(lowerCamelCase_) UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(lowerCamelCase_ , param_name='''crop_size''') UpperCamelCase = make_list_of_images(lowerCamelCase_) if not valid_images(lowerCamelCase_): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(lowerCamelCase_) for image in images] if do_resize: UpperCamelCase = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_) for image in images] UpperCamelCase = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_) for image in images] UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_)
34
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
0
from cva import destroyAllWindows, imread, imshow, waitKey def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A__ ): for j in range(A__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image a_ :List[str] = imread('image_data/lena.jpg', 1) # convert to its negative a_ :Optional[Any] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
35
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
0
class _A : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case : dict[str, TrieNode] = {} # Mapping from char to TrieNode snake_case : Optional[int] = False def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for word in words: self.insert(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = self for char in word: if char not in curr.nodes: snake_case : Optional[Any] = TrieNode() snake_case : Optional[Any] = curr.nodes[char] snake_case : List[Any] = True def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Tuple = self for char in word: if char not in curr.nodes: return False snake_case : Any = curr.nodes[char] return curr.is_leaf def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def _delete(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> bool: if index == len(SCREAMING_SNAKE_CASE_ ): # If word does not exist if not curr.is_leaf: return False snake_case : Tuple = False return len(curr.nodes ) == 0 snake_case : Dict = word[index] snake_case : Any = curr.nodes.get(SCREAMING_SNAKE_CASE_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted snake_case : List[Any] = _delete(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self ,SCREAMING_SNAKE_CASE_ ,0 ) def lowercase ( __A : TrieNode , __A : str ) -> None: '''simple docstring''' if node.is_leaf: print(__A , end=""" """ ) for key, value in node.nodes.items(): print_words(__A , word + key ) def lowercase ( ) -> bool: '''simple docstring''' snake_case : Any = """banana bananas bandana band apple all beast""".split() snake_case : Dict = TrieNode() root.insert_many(__A ) # print_words(root, "") assert all(root.find(__A ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowercase ( __A : str , __A : bool ) -> None: '''simple docstring''' print(str(__A ) , """works!""" if passes else """doesn't work :(""" ) def lowercase ( ) -> None: '''simple docstring''' assert test_trie() def lowercase ( ) -> None: '''simple docstring''' print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
36
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
0
import pickle import numpy as np from matplotlib import pyplot as plt class A__ : """simple docstring""" def __init__( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int=0.2 , lowerCamelCase__ : Dict=0.2 ): a__ : Optional[int] = bp_numa a__ : Tuple = bp_numa a__ : Optional[Any] = bp_numa a__ : str = conva_get[:2] a__ : Optional[int] = conva_get[2] a__ : Any = size_pa a__ : List[str] = rate_w a__ : str = rate_t a__ : Optional[int] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] a__ : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a__ : Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a__ : List[str] = -2 * np.random.rand(self.conva[1] ) + 1 a__ : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 a__ : List[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Optional[Any] ): # save model dict with pickle a__ : int = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(lowerCamelCase__ , "wb" ) as f: pickle.dump(lowerCamelCase__ , lowerCamelCase__ ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCamelCase( cls : Tuple , lowerCamelCase__ : Tuple ): # read saved model with open(lowerCamelCase__ , "rb" ) as f: a__ : Tuple = pickle.load(lowerCamelCase__ ) # noqa: S301 a__ : List[str] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) a__ : Optional[Any] = model_dic.get("size_pooling1" ) a__ : Optional[Any] = model_dic.get("num_bp1" ) a__ : Tuple = model_dic.get("num_bp2" ) a__ : int = model_dic.get("num_bp3" ) a__ : Tuple = model_dic.get("rate_weight" ) a__ : Optional[Any] = model_dic.get("rate_thre" ) # create model instance a__ : Tuple = CNN(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # modify model parameter a__ : Tuple = model_dic.get("w_conv1" ) a__ : int = model_dic.get("wkj" ) a__ : List[str] = model_dic.get("vji" ) a__ : Optional[int] = model_dic.get("thre_conv1" ) a__ : Optional[int] = model_dic.get("thre_bp2" ) a__ : Optional[int] = model_dic.get("thre_bp3" ) return conv_ins def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): return 1 / (1 + np.exp(-1 * x )) def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): return round(lowerCamelCase__ , 3 ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any ): # convolution process a__ : Any = convs[0] a__ : str = convs[1] a__ : int = np.shape(lowerCamelCase__ )[0] # get the data slice of original image data, data_focus a__ : Optional[int] = [] for i_focus in range(0 , size_data - size_conv + 1 , lowerCamelCase__ ): for j_focus in range(0 , size_data - size_conv + 1 , lowerCamelCase__ ): a__ : List[str] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix a__ : str = [] a__ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase__ ): a__ : Optional[Any] = [] for i_focus in range(len(lowerCamelCase__ ) ): a__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase__ ) ) a__ : Optional[int] = np.asmatrix(lowerCamelCase__ ).reshape( lowerCamelCase__ , lowerCamelCase__ ) data_featuremap.append(lowerCamelCase__ ) # expanding the data slice to One dimenssion a__ : Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase__ ) ) a__ : Union[str, Any] = np.asarray(lowerCamelCase__ ) return focus_list, data_featuremap def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int]="average_pool" ): # pooling process a__ : Union[str, Any] = len(featuremaps[0] ) a__ : Union[str, Any] = int(size_map / size_pooling ) a__ : List[str] = [] for i_map in range(len(lowerCamelCase__ ) ): a__ : str = featuremaps[i_map] a__ : Tuple = [] for i_focus in range(0 , lowerCamelCase__ , lowerCamelCase__ ): for j_focus in range(0 , lowerCamelCase__ , lowerCamelCase__ ): a__ : Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase__ ) ) a__ : List[str] = np.asmatrix(lowerCamelCase__ ).reshape(lowerCamelCase__ , lowerCamelCase__ ) featuremap_pooled.append(lowerCamelCase__ ) return featuremap_pooled def _UpperCamelCase( self : Any , lowerCamelCase__ : str ): # expanding three dimension data to one dimension list a__ : Optional[int] = [] for i in range(len(lowerCamelCase__ ) ): a__ : Dict = np.shape(data[i] ) a__ : Union[str, Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) a__ : List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase__ ) a__ : Dict = np.asarray(lowerCamelCase__ ) return data_expanded def _UpperCamelCase( self : List[str] , lowerCamelCase__ : Tuple ): # expanding matrix to one dimension list a__ : str = np.asarray(lowerCamelCase__ ) a__ : Optional[int] = np.shape(lowerCamelCase__ ) a__ : Union[str, Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCamelCase( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Any ): a__ : int = [] a__ : int = 0 for i_map in range(lowerCamelCase__ ): a__ : List[Any] = np.ones((size_map, size_map) ) for i in range(0 , lowerCamelCase__ , lowerCamelCase__ ): for j in range(0 , lowerCamelCase__ , lowerCamelCase__ ): a__ : Union[str, Any] = pd_pool[ i_pool ] a__ : str = i_pool + 1 a__ : Any = np.multiply( lowerCamelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase__ ) return pd_all def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str]=bool ): # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(lowerCamelCase__ )) ) print((" - - Shape: Teach_Data ", np.shape(lowerCamelCase__ )) ) a__ : str = 0 a__ : List[str] = [] a__ : int = 10_000 while rp < n_repeat and mse >= error_accuracy: a__ : Optional[int] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase__ ) ): # print('------------Learning Image: %d--------------'%p) a__ : Optional[Any] = np.asmatrix(datas_train[p] ) a__ : str = np.asarray(datas_teach[p] ) a__, a__ : Dict = self.convolute( lowerCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a__ : int = self.pooling(lowerCamelCase__ , self.size_poolinga ) a__ : Dict = np.shape(lowerCamelCase__ ) a__ : List[str] = self._expand(lowerCamelCase__ ) a__ : Dict = data_bp_input a__ : Dict = np.dot(lowerCamelCase__ , self.vji.T ) - self.thre_bpa a__ : Optional[int] = self.sig(lowerCamelCase__ ) a__ : int = np.dot(lowerCamelCase__ , self.wkj.T ) - self.thre_bpa a__ : int = self.sig(lowerCamelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- a__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(lowerCamelCase__ , (1 - bp_outa) ) ) a__ : Optional[Any] = np.multiply( np.dot(lowerCamelCase__ , self.wkj ) , np.multiply(lowerCamelCase__ , (1 - bp_outa) ) ) a__ : Optional[Any] = np.dot(lowerCamelCase__ , self.vji ) a__ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) a__ : Optional[Any] = pd_conva_pooled.T.getA().tolist() a__ : Dict = self._calculate_gradient_from_pool( lowerCamelCase__ , lowerCamelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): a__ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) a__ : Any = self.rate_weight * np.dot(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) a__ : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer a__ : Optional[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight a__ : str = self.vji + pd_j_all.T * bp_outa * self.rate_weight a__ : Optional[int] = self.thre_bpa - pd_k_all * self.rate_thre a__ : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image a__ : str = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) a__ : str = rp + 1 a__ : Tuple = error_count / patterns all_mse.append(lowerCamelCase__ ) def draw_error(): a__ : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase__ , "+-" ) plt.plot(lowerCamelCase__ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(lowerCamelCase__ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCamelCase( self : Tuple , lowerCamelCase__ : int ): # model predict a__ : Optional[int] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(lowerCamelCase__ )) ) for p in range(len(lowerCamelCase__ ) ): a__ : str = np.asmatrix(datas_test[p] ) a__, a__ : Tuple = self.convolute( lowerCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a__ : Optional[int] = self.pooling(lowerCamelCase__ , self.size_poolinga ) a__ : Any = self._expand(lowerCamelCase__ ) a__ : Any = data_bp_input a__ : str = bp_outa * self.vji.T - self.thre_bpa a__ : Tuple = self.sig(lowerCamelCase__ ) a__ : Any = bp_outa * self.wkj.T - self.thre_bpa a__ : List[str] = self.sig(lowerCamelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) a__ : List[str] = [list(map(self.do_round , lowerCamelCase__ ) ) for each in produce_out] return np.asarray(lowerCamelCase__ ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : Any ): # return the data of image after convoluting process so we can check it out a__ : List[Any] = np.asmatrix(lowerCamelCase__ ) a__, a__ : List[Any] = self.convolute( lowerCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a__ : Any = self.pooling(lowerCamelCase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
37
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
0
'''simple docstring''' import os def UpperCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' with open(os.path.dirname(__magic_name__ ) + """/grid.txt""" ) as f: snake_case__ : List[str] = [] # noqa: E741 for _ in range(20 ): l.append([int(__magic_name__ ) for x in f.readline().split()] ) snake_case__ : Optional[int] = 0 # right for i in range(20 ): for j in range(17 ): snake_case__ : Dict = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case__ : List[Any] = temp # down for i in range(17 ): for j in range(20 ): snake_case__ : int = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case__ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case__ : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case__ : int = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): snake_case__ : Optional[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case__ : Any = temp return maximum if __name__ == "__main__": print(solution())
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "laptop" ): snake_case_ = F'''https://www.amazon.in/laptop/s?k={product}''' snake_case_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } snake_case_ = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).text ) # Initialize a Pandas dataframe with the column titles snake_case_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: snake_case_ = item.ha.text snake_case_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] snake_case_ = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: snake_case_ = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: snake_case_ = '''Not available''' try: snake_case_ = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: snake_case_ = '''''' try: snake_case_ = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: snake_case_ = float('''nan''' ) except AttributeError: pass snake_case_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case_ = ''' ''' snake_case_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase_ = '''headphones''' get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
39
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
0
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[32, 64, 128] , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2"] , SCREAMING_SNAKE_CASE_=[1, 2] , ) -> List[str]: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ) -> str: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = FocalNetModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = FocalNetBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = FocalNetForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 , has_text_modality=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def UpperCamelCase( self ) -> str: '''simple docstring''' pass def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = (FocalNetBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = FocalNetConfig SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = FocalNetModelTester(self )
42
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : def __init__( self : Tuple,__A : Union[str, Any],__A : Union[str, Any]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Union[str, Any]=True,__A : Tuple=True,__A : List[str]=True,__A : Union[str, Any]=9_9,__A : int=3_2,__A : List[str]=2,__A : Optional[int]=4,__A : int=3_7,__A : Union[str, Any]="gelu",__A : Optional[int]=0.1,__A : Optional[int]=0.1,__A : List[Any]=5_1_2,__A : int=1_6,__A : int=2,__A : str=0.02,__A : Tuple=3,__A : Union[str, Any]=4,__A : str=None,): _lowerCamelCase : List[str] = parent _lowerCamelCase : Dict = 1_3 _lowerCamelCase : Union[str, Any] = 7 _lowerCamelCase : int = True _lowerCamelCase : int = True _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 9_9 _lowerCamelCase : Dict = 3_2 _lowerCamelCase : int = 2 _lowerCamelCase : str = 4 _lowerCamelCase : List[str] = 3_7 _lowerCamelCase : List[str] = "gelu" _lowerCamelCase : List[Any] = 0.1 _lowerCamelCase : List[str] = 0.1 _lowerCamelCase : List[str] = 5_1_2 _lowerCamelCase : Optional[int] = 1_6 _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Optional[int] = 0.02 _lowerCamelCase : Dict = 3 _lowerCamelCase : List[str] = 4 _lowerCamelCase : int = None def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : List[str] = None if self.use_input_mask: _lowerCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Dict = None if self.use_token_type_ids: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : Any = RoFormerConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=__A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Union[str, Any],__A : Dict,__A : Optional[Any],__A : Union[str, Any],__A : Dict,__A : int,__A : Union[str, Any],__A : List[Any] ): _lowerCamelCase : Any = TFRoFormerModel(config=__A ) _lowerCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCamelCase : Dict = [input_ids, input_mask] _lowerCamelCase : Optional[int] = model(__A ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str],__A : Union[str, Any],__A : Tuple,__A : Any,__A : Optional[Any],__A : int,__A : Optional[Any],__A : int ): _lowerCamelCase : Tuple = True _lowerCamelCase : Optional[int] = TFRoFormerForCausalLM(config=__A ) _lowerCamelCase : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Union[str, Any] = model(__A )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ),[self.batch_size, self.seq_length, self.vocab_size] ) def lowerCamelCase_ ( self : str,__A : Any,__A : Tuple,__A : str,__A : int,__A : Any,__A : Any,__A : str ): _lowerCamelCase : Optional[int] = TFRoFormerForMaskedLM(config=__A ) _lowerCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any,__A : int,__A : Dict,__A : List[str],__A : Tuple,__A : List[str],__A : int,__A : Union[str, Any] ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : int = TFRoFormerForSequenceClassification(config=__A ) _lowerCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Tuple,__A : Optional[Any],__A : Optional[Any],__A : int,__A : Dict,__A : Union[str, Any],__A : Optional[int],__A : Optional[int] ): _lowerCamelCase : Optional[Any] = self.num_choices _lowerCamelCase : Optional[int] = TFRoFormerForMultipleChoice(config=__A ) _lowerCamelCase : int = tf.tile(tf.expand_dims(__A,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : int = tf.tile(tf.expand_dims(__A,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : Any = tf.tile(tf.expand_dims(__A,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCamelCase : Dict = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Optional[Any],__A : Union[str, Any],__A : List[Any],__A : Union[str, Any],__A : Optional[int],__A : Any,__A : Any,__A : Optional[Any] ): _lowerCamelCase : str = self.num_labels _lowerCamelCase : Optional[int] = TFRoFormerForTokenClassification(config=__A ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : List[str],__A : Union[str, Any],__A : Dict,__A : Optional[Any],__A : List[Any],__A : int,__A : Tuple,__A : Optional[int] ): _lowerCamelCase : Any = TFRoFormerForQuestionAnswering(config=__A ) _lowerCamelCase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Dict = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str],__A : List[str],__A : List[Any],__A : int,__A : str,__A : Optional[int] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Dict = TFRoFormerModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(__A ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) _lowerCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase : List[str] = model(__A )[0] # TODO Replace vocab size _lowerCamelCase : List[Any] = 5_0_0_0_0 _lowerCamelCase : List[Any] = [1, 6, vocab_size] self.assertEqual(output.shape,__A ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _lowerCamelCase : Any = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3],__A,atol=1e-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = 1E-4 def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = tf.constant([[4, 1_0]] ) _lowerCamelCase : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6,embedding_dim=6 ) _lowerCamelCase : int = emba(input_ids.shape ) _lowerCamelCase : Union[str, Any] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__A,__A,atol=self.tolerance ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _lowerCamelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2,embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) _lowerCamelCase : List[str] = emba.weight[:3, :5] tf.debugging.assert_near(__A,__A,atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = 1E-4 def lowerCamelCase_ ( self : int ): # 2,12,16,64 _lowerCamelCase : Optional[Any] = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4,dtype=tf.floataa ),shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _lowerCamelCase : Union[str, Any] = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4,dtype=tf.floataa ),shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _lowerCamelCase : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2,embedding_dim=6_4 ) _lowerCamelCase : Tuple = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] _lowerCamelCase , _lowerCamelCase : List[Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __A,__A,__A ) _lowerCamelCase : Union[str, Any] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _lowerCamelCase : Dict = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8],__A,atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8],__A,atol=self.tolerance )
44
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
0
UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def A ( lowercase__ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ :Dict = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(lowercase__ ) UpperCamelCase__ :Any = """""".join(bin(lowercase__ )[2:].zfill(8 ) for byte in data ) UpperCamelCase__ :Optional[Any] = len(lowercase__ ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCamelCase__ :int = b"""=""" * ((6 - len(lowercase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase__ ) % 6) else: UpperCamelCase__ :List[Any] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowercase__ ) , 6 ) ).encode() + padding ) def A ( lowercase__ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowercase__ , lowercase__ ) and not isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ :Dict = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(lowercase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase__ , lowercase__ ): try: UpperCamelCase__ :List[str] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) UpperCamelCase__ :int = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCamelCase__ :int = encoded_data[:-padding] UpperCamelCase__ :Optional[int] = """""".join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCamelCase__ :List[str] = """""".join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data ) UpperCamelCase__ :Optional[int] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowercase__ ) , 8 ) ] return bytes(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' def get_matched_characters(_lowerCamelCase , _lowerCamelCase ) -> str: _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowerCamelCase : str = int(max(0 , i - limit ) ) _lowerCamelCase : int = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_lowerCamelCase ) _lowerCamelCase : Optional[int] = F"""{_stra[0:_stra.index(_lowerCamelCase )]} {_stra[_stra.index(_lowerCamelCase ) + 1:]}""" return "".join(_lowerCamelCase ) # matching characters _lowerCamelCase : Tuple = get_matched_characters(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Union[str, Any] = get_matched_characters(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Dict = len(_lowerCamelCase ) # transposition _lowerCamelCase : Dict = ( len([(ca, ca) for ca, ca in zip(_lowerCamelCase , _lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: _lowerCamelCase : int = 0.0 else: _lowerCamelCase : Optional[int] = ( 1 / 3 * ( match_count / len(_lowerCamelCase ) + match_count / len(_lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowerCamelCase : Tuple = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
46
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str]=1_0_2_4 , lowerCamelCase_ : Optional[Any]=1_0_2_4 , lowerCamelCase_ : Optional[Any]=False , **lowerCamelCase_ : str ): __a : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) __a : Tuple = SeqaSeqDataset(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , type_path='train' , **lowerCamelCase_ ) __a : Dict = tok.pad_token_id def get_lens(lowerCamelCase_ : int ): __a : Tuple = tqdm( DataLoader(lowerCamelCase_ , batch_size=5_1_2 , num_workers=8 , shuffle=lowerCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __a : Optional[int] = [] for batch in dl: __a : int = batch['input_ids'].ne(lowerCamelCase_ ).sum(1 ).tolist() __a : Optional[Any] = batch['labels'].ne(lowerCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCamelCase_ , lowerCamelCase_ ): max_lens.append(max(lowerCamelCase_ , lowerCamelCase_ ) ) else: max_lens.extend(lowerCamelCase_ ) return max_lens __a : int = get_lens(lowerCamelCase_ ) __a : List[Any] = SeqaSeqDataset(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , type_path='val' , **lowerCamelCase_ ) __a : Any = get_lens(lowerCamelCase_ ) pickle_save(lowerCamelCase_ , train_ds.len_file ) pickle_save(lowerCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
47
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class A ( SCREAMING_SNAKE_CASE__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case__ :str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) snake_case__ :ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) snake_case__ :ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) snake_case__ :str = "question" snake_case__ :str = "context" snake_case__ :str = "answers" @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
48
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
0
"""simple docstring""" def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = 0 for ch in input_str: __UpperCAmelCase = ord(snake_case_ ) __UpperCAmelCase = pow(2 , snake_case_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Any = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'blip_text_model' def __init__( self ,_lowerCAmelCase=3_05_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=8 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3_05_22 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0 ,_lowerCAmelCase=1_02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): super().__init__( pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,sep_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = encoder_hidden_size lowerCamelCase__ = intermediate_size lowerCamelCase__ = projection_dim lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = hidden_act lowerCamelCase__ = initializer_range lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = is_decoder lowerCamelCase__ = use_cache @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": lowerCamelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'blip_vision_model' def __init__( self ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=3_84 ,_lowerCAmelCase=16 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-10 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = hidden_size lowerCamelCase__ = intermediate_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = patch_size lowerCamelCase__ = image_size lowerCamelCase__ = initializer_range lowerCamelCase__ = attention_dropout lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = hidden_act @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": lowerCamelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'blip' _UpperCamelCase = True def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=2.6592 ,_lowerCAmelCase=2_56 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) if text_config is None: lowerCamelCase__ = {} logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" ) if vision_config is None: lowerCamelCase__ = {} logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" ) lowerCamelCase__ = BlipTextConfig(**_lowerCAmelCase ) lowerCamelCase__ = BlipVisionConfig(**_lowerCAmelCase ) lowerCamelCase__ = self.vision_config.hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = logit_scale_init_value lowerCamelCase__ = 1.0 lowerCamelCase__ = 0.02 lowerCamelCase__ = image_text_hidden_size @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.text_config.to_dict() lowerCamelCase__ = self.vision_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output
50
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : int ): UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = BlipImageProcessor() UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) UpperCAmelCase = BlipProcessor(a__ , a__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : Dict , **a__ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).tokenizer def __snake_case ( self : Dict , **a__ : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Tuple ): UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : List[str] ): UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) UpperCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(a__ , return_tensors='''np''' ) UpperCAmelCase = processor(images=a__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self : Any ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = processor(text=a__ ) UpperCAmelCase = tokenizer(a__ , return_token_type_ids=a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self : str ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def __snake_case ( self : List[str] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.batch_decode(a__ ) UpperCAmelCase = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def __snake_case ( self : int ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=a__ , images=a__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
51
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
0
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
0
# Algorithm for the pigeonhole sorting def a_ ( lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = min(lowerCAmelCase_ ) # min() finds the minimum value __lowerCAmelCase = max(lowerCAmelCase_ ) # max() finds the maximum value __lowerCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __lowerCAmelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __lowerCAmelCase = 0 for count in range(lowerCAmelCase_ ): while holes[count] > 0: holes[count] -= 1 __lowerCAmelCase = count + min_val i += 1 def a_ ( ): __lowerCAmelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase_ ) print('Sorted order is:', ' '.join(lowerCAmelCase_ ) ) if __name__ == "__main__": main()
53
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
0
import operator def a__ ( lowercase__ , lowercase__ = False , lowercase__ = None ): '''simple docstring''' UpperCAmelCase_ =operator.lt if reverse else operator.gt UpperCAmelCase_ =solution or [] if not arr: return solution UpperCAmelCase_ =[arr.pop(0 )] for i, item in enumerate(lowercase__ ): if _operator(lowercase__ , sublist[-1] ): sublist.append(lowercase__ ) arr.pop(lowercase__ ) # merging sublist into solution list if not solution: solution.extend(lowercase__ ) else: while sublist: UpperCAmelCase_ =sublist.pop(0 ) for i, xx in enumerate(lowercase__ ): if not _operator(lowercase__ , lowercase__ ): solution.insert(lowercase__ , lowercase__ ) break else: solution.append(lowercase__ ) strand_sort(lowercase__ , lowercase__ , lowercase__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE :str = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
0
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a : Optional[int] = "scheduler_config.json" class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : Any = 2 _SCREAMING_SNAKE_CASE : int = 3 _SCREAMING_SNAKE_CASE : str = 4 _SCREAMING_SNAKE_CASE : int = 5 @dataclass class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : jnp.ndarray class _lowercase : _SCREAMING_SNAKE_CASE : Optional[Any] = SCHEDULER_CONFIG_NAME _SCREAMING_SNAKE_CASE : Any = ["dtype"] _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Any = True @classmethod def a ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Dict[str, Any] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : List[Any]=False , **SCREAMING_SNAKE_CASE_ : Dict , ) -> Dict: __snake_case , __snake_case = cls.load_config( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case , __snake_case = cls.from_config(SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_ , 'create_state' ) and getattr(SCREAMING_SNAKE_CASE_ , 'has_state' , SCREAMING_SNAKE_CASE_ ): __snake_case = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def a ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: self.save_config(save_directory=SCREAMING_SNAKE_CASE_ , push_to_hub=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def a ( self : Optional[Any] ) -> Optional[int]: return self._get_compatibles() @classmethod def a ( cls : Any ) -> int: __snake_case = list(set([cls.__name__] + cls._compatibles ) ) __snake_case = importlib.import_module(__name__.split('.' )[0] ) __snake_case = [ getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for c in compatible_classes_str if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] return compatible_classes def _a (lowercase__ : jnp.ndarray , lowercase__ : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(lowercase__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase__ ) - x.ndim) ) , lowercase__ ) def _a (lowercase__ : int , lowercase__ : Optional[Any]=0.9_99 , lowercase__ : Dict=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(lowercase__ : Union[str, Any] ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 __snake_case = [] for i in range(lowercase__ ): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase__ ) / alpha_bar(lowercase__ ) , lowercase__ ) ) return jnp.array(lowercase__ , dtype=lowercase__ ) @flax.struct.dataclass class _lowercase : _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray @classmethod def a ( cls : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict: __snake_case = scheduler.config if config.trained_betas is not None: __snake_case = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __snake_case = 1.0 - betas __snake_case = jnp.cumprod(SCREAMING_SNAKE_CASE_ , axis=0 ) return cls( alphas=SCREAMING_SNAKE_CASE_ , betas=SCREAMING_SNAKE_CASE_ , alphas_cumprod=SCREAMING_SNAKE_CASE_ , ) def _a (lowercase__ : CommonSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray ) -> Optional[int]: """simple docstring""" __snake_case = state.alphas_cumprod __snake_case = alphas_cumprod[timesteps] ** 0.5 __snake_case = sqrt_alpha_prod.flatten() __snake_case = broadcast_to_shape_from_left(lowercase__ , original_samples.shape ) __snake_case = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case = sqrt_one_minus_alpha_prod.flatten() __snake_case = broadcast_to_shape_from_left(lowercase__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a (lowercase__ : CommonSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray ) -> int: """simple docstring""" __snake_case , __snake_case = get_sqrt_alpha_prod(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __snake_case = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a (lowercase__ : CommonSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray ) -> List[Any]: """simple docstring""" __snake_case , __snake_case = get_sqrt_alpha_prod(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __snake_case = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
56
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" @register_to_config def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , ): super().__init__() UpperCamelCase_: Optional[int] = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[int] = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = False UpperCamelCase_: Optional[int] = nn.Dropout(p=_lowerCamelCase ) UpperCamelCase_: Dict = TaConfig( vocab_size=_lowerCamelCase , d_model=_lowerCamelCase , num_heads=_lowerCamelCase , d_kv=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , feed_forward_proj=_lowerCamelCase , is_decoder=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , ) UpperCamelCase_: List[str] = nn.ModuleList() for lyr_num in range(_lowerCamelCase ): UpperCamelCase_: Tuple = TaBlock(_lowerCamelCase ) self.encoders.append(_lowerCamelCase ) UpperCamelCase_: Tuple = TaLayerNorm(_lowerCamelCase ) UpperCamelCase_: Dict = nn.Dropout(p=_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = self.token_embedder(_lowerCamelCase ) UpperCamelCase_: Tuple = encoder_input_tokens.shape[1] UpperCamelCase_: Optional[Any] = torch.arange(_lowerCamelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = self.dropout_pre(_lowerCamelCase ) # inverted the attention mask UpperCamelCase_: Dict = encoder_input_tokens.size() UpperCamelCase_: str = self.get_extended_attention_mask(_lowerCamelCase , _lowerCamelCase ) for lyr in self.encoders: UpperCamelCase_: Optional[Any] = lyr(_lowerCamelCase , _lowerCamelCase )[0] UpperCamelCase_: Union[str, Any] = self.layer_norm(_lowerCamelCase ) return self.dropout_post(_lowerCamelCase ), encoder_inputs_mask
57
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowerCAmelCase : Optional[int] = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __A = get_tests_dir("fixtures") class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: str =mock.Mock() lowerCamelCase__: Union[str, Any] =500 lowerCamelCase__: Optional[Any] ={} lowerCamelCase__: Any =HTTPError lowerCamelCase__: Union[str, Any] ={} # Download this model to make sure it's in the cache. lowerCamelCase__: str =ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_) as mock_head: lowerCamelCase__: Dict =ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json") def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' with self.assertRaises(UpperCAmelCase_): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__: int =AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") lowerCamelCase__: Any =AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor") self.assertIsNotNone(UpperCAmelCase_) @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =TOKEN HfFolder.save_token(UpperCAmelCase_) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any]) ->Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor") except HTTPError: pass def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =ViTImageProcessor.from_pretrained(UpperCAmelCase_) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token) lowerCamelCase__: str =ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase_ , repo_id="test-image-processor" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) lowerCamelCase__: int =ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =ViTImageProcessor.from_pretrained(UpperCAmelCase_) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token) lowerCamelCase__: int =ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-image-processor-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) lowerCamelCase__: Tuple =ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' CustomImageProcessor.register_for_auto_class() lowerCamelCase__: Any =CustomImageProcessor.from_pretrained(UpperCAmelCase_) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) lowerCamelCase__: str =AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=UpperCAmelCase_) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor")
59
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : List[Any] = GPTSwaTokenizer lowerCamelCase_ : List[str] = False lowerCamelCase_ : List[str] = True lowerCamelCase_ : Union[str, Any] = False def lowerCamelCase (self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : List[Any] = GPTSwaTokenizer(__magic_name__ , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase (self , __magic_name__ ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = '''This is a test''' snake_case_ : Tuple = '''This is a test''' return input_text, output_text def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : int = '''<s>''' snake_case_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__magic_name__ ) , 2000 ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = GPTSwaTokenizer(__magic_name__ ) snake_case_ : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__magic_name__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [465, 287, 265, 631, 842] ) snake_case_ : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( __magic_name__ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) snake_case_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__magic_name__ ) # fmt: off self.assertListEqual( __magic_name__ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = GPTSwaTokenizer(__magic_name__ ) snake_case_ : Tuple = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] snake_case_ : str = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__magic_name__ , __magic_name__ ): self.assertListEqual(tokenizer.encode_fast(__magic_name__ ) , __magic_name__ ) # Test that decode_fast returns the input text for text, token_ids in zip(__magic_name__ , __magic_name__ ): self.assertEqual(tokenizer.decode_fast(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : int = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off snake_case_ : Optional[Any] = {'''input_ids''': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=__magic_name__ , )
60
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _A ( lowerCAmelCase_ : Optional[int] ): """simple docstring""" lowerCAmelCase__ = SwinConfig() lowerCAmelCase__ = swin_name.split("_" ) lowerCAmelCase__ = name_split[1] lowerCAmelCase__ = int(name_split[4] ) lowerCAmelCase__ = int(name_split[3][-1] ) if model_size == "tiny": lowerCAmelCase__ = 96 lowerCAmelCase__ = (2, 2, 6, 2) lowerCAmelCase__ = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase__ = 96 lowerCAmelCase__ = (2, 2, 18, 2) lowerCAmelCase__ = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase__ = 128 lowerCAmelCase__ = (2, 2, 18, 2) lowerCAmelCase__ = (4, 8, 16, 32) else: lowerCAmelCase__ = 192 lowerCAmelCase__ = (2, 2, 18, 2) lowerCAmelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: lowerCAmelCase__ = 2_1841 else: lowerCAmelCase__ = 1000 lowerCAmelCase__ = "huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} lowerCAmelCase__ = img_size lowerCAmelCase__ = num_classes lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = num_heads lowerCAmelCase__ = window_size return config def _A ( lowerCAmelCase_ : int ): """simple docstring""" if "patch_embed.proj" in name: lowerCAmelCase__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowerCAmelCase__ = "encoder." + name if "attn.proj" in name: lowerCAmelCase__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCAmelCase__ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": lowerCAmelCase__ = "layernorm.weight" if name == "norm.bias": lowerCAmelCase__ = "layernorm.bias" if "head" in name: lowerCAmelCase__ = name.replace("head" , "classifier" ) else: lowerCAmelCase__ = "swin." + name return name def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(lowerCAmelCase_ ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[1] ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[ :dim ] lowerCAmelCase__ = val[ dim : dim * 2 ] lowerCAmelCase__ = val[ -dim: ] else: lowerCAmelCase__ = val return orig_state_dict def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ): """simple docstring""" lowerCAmelCase__ = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() lowerCAmelCase__ = get_swin_config(lowerCAmelCase_ ) lowerCAmelCase__ = SwinForImageClassification(lowerCAmelCase_ ) model.eval() lowerCAmelCase__ = convert_state_dict(timm_model.state_dict() , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) lowerCAmelCase__ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) lowerCAmelCase__ = image_processor(images=lowerCAmelCase_ , return_tensors="pt" ) lowerCAmelCase__ = timm_model(inputs["pixel_values"] ) lowerCAmelCase__ = model(**lowerCAmelCase_ ).logits assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
61
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" SCREAMING_SNAKE_CASE : Any = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("RGB" ) return image def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = dct.pop(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = val def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) SCREAMING_SNAKE_CASE : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) SCREAMING_SNAKE_CASE : Dict = qkv_bias def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 364 if "coco" in model_name else 224 SCREAMING_SNAKE_CASE : Union[str, Any] = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: SCREAMING_SNAKE_CASE : Dict = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: SCREAMING_SNAKE_CASE : int = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: SCREAMING_SNAKE_CASE : Optional[Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE : Optional[int] = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() SCREAMING_SNAKE_CASE : Tuple = BlipaConfig(vision_config=lowercase , text_config=lowercase ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase=None , lowercase=False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer("\n" , add_special_tokens=lowercase ).input_ids[0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_blipa_config(lowercase , eos_token_id=lowercase ) SCREAMING_SNAKE_CASE : int = BlipaForConditionalGeneration(lowercase ).eval() SCREAMING_SNAKE_CASE : Optional[Any] = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = model_name_to_original[model_name] # load original model print("Loading original model..." ) SCREAMING_SNAKE_CASE : Tuple = "cuda" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print("Done!" ) # update state dict keys SCREAMING_SNAKE_CASE : Tuple = original_model.state_dict() SCREAMING_SNAKE_CASE : int = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(lowercase ) if key.startswith("Qformer.bert" ): SCREAMING_SNAKE_CASE : Any = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: SCREAMING_SNAKE_CASE : Dict = key.replace("self" , "attention" ) if "opt_proj" in key: SCREAMING_SNAKE_CASE : Dict = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: SCREAMING_SNAKE_CASE : int = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): SCREAMING_SNAKE_CASE : Optional[int] = key.replace("opt" , "language" ) if key.startswith("t5" ): SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace("t5" , "language" ) SCREAMING_SNAKE_CASE : Optional[Any] = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = hf_model.load_state_dict(lowercase , strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] SCREAMING_SNAKE_CASE : Dict = load_demo_image() SCREAMING_SNAKE_CASE : str = vis_processors["eval"](lowercase ).unsqueeze(0 ).to(lowercase ) SCREAMING_SNAKE_CASE : int = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(lowercase ) # create processor SCREAMING_SNAKE_CASE : List[Any] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=lowercase , image_std=lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase ) SCREAMING_SNAKE_CASE : Dict = processor(images=lowercase , return_tensors="pt" ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: SCREAMING_SNAKE_CASE : List[str] = original_model({"image": original_pixel_values, "text_input": [""]} ).logits SCREAMING_SNAKE_CASE : int = hf_model(lowercase , lowercase ).logits else: SCREAMING_SNAKE_CASE : Dict = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits SCREAMING_SNAKE_CASE : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) SCREAMING_SNAKE_CASE : Any = hf_model(lowercase , lowercase , labels=lowercase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase ) else: # cast to same type SCREAMING_SNAKE_CASE : Tuple = logits.dtype assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) SCREAMING_SNAKE_CASE : str = "" SCREAMING_SNAKE_CASE : int = tokenizer(lowercase , return_tensors="pt" ).input_ids.to(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = original_model.generate({"image": original_pixel_values} ) SCREAMING_SNAKE_CASE : List[str] = hf_model.generate( lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , lowercase ) SCREAMING_SNAKE_CASE : List[str] = input_ids.shape[1] SCREAMING_SNAKE_CASE : Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase ) SCREAMING_SNAKE_CASE : Any = [text.strip() for text in output_text] print("HF generation:" , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() snake_case = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
62
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): # Initialise PyTorch model __UpperCAmelCase : List[str] = AlbertConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) __UpperCAmelCase : Any = AlbertForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
63
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _lowerCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , ) -> Dict: SCREAMING_SNAKE_CASE__: Dict= parent SCREAMING_SNAKE_CASE__: List[Any]= batch_size SCREAMING_SNAKE_CASE__: Tuple= num_channels SCREAMING_SNAKE_CASE__: Union[str, Any]= image_size SCREAMING_SNAKE_CASE__: List[str]= min_resolution SCREAMING_SNAKE_CASE__: Dict= max_resolution SCREAMING_SNAKE_CASE__: List[str]= do_resize SCREAMING_SNAKE_CASE__: Union[str, Any]= size if size is not None else {'''height''': 18, '''width''': 20} SCREAMING_SNAKE_CASE__: Any= do_thumbnail SCREAMING_SNAKE_CASE__: Dict= do_align_axis SCREAMING_SNAKE_CASE__: List[str]= do_pad SCREAMING_SNAKE_CASE__: Optional[int]= do_normalize SCREAMING_SNAKE_CASE__: int= image_mean SCREAMING_SNAKE_CASE__: Optional[Any]= image_std def UpperCamelCase_ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = DonutImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Tuple= DonutImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: List[str]= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''image_std''' ) ) def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Dict= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) SCREAMING_SNAKE_CASE__: Any= self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order SCREAMING_SNAKE_CASE__: int= self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def UpperCamelCase_ ( self ) -> List[str]: pass @is_flaky() def UpperCamelCase_ ( self ) -> List[str]: # Initialize image_processing SCREAMING_SNAKE_CASE__: Dict= self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__: Any= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__: List[str]= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCamelCase_ ( self ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__: Optional[int]= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__: Dict= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__: Optional[int]= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Any= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCamelCase_ ( self ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__: Any= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__: Optional[int]= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__: Any= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Tuple= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
64
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
"""simple docstring""" from collections.abc import Sequence def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(__UpperCamelCase ) ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = 0.0 for coeff in reversed(__UpperCamelCase ): UpperCAmelCase__ : Optional[int] = result * x + coeff return result if __name__ == "__main__": __UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) __UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
65
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
0
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[float, float]: # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _lowercase , _lowercase , _lowercase : Tuple = equationa _lowercase , _lowercase , _lowercase : Dict = equationa # Calculate the determinants of the matrices _lowercase : str = aa * ba - aa * ba _lowercase : Any = ca * ba - ca * ba _lowercase : Optional[int] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _lowercase : Union[str, Any] = determinant_x / determinant _lowercase : Tuple = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
66
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np snake_case = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 snake_case = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE__ ( snake_case__ :Vector , snake_case__ :Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(snake_case__ ) - np.asarray(snake_case__ )) ** 2 ) ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Vector , snake_case__ :Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(snake_case__ , snake_case__ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , ) ) benchmark()
67
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
0
from __future__ import annotations def lowercase__ ( A_: int ) -> bool: """simple docstring""" __UpperCAmelCase =str(A_ ) return len(A_ ) == 9 and set(A_ ) == set("""123456789""" ) def lowercase__ ( ) -> int | None: """simple docstring""" for base_num in range(9999 , 4999 , -1 ): __UpperCAmelCase =100002 * base_num if is_9_pandigital(A_ ): return candidate for base_num in range(333 , 99 , -1 ): __UpperCAmelCase =1002003 * base_num if is_9_pandigital(A_ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
68
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a : str = logging.get_logger(__name__) a : int = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a : Optional[Any] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } a : Union[str, Any] = {'''allegro/herbert-base-cased''': 514} a : str = {} class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = HerbertTokenizer def __init__( self : Optional[Any] , a_ : str=None , a_ : Dict=None , a_ : Any=None , a_ : Any="<s>" , a_ : List[str]="<unk>" , a_ : int="<pad>" , a_ : Dict="<mask>" , a_ : Optional[int]="</s>" , **a_ : Optional[int] , ): """simple docstring""" super().__init__( a_ , a_ , tokenizer_file=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , sep_token=a_ , **a_ , ) def A ( self : Optional[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Tuple , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def A ( self : Optional[int] , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Union[str, Any] , a_ : str , a_ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] , lowercase : int ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : list[list[int]] , lowercase : int , lowercase : list[int] , lowercase : int ): '''simple docstring''' if index == len(lowercase ): return True # Recursive Step for i in range(lowercase ): if valid_coloring(graph[index] , lowercase , lowercase ): # Color current vertex lowerCamelCase_ = i # Validate coloring if util_color(lowercase , lowercase , lowercase , index + 1 ): return True # Backtrack lowerCamelCase_ = -1 return False def _SCREAMING_SNAKE_CASE ( lowercase : list[list[int]] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = [-1] * len(lowercase ) if util_color(lowercase , lowercase , lowercase , 0 ): return colored_vertices return []
70
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case (unittest.TestCase): def __init__( self ,_snake_case ,_snake_case=3 ,_snake_case=32 ,_snake_case=3 ,_snake_case=10 ,_snake_case=[10, 20, 30, 40] ,_snake_case=[1, 1, 2, 1] ,_snake_case=True ,_snake_case=True ,_snake_case="relu" ,_snake_case=3 ,_snake_case=None ,): UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[Any] = embeddings_size UpperCAmelCase_ : int = hidden_sizes UpperCAmelCase_ : Tuple = depths UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : Any = scope UpperCAmelCase_ : str = len(_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values def UpperCamelCase__ ( self ): return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : int = FlaxRegNetModel(config=_snake_case ) UpperCAmelCase_ : int = model(_snake_case ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : int = FlaxRegNetForImageClassification(config=_snake_case ) UpperCAmelCase_ : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Union[str, Any] =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __A : Any =False __A : List[str] =False __A : Union[str, Any] =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = FlaxRegNetModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCamelCase__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): return def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_snake_case ) UpperCAmelCase_ : Tuple = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCamelCase__ ( self ): def check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : str = model_class(_snake_case ) UpperCAmelCase_ : Any = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) UpperCAmelCase_ : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[Any] = self._prepare_for_class(_snake_case ,_snake_case ) UpperCAmelCase_ : Union[str, Any] = model_class(_snake_case ) @jax.jit def model_jitted(_snake_case ,**_snake_case ): return model(pixel_values=_snake_case ,**_snake_case ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : Tuple = model_jitted(**_snake_case ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Optional[int] = model_jitted(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) ,len(_snake_case ) ) for jitted_output, output in zip(_snake_case ,_snake_case ): self.assertEqual(jitted_output.shape ,output.shape ) def a__ ( ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class _snake_case (unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) UpperCAmelCase_ : Dict = self.default_image_processor UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : Tuple = image_processor(images=_snake_case ,return_tensors="np" ) UpperCAmelCase_ : int = model(**_snake_case ) # verify the logits UpperCAmelCase_ : Tuple = (1, 10_00) self.assertEqual(outputs.logits.shape ,_snake_case ) UpperCAmelCase_ : Any = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1E-4 ) )
71
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCAmelCase : int = '''\ Text data. Second line of data.''' _UpperCAmelCase : Optional[int] = '''file''' @pytest.fixture(scope='''session''' ) def UpperCamelCase ( lowercase_ : str ) -> int: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') lowercase =bytes(lowercase_ , '''utf-8''' ) with zstd.open(lowercase_ , '''wb''' ) as f: f.write(lowercase_ ) return path @pytest.fixture def UpperCamelCase ( lowercase_ : Optional[int] ) -> List[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , lowercase_ ) , '''w''' ) as f: f.write(lowercase_ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def UpperCamelCase ( lowercase_ : str , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Any ) -> List[Any]: '''simple docstring''' lowercase ={'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowercase =input_paths[compression_format] lowercase =tmp_path / '''cache''' lowercase =DownloadConfig(cache_dir=lowercase_ , extract_compressed_file=lowercase_ ) lowercase =cached_path(lowercase_ , download_config=lowercase_ ) with open(lowercase_ ) as f: lowercase =f.read() with open(lowercase_ ) as f: lowercase =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase ='''custom_cache''' lowercase ='''custom_extracted_dir''' lowercase =tmp_path / '''custom_extracted_path''' if default_extracted: lowercase =('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , lowercase_ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) lowercase =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase =xz_file lowercase =( DownloadConfig(extract_compressed_file=lowercase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase_ ) ) lowercase =cached_path(lowercase_ , download_config=lowercase_ ) assert Path(lowercase_ ).parent.parts[-2:] == expected def UpperCamelCase ( lowercase_ : List[str] ) -> Any: '''simple docstring''' lowercase =str(Path(lowercase_ ).resolve() ) assert cached_path(lowercase_ ) == text_file # relative path lowercase =str(Path(lowercase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase_ ) == text_file def UpperCamelCase ( lowercase_ : int ) -> Dict: '''simple docstring''' lowercase =str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(lowercase_ ): cached_path(lowercase_ ) # relative path lowercase ='''./__missing_file__.txt''' with pytest.raises(lowercase_ ): cached_path(lowercase_ ) def UpperCamelCase ( lowercase_ : List[str] ) -> Tuple: '''simple docstring''' lowercase =get_from_cache(f'tmp://{tmpfs_file}' ) with open(lowercase_ ) as f: lowercase =f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ ) def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' with pytest.raises(lowercase_ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ ) def UpperCamelCase ( lowercase_ : Dict ) -> int: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase_ ): http_get('''https://huggingface.co''' , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ ) def UpperCamelCase ( lowercase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase_ ): ftp_get('''ftp://huggingface.co''' , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ ) def UpperCamelCase ( lowercase_ : Dict ) -> Any: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase_ ): fsspec_get('''s3://huggingface.co''' , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): fsspec_head('''s3://huggingface.co''' )
72
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _snake_case : def __init__( self , a , a , a = True , a = False) -> Optional[int]: SCREAMING_SNAKE_CASE = scheduler SCREAMING_SNAKE_CASE = optimizers if isinstance(a , (list, tuple)) else [optimizers] SCREAMING_SNAKE_CASE = split_batches SCREAMING_SNAKE_CASE = step_with_optimizer SCREAMING_SNAKE_CASE = GradientState() def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*a , **a) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*a , **a) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE = AcceleratorState().num_processes for _ in range(a): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps'): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*a , **a) else: self.scheduler.step(*a , **a) def SCREAMING_SNAKE_CASE__ ( self) -> Any: return self.scheduler.get_last_lr() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return self.scheduler.state_dict() def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[Any]: self.scheduler.load_state_dict(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: return self.scheduler.get_lr() def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> str: return self.scheduler.print_lr(*a , **a)
73
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
0
def a__ ( snake_case ): """simple docstring""" return "".join(chr(ord(snake_case ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
74
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''GLPNFeatureExtractor'''] UpperCamelCase__ = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
75
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : int = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowercase : str = 1_92 __lowercase : Tuple = 7_68 __lowercase : str = 12 __lowercase : str = 3 __lowercase : Optional[Any] = [8_00, 13_33] __lowercase : Optional[Any] = False elif yolos_name == "yolos_s_dWr": __lowercase : Any = 3_30 __lowercase : List[str] = 14 __lowercase : Tuple = 6 __lowercase : Any = 13_20 elif "yolos_s" in yolos_name: __lowercase : Tuple = 3_84 __lowercase : Any = 15_36 __lowercase : List[str] = 12 __lowercase : Dict = 6 elif "yolos_b" in yolos_name: __lowercase : int = [8_00, 13_44] __lowercase : Any = 91 __lowercase : str = '''huggingface/label-files''' __lowercase : str = '''coco-detection-id2label.json''' __lowercase : Optional[Any] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : List[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase : str = idalabel __lowercase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __lowercase : int = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase : Tuple = in_proj_weight[: config.hidden_size, :] __lowercase : Any = in_proj_bias[: config.hidden_size] __lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : Any = in_proj_weight[-config.hidden_size :, :] __lowercase : List[str] = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( __UpperCamelCase ): if "backbone" in name: __lowercase : List[str] = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: __lowercase : Tuple = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: __lowercase : Optional[Any] = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: __lowercase : List[str] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: __lowercase : Dict = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __lowercase : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: __lowercase : Tuple = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: __lowercase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __lowercase : Optional[int] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __lowercase : Tuple = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __lowercase : Dict = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __lowercase : Optional[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __lowercase : int = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: __lowercase : Union[str, Any] = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: __lowercase : Dict = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: __lowercase : Optional[int] = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): for key in orig_state_dict.copy().keys(): __lowercase : Tuple = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: __lowercase : List[Any] = key.split('''.''' ) __lowercase : Union[str, Any] = int(key_split[2] ) __lowercase : Union[str, Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowercase : str = val[:dim, :] __lowercase : int = val[ dim : dim * 2, : ] __lowercase : Union[str, Any] = val[-dim:, :] else: __lowercase : Any = val[:dim] __lowercase : Optional[Any] = val[dim : dim * 2] __lowercase : int = val[-dim:] else: __lowercase : Tuple = val return orig_state_dict def __UpperCAmelCase ( ): __lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : str = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ): __lowercase : List[Any] = get_yolos_config(__UpperCamelCase ) # load original state_dict __lowercase : Optional[int] = torch.load(__UpperCamelCase , map_location='''cpu''' )['''model'''] # load 🤗 model __lowercase : Any = YolosForObjectDetection(__UpperCamelCase ) model.eval() __lowercase : int = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor __lowercase : List[str] = 8_00 if yolos_name != '''yolos_ti''' else 5_12 __lowercase : Union[str, Any] = YolosImageProcessor(format='''coco_detection''' , size=__UpperCamelCase ) __lowercase : Dict = image_processor(images=prepare_img() , return_tensors='''pt''' ) __lowercase : str = model(**__UpperCamelCase ) __lowercase ,__lowercase : Dict = outputs.logits, outputs.pred_boxes __lowercase ,__lowercase : Dict = None, None if yolos_name == "yolos_ti": __lowercase : Optional[int] = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) __lowercase : Dict = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": __lowercase : Union[str, Any] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) __lowercase : Tuple = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": __lowercase : Union[str, Any] = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) __lowercase : List[str] = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": __lowercase : Dict = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) __lowercase : str = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": __lowercase : int = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) __lowercase : Optional[Any] = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: __lowercase : Any = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) __lowercase : Union[str, Any] = model_mapping[yolos_name] image_processor.push_to_hub(__UpperCamelCase , organization='''hustvl''' ) model.push_to_hub(__UpperCamelCase , organization='''hustvl''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
76
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A = logging.get_logger(__name__) A = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : lowercase_ = field( default=__magic_name__ , metadata={"help": "Model type selected in the list: " + ", ".join(__magic_name__ )} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) lowercase_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase_ = field( default=1_2_8 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) lowercase_ = field( default=6_4 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) lowercase_ = field( default=3_0 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) lowercase_ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowercase_ = field( default=2_0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowercase_ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) lowercase_ = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class a__ ( __magic_name__ ): lowercase_ = "train" lowercase_ = "dev" class a__ ( __magic_name__ ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 def __init__( self : Tuple , UpperCamelCase_ : SquadDataTrainingArguments , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Union[str, Split] = Split.train , UpperCamelCase_ : Optional[bool] = False , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = "pt" , ): """simple docstring""" __UpperCAmelCase : Optional[int] = args __UpperCAmelCase : Any = is_language_sensitive __UpperCAmelCase : Optional[Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCamelCase_ , UpperCamelCase_): try: __UpperCAmelCase : Any = Split[mode] except KeyError: raise KeyError("mode is not a valid split name") __UpperCAmelCase : Optional[int] = mode # Load data features from cache or dataset file __UpperCAmelCase : int = "v2" if args.version_2_with_negative else "v1" __UpperCAmelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase : Optional[int] = cached_features_file + ".lock" with FileLock(UpperCamelCase_): if os.path.exists(UpperCamelCase_) and not args.overwrite_cache: __UpperCAmelCase : Union[str, Any] = time.time() __UpperCAmelCase : Union[str, Any] = torch.load(UpperCamelCase_) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __UpperCAmelCase : Optional[Any] = self.old_features["features"] __UpperCAmelCase : int = self.old_features.get("dataset" , UpperCamelCase_) __UpperCAmelCase : Tuple = self.old_features.get("examples" , UpperCamelCase_) logger.info( F"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start) if self.dataset is None or self.examples is None: logger.warning( F"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run") else: if mode == Split.dev: __UpperCAmelCase : Union[str, Any] = self.processor.get_dev_examples(args.data_dir) else: __UpperCAmelCase : List[str] = self.processor.get_train_examples(args.data_dir) __UpperCAmelCase , __UpperCAmelCase : int = squad_convert_examples_to_features( examples=self.examples , tokenizer=UpperCamelCase_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , UpperCamelCase_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]") def __len__( self : Union[str, Any]): """simple docstring""" return len(self.features) def __getitem__( self : int , UpperCamelCase_ : Union[str, Any]): """simple docstring""" __UpperCAmelCase : List[Any] = self.features[i] __UpperCAmelCase : List[Any] = torch.tensor(feature.input_ids , dtype=torch.long) __UpperCAmelCase : Tuple = torch.tensor(feature.attention_mask , dtype=torch.long) __UpperCAmelCase : int = torch.tensor(feature.token_type_ids , dtype=torch.long) __UpperCAmelCase : str = torch.tensor(feature.cls_index , dtype=torch.long) __UpperCAmelCase : Optional[int] = torch.tensor(feature.p_mask , dtype=torch.float) __UpperCAmelCase : List[Any] = torch.tensor(feature.is_impossible , dtype=torch.float) __UpperCAmelCase : str = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask}) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible}) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa) * self.args.lang_id)}) if self.mode == Split.train: __UpperCAmelCase : Tuple = torch.tensor(feature.start_position , dtype=torch.long) __UpperCAmelCase : List[Any] = torch.tensor(feature.end_position , dtype=torch.long) inputs.update({"start_positions": start_positions, "end_positions": end_positions}) return inputs
77
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: List[str] ={ 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Any =[ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys SCREAMING_SNAKE_CASE_: Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
78
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): UpperCAmelCase__ : Optional[int] = size if size is not None else {"""shortest_edge""": 18} UpperCAmelCase__ : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Optional[int] = num_channels UpperCAmelCase__ : Optional[Any] = num_frames UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : List[str] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : List[str] = do_resize UpperCAmelCase__ : List[Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : List[Any] = image_mean UpperCAmelCase__ : Union[str, Any] = image_std UpperCAmelCase__ : List[str] = crop_size def __UpperCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase_ ( __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = VivitImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = VivitImageProcessingTester(self ) @property def __UpperCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) UpperCAmelCase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __UpperCAmelCase ( self ): # Initialize image_processing UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos UpperCAmelCase__ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input UpperCAmelCase__ : Tuple = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase__ : str = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __UpperCAmelCase ( self ): # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase__ : int = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __UpperCAmelCase ( self ): # Initialize image_processing UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input UpperCAmelCase__ : str = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase__ : str = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
79
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = 10 def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = [1, 2, 3, 4] __lowercase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def _a ( self : str ) -> Tuple: """simple docstring""" __lowercase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __lowercase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __lowercase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def _a ( self : int ) -> str: """simple docstring""" __lowercase = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" __lowercase , __lowercase = process_story(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [] ) def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = """""" __lowercase , __lowercase = process_story(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [] ) self.assertEqual(_lowerCAmelCase , [] ) def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) __lowercase , __lowercase = process_story(_lowerCAmelCase ) __lowercase = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = ["""It was the best of times."""] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = torch.tensor([1, 2, 3, 4] ) __lowercase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 0 ).numpy() , expected.numpy() ) def _a ( self : str ) -> Any: """simple docstring""" __lowercase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __lowercase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 23 ).numpy() , expected.numpy() ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowercase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 1 ).numpy() , expected.numpy() ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = 101 __lowercase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowercase = compute_token_type_ids(_lowerCAmelCase , _lowerCAmelCase ) np.testing.assert_array_equal(_lowerCAmelCase , _lowerCAmelCase )
80
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : str = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
81
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
0
"""simple docstring""" def a__ ( lowerCAmelCase__ = 50 ): UpperCAmelCase_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
82
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
"""simple docstring""" def snake_case_ ( ): '''simple docstring''' for n in range(1, 1_00_00_00 ): yield n * (n + 1) // 2 def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : Dict = 2 while i * i <= n: _lowerCamelCase : Dict = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def snake_case_ ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(A_ ) > 5_00 ) if __name__ == "__main__": print(solution())
83
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = F'''{sampling_rate}''' lowercase = '1' lowercase = 'f32le' lowercase = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowercase = output_stream[0] lowercase = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ): lowercase = F'''{sampling_rate}''' lowercase = '1' if format_for_conversion == "s16le": lowercase = 2 elif format_for_conversion == "f32le": lowercase = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowercase = platform.system() if system == "Linux": lowercase = 'alsa' lowercase = 'default' elif system == "Darwin": lowercase = 'avfoundation' lowercase = ':0' elif system == "Windows": lowercase = 'dshow' lowercase = 'default' lowercase = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowercase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ): if stream_chunk_s is not None: lowercase = stream_chunk_s else: lowercase = chunk_length_s lowercase = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": lowercase = np.intaa lowercase = 2 elif format_for_conversion == "f32le": lowercase = np.floataa lowercase = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowercase = chunk_length_s / 6 lowercase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): lowercase = [stride_length_s, stride_length_s] lowercase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase = datetime.datetime.now() lowercase = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale lowercase = np.frombuffer(item['raw'] , dtype=__SCREAMING_SNAKE_CASE ) lowercase = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowercase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ): lowercase = b'' lowercase , lowercase = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowercase = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: lowercase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator lowercase = (_stride_left, stride_right) lowercase = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowercase = False yield item lowercase = stride_left lowercase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: lowercase = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowercase = False yield item def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: lowercase = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
84
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class snake_case ( UpperCamelCase_ ): lowercase_ = 'perceiver' def __init__( self : List[Any] , a_ : List[Any]=256 , a_ : List[Any]=1280 , a_ : str=768 , a_ : List[Any]=1 , a_ : Tuple=26 , a_ : Optional[Any]=8 , a_ : str=8 , a_ : int=None , a_ : Dict=None , a_ : Dict="kv" , a_ : List[Any]=1 , a_ : Dict=1 , a_ : Dict="gelu" , a_ : Dict=0.1 , a_ : Optional[Any]=0.02 , a_ : Dict=1e-1_2 , a_ : Union[str, Any]=True , a_ : Optional[int]=262 , a_ : str=2048 , a_ : List[str]=56 , a_ : Dict=[368, 496] , a_ : int=16 , a_ : str=1920 , a_ : List[str]=16 , a_ : List[str]=[1, 16, 224, 224] , **a_ : Union[str, Any] , )-> Tuple: """simple docstring""" super().__init__(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = num_latents SCREAMING_SNAKE_CASE__ : Dict = d_latents SCREAMING_SNAKE_CASE__ : Optional[Any] = d_model SCREAMING_SNAKE_CASE__ : str = num_blocks SCREAMING_SNAKE_CASE__ : Tuple = num_self_attends_per_block SCREAMING_SNAKE_CASE__ : List[str] = num_self_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = num_cross_attention_heads SCREAMING_SNAKE_CASE__ : Any = qk_channels SCREAMING_SNAKE_CASE__ : Tuple = v_channels SCREAMING_SNAKE_CASE__ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE__ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE__ : Dict = cross_attention_widening_factor SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : str = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE__ : List[Any] = image_size # flow attributes SCREAMING_SNAKE_CASE__ : Dict = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE__ : Tuple = num_frames SCREAMING_SNAKE_CASE__ : int = audio_samples_per_frame SCREAMING_SNAKE_CASE__ : Union[str, Any] = samples_per_patch SCREAMING_SNAKE_CASE__ : Optional[int] = output_shape class snake_case ( UpperCamelCase_ ): @property def __lowercase( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE__ : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def __lowercase( self : Tuple )-> float: """simple docstring""" return 1e-4 def __lowercase( self : List[str] , a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a_ : int = -1 , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , a_ : int = 3 , a_ : int = 40 , a_ : int = 40 , )-> Mapping[str, Any]: """simple docstring""" # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(a_ , a_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : List[Any] = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Any = preprocessor.num_special_tokens_to_add(a_ ) SCREAMING_SNAKE_CASE__ : str = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : Union[str, Any] = [' '.join(['a'] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Tuple = dict(preprocessor(a_ , return_tensors=a_ ) ) SCREAMING_SNAKE_CASE__ : Dict = inputs.pop('input_ids' ) return inputs elif isinstance(a_ , a_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Dict = compute_effective_axis_dimension(a_ , fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._generate_dummy_images(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE__ : Tuple = dict(preprocessor(images=a_ , return_tensors=a_ ) ) SCREAMING_SNAKE_CASE__ : str = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
85
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __a :int = '\\n\n' __a :Any = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __a :List[str] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __A ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def __A ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int = 16 , UpperCAmelCase : bool = True , UpperCAmelCase : List[Any]=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": A_ = "cuda" else: A_ = "cuda" if torch.cuda.is_available() else "cpu" A_ = AutoModelForCausalLM.from_pretrained(UpperCAmelCase ) A_ = model.to(UpperCAmelCase ) A_ = AutoTokenizer.from_pretrained(UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: A_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" A_ = model.config.max_length - 1 else: A_ = model.config.max_length A_ = tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors="pt" , return_attention_mask=UpperCAmelCase , ).to(UpperCAmelCase ) A_ = encodings["input_ids"] A_ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." A_ = [] A_ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(UpperCAmelCase ) , UpperCAmelCase ) ): A_ = min(start_index + batch_size , len(UpperCAmelCase ) ) A_ = encoded_texts[start_index:end_index] A_ = attn_masks[start_index:end_index] if add_start_token: A_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCAmelCase ) A_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) A_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(UpperCAmelCase ), attn_mask] , dim=1 ) A_ = encoded_batch with torch.no_grad(): A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ).logits A_ = out_logits[..., :-1, :].contiguous() A_ = labels[..., 1:].contiguous() A_ = attn_mask[..., 1:].contiguous() A_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCAmelCase )}
86
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = [] for data in source_data: for i, el in enumerate(lowercase_ ): if len(lowercase_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase_ ) ) return data_lists def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = [] for dlist, weight in zip(lowercase_ , lowercase_ ): A__ = min(lowercase_ ) A__ = max(lowercase_ ) A__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A__ = f"""Invalid weight of {weight:f} provided""" raise ValueError(lowercase_ ) score_lists.append(lowercase_ ) return score_lists def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase_ ): A__ = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = get_data(lowercase_ ) A__ = calculate_each_score(lowercase_ , lowercase_ ) A__ = generate_final_scores(lowercase_ ) # append scores to source data for i, ele in enumerate(lowercase_ ): source_data[i].append(lowercase_ ) return source_data
87
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
0
"""simple docstring""" from __future__ import annotations class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE = 0) -> Optional[int]: _lowerCamelCase : Dict = key def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> list[str]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(SCREAMING_SNAKE_CASE) ^ key) for ch in content] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> list[str]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(SCREAMING_SNAKE_CASE) ^ key) for ch in content] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0) -> str: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : str = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(SCREAMING_SNAKE_CASE) ^ key) return ans def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0) -> str: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(SCREAMING_SNAKE_CASE) ^ key) return ans def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) try: with open(SCREAMING_SNAKE_CASE) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) except OSError: return False return True def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) try: with open(SCREAMING_SNAKE_CASE) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
88
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Optional[int] = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , lowerCamelCase_ ).groups()[0] class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None) -> List[str]: """simple docstring""" _lowercase : int = file_names _lowercase : List[str] = image_transform _lowercase : List[Any] = label_to_id def __len__( self) -> str: """simple docstring""" return len(self.file_names) def __getitem__( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Tuple = self.file_names[idx] _lowercase : Tuple = PIL.Image.open(lowerCamelCase) _lowercase : Any = raw_image.convert('RGB') if self.image_transform is not None: _lowercase : Dict = self.image_transform(lowerCamelCase) _lowercase : Dict = extract_label(lowerCamelCase) if self.label_to_id is not None: _lowercase : List[Any] = self.label_to_id[label] return {"image": image, "label": label} def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: # Initialize accelerator if args.with_tracking: _lowercase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _lowercase : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : List[str] = config['lr'] _lowercase : Optional[int] = int(config['num_epochs'] ) _lowercase : Union[str, Any] = int(config['seed'] ) _lowercase : Dict = int(config['batch_size'] ) _lowercase : List[str] = config['image_size'] if not isinstance(lowerCamelCase_ , (list, tuple) ): _lowercase : List[str] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": _lowercase : Optional[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _lowercase : int = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: _lowercase : Union[str, Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _lowercase : Tuple = os.path.split(lowerCamelCase_ )[-1].split('.' )[0] accelerator.init_trackers(lowerCamelCase_ , lowerCamelCase_ ) # Grab all the image filenames _lowercase : str = [os.path.join(args.data_dir , lowerCamelCase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences _lowercase : List[str] = [extract_label(lowerCamelCase_ ) for fname in file_names] _lowercase : Dict = list(set(lowerCamelCase_ ) ) id_to_label.sort() _lowercase : Optional[int] = {lbl: i for i, lbl in enumerate(lowerCamelCase_ )} # Set the seed before splitting the data. np.random.seed(lowerCamelCase_ ) torch.manual_seed(lowerCamelCase_ ) torch.cuda.manual_seed_all(lowerCamelCase_ ) # Split our filenames between train and validation _lowercase : Optional[Any] = np.random.permutation(len(lowerCamelCase_ ) ) _lowercase : str = int(0.8 * len(lowerCamelCase_ ) ) _lowercase : Any = random_perm[:cut] _lowercase : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop _lowercase : Optional[int] = Compose([RandomResizedCrop(lowerCamelCase_ , scale=(0.5, 1.0) ), ToTensor()] ) _lowercase : Optional[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowerCamelCase_ , label_to_id=lowerCamelCase_ ) # For evaluation, we use a deterministic Resize _lowercase : Union[str, Any] = Compose([Resize(lowerCamelCase_ ), ToTensor()] ) _lowercase : Optional[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowerCamelCase_ , label_to_id=lowerCamelCase_ ) # Instantiate dataloaders. _lowercase : List[str] = DataLoader(lowerCamelCase_ , shuffle=lowerCamelCase_ , batch_size=lowerCamelCase_ , num_workers=4 ) _lowercase : List[Any] = DataLoader(lowerCamelCase_ , shuffle=lowerCamelCase_ , batch_size=lowerCamelCase_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[str] = create_model('resnet50d' , pretrained=lowerCamelCase_ , num_classes=len(lowerCamelCase_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase : Union[str, Any] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _lowercase : Dict = False for param in model.get_classifier().parameters(): _lowercase : Any = True # We normalize the batches of images to be a bit faster. _lowercase : int = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) _lowercase : Union[str, Any] = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _lowercase : int = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _lowercase : List[Any] = OneCycleLR(optimizer=lowerCamelCase_ , max_lr=lowerCamelCase_ , epochs=lowerCamelCase_ , steps_per_epoch=len(lowerCamelCase_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # We need to keep track of how many total steps we have iterated over _lowercase : Optional[int] = 0 # We also need to keep track of the starting epoch so files are named properly _lowercase : List[Any] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) _lowercase : Optional[Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _lowercase : List[str] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _lowercase : str = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _lowercase : Union[str, Any] = os.path.splitext(lowerCamelCase_ )[0] if "epoch" in training_difference: _lowercase : Any = int(training_difference.replace('epoch_' , '' ) ) + 1 _lowercase : Optional[Any] = None else: _lowercase : Dict = int(training_difference.replace('step_' , '' ) ) _lowercase : Any = resume_step // len(lowerCamelCase_ ) resume_step -= starting_epoch * len(lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ , lowerCamelCase_ ): model.train() if args.with_tracking: _lowercase : Tuple = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _lowercase : Union[str, Any] = accelerator.skip_first_batches(lowerCamelCase_ , lowerCamelCase_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _lowercase : Any = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _lowercase : Dict = {k: v.to(accelerator.device ) for k, v in batch.items()} _lowercase : List[Any] = (batch['image'] - mean) / std _lowercase : Optional[int] = model(lowerCamelCase_ ) _lowercase : Union[str, Any] = torch.nn.functional.cross_entropy(lowerCamelCase_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowerCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _lowercase : Tuple = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _lowercase : Tuple = os.path.join(args.output_dir , lowerCamelCase_ ) accelerator.save_state(lowerCamelCase_ ) model.eval() _lowercase : List[str] = 0 _lowercase : List[Any] = 0 for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. _lowercase : Union[str, Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} _lowercase : List[Any] = (batch['image'] - mean) / std with torch.no_grad(): _lowercase : Optional[Any] = model(lowerCamelCase_ ) _lowercase : Any = outputs.argmax(dim=-1 ) _lowercase , _lowercase : Optional[int] = accelerator.gather_for_metrics((predictions, batch['label']) ) _lowercase : int = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _lowercase : Union[str, Any] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(lowerCamelCase_ ), 'epoch': epoch, } , step=lowerCamelCase_ , ) if checkpointing_steps == "epoch": _lowercase : Any = F'''epoch_{epoch}''' if args.output_dir is not None: _lowercase : Dict = os.path.join(args.output_dir , lowerCamelCase_ ) accelerator.save_state(lowerCamelCase_ ) if args.with_tracking: accelerator.end_training() def UpperCamelCase_( ) -> Optional[Any]: _lowercase : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=lowerCamelCase_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=lowerCamelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=lowerCamelCase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _lowercase : str = parser.parse_args() _lowercase : List[str] = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
89
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
0
'''simple docstring''' import heapq import sys import numpy as np __UpperCAmelCase = tuple[int, int] class a__ : '''simple docstring''' def __init__( self ) -> Union[str, Any]: lowerCAmelCase__ = [] lowerCAmelCase__ = set() def __SCREAMING_SNAKE_CASE ( self ) -> Any: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return len(self.elements ) == 0 def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowerCamelCase_ ) else: # update # print("update", item) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tuple: if item in self.set: self.set.remove(lowerCamelCase_ ) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __SCREAMING_SNAKE_CASE ( self ) -> int: return self.elements[0][1] def __SCREAMING_SNAKE_CASE ( self ) -> Any: ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) self.set.remove(lowerCamelCase_ ) return (priority, item) def _snake_case ( A , A ) -> Tuple: # euclidean distance lowerCAmelCase__ = np.array(A ) lowerCAmelCase__ = np.array(A ) return np.linalg.norm(a - b ) def _snake_case ( A , A ) -> List[str]: # integer division by time variable return consistent_heuristic(A , A ) // t def _snake_case ( A , A ) -> List[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _snake_case ( A , A , A , A ) -> str: lowerCAmelCase__ = g_function[start] + Wa * heuristics[i](A , A ) return ans def _snake_case ( A , A , A ) -> int: lowerCAmelCase__ = np.chararray((n, n) ) for i in range(A ): for j in range(A ): lowerCAmelCase__ = '''*''' for i in range(A ): for j in range(A ): if (j, (n - 1) - i) in blocks: lowerCAmelCase__ = '''#''' lowerCAmelCase__ = '''-''' lowerCAmelCase__ = back_pointer[goal] while x != start: ((lowerCAmelCase__) , (lowerCAmelCase__)) = x # print(x) lowerCAmelCase__ = '''-''' lowerCAmelCase__ = back_pointer[x] lowerCAmelCase__ = '''-''' for i in range(A ): for j in range(A ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) lowerCAmelCase__ = back_pointer[goal] while x != start: print(A , end=''' ''' ) lowerCAmelCase__ = back_pointer[x] print(A ) sys.exit() def _snake_case ( A ) -> Any: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _snake_case ( A , A , A , A , A , A , A , A , ) -> str: for itera in range(A ): open_list[itera].remove_element(A ) # print("s", s) # print("j", j) ((lowerCAmelCase__) , (lowerCAmelCase__)) = s lowerCAmelCase__ = (x - 1, y) lowerCAmelCase__ = (x + 1, y) lowerCAmelCase__ = (x, y + 1) lowerCAmelCase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A ) lowerCAmelCase__ = -1 lowerCAmelCase__ = float('''inf''' ) if valid(A ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase__ = g_function[s] + 1 lowerCAmelCase__ = s if neighbours not in close_list_anchor: open_list[0].put(A , key(A , 0 , A , A ) ) if neighbours not in close_list_inad: for var in range(1 , A ): if key(A , A , A , A ) <= Wa * key( A , 0 , A , A ): open_list[j].put( A , key(A , A , A , A ) ) def _snake_case ( ) -> str: lowerCAmelCase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCAmelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCAmelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCAmelCase = make_common_ground() __UpperCAmelCase = blocks_blk # hyper parameters __UpperCAmelCase = 1 __UpperCAmelCase = 1 __UpperCAmelCase = 20 __UpperCAmelCase = 3 # one consistent and two other inconsistent # start and end destination __UpperCAmelCase = (0, 0) __UpperCAmelCase = (n - 1, n - 1) __UpperCAmelCase = 1 def _snake_case ( A , A , A ) -> Dict: lowerCAmelCase__ = {start: 0, goal: float('''inf''' )} lowerCAmelCase__ = {start: -1, goal: -1} lowerCAmelCase__ = [] lowerCAmelCase__ = set() for i in range(A ): open_list.append(PriorityQueue() ) open_list[i].put(A , key(A , A , A , A ) ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , A ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(A , A , A ) else: lowerCAmelCase__ , lowerCAmelCase__ = open_list[i].top_show() visited.add(A ) expand_state( A , A , A , A , A , A , A , A , ) close_list_inad.append(A ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(A , A , A ) else: lowerCAmelCase__ = open_list[0].top_show() visited.add(A ) expand_state( A , 0 , A , A , A , A , A , A , ) close_list_anchor.append(A ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
90
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _snake_case ( snake_case__ : BertModel , snake_case__ : str , snake_case__ : str ): A = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') A = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) A = model.state_dict() def to_tf_var_name(snake_case__ : str ): for patt, repl in iter(snake_case__ ): A = name.replace(snake_case__ , snake_case__ ) return F'bert/{name}' def create_tf_var(snake_case__ : np.ndarray , snake_case__ : str , snake_case__ : tf.Session ): A = tf.dtypes.as_dtype(tensor.dtype ) A = tf.get_variable(dtype=snake_case__ , shape=tensor.shape , name=snake_case__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: A = to_tf_var_name(snake_case__ ) A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): A = torch_tensor.T A = create_tf_var(tensor=snake_case__ , name=snake_case__ , session=snake_case__ ) tf.keras.backend.set_value(snake_case__ , snake_case__ ) A = session.run(snake_case__ ) print(F'Successfully created {tf_name}: {np.allclose(snake_case__ , snake_case__ )}' ) A = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case__ , os.path.join(snake_case__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def _snake_case ( snake_case__ : Tuple=None ): A = argparse.ArgumentParser() parser.add_argument('--model_name' , type=snake_case__ , required=snake_case__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=snake_case__ , default=snake_case__ , required=snake_case__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=snake_case__ , required=snake_case__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=snake_case__ , required=snake_case__ , help='Directory in which to save tensorflow model' ) A = parser.parse_args(snake_case__ ) A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=snake_case__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
91
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase_ = 16 UpperCamelCase_ = 32 def _lowerCAmelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> Tuple: lowercase : Tuple =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase : Tuple =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__magic_name__ : Dict ): # max_length=None => use the model max length (it's actually the default) lowercase : Optional[Any] =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase : Optional[Any] =datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase : Union[str, Any] =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase : Optional[int] =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase : Union[str, Any] =16 elif accelerator.mixed_precision != "no": lowercase : Any =8 else: lowercase : Union[str, Any] =None return tokenizer.pad( __magic_name__ , padding='''longest''' , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase : Union[str, Any] =DataLoader( tokenized_datasets['''train'''] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase : Dict =DataLoader( tokenized_datasets['''validation'''] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase_ = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : str ) -> int: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __magic_name__ ) == "1": lowercase : List[Any] =2 # New Code # lowercase : List[Any] =int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase : Optional[int] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : str =config['''lr'''] lowercase : Optional[int] =int(config['''num_epochs'''] ) lowercase : str =int(config['''seed'''] ) lowercase : Tuple =int(config['''batch_size'''] ) lowercase : Dict =evaluate.load('''glue''' , '''mrpc''' ) set_seed(__magic_name__ ) lowercase , lowercase : List[str] =get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : List[str] =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : str =model.to(accelerator.device ) # Instantiate optimizer lowercase : Tuple =AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase : Tuple =get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Dict =accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase : Dict =model(**__magic_name__ ) lowercase : Optional[Any] =output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase : str =model(**__magic_name__ ) lowercase : str =outputs.logits.argmax(dim=-1 ) lowercase , lowercase : List[Any] =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase : Optional[Any] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def _lowerCAmelCase ( ) -> str: lowercase : Union[str, Any] =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__magic_name__ , default=__magic_name__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__magic_name__ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase : List[Any] =parser.parse_args() lowercase : Dict ={'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
92
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
0
"""simple docstring""" import math def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 ) ->list: """simple docstring""" lowerCAmelCase__ :List[str] = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = i lowerCAmelCase__ :Any = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCAmelCase__ :str = array[temp_index - 1] temp_index -= 1 lowerCAmelCase__ :Tuple = temp_index_value return array def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->None: # Max Heap """simple docstring""" lowerCAmelCase__ :Any = index lowerCAmelCase__ :Optional[int] = 2 * index + 1 # Left Node lowerCAmelCase__ :int = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCAmelCase__ :Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCAmelCase__ :str = right_index if largest != index: lowerCAmelCase__ , lowerCAmelCase__ :Dict = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): lowerCAmelCase__ , lowerCAmelCase__ :int = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Optional[int] = low lowerCAmelCase__ :int = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCAmelCase__ , lowerCAmelCase__ :List[str] = array[j], array[i] i += 1 def __A (_SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return array lowerCAmelCase__ :Dict = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase__ :Tuple = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 lowerCAmelCase__ :Any = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) lowerCAmelCase__ :Tuple = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A = input("""Enter numbers separated by a comma : """).strip() __A = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
93
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase_ ( __A : List[Any] ) -> Dict: """simple docstring""" lowercase , lowercase : List[Any] =image.size lowercase , lowercase : str =(x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 lowercase : Tuple =image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) lowercase : int =np.array(__A ).astype(np.floataa ) / 255.0 lowercase : Union[str, Any] =image[None].transpose(0 , 3 , 1 , 2 ) lowercase : Optional[int] =torch.from_numpy(__A ) return 2.0 * image - 1.0 class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : VQModel , UpperCAmelCase : UNetaDModel , UpperCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(vqvae=UpperCAmelCase , unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : Optional[int] = 100 , UpperCAmelCase : Optional[float] = 0.0 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(UpperCAmelCase , PIL.Image.Image ): lowercase : Tuple =1 elif isinstance(UpperCAmelCase , torch.Tensor ): lowercase : Optional[Any] =image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase )}' ) if isinstance(UpperCAmelCase , PIL.Image.Image ): lowercase : List[str] =preprocess(UpperCAmelCase ) lowercase , lowercase : int =image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase : Any =(batch_size, self.unet.config.in_channels // 2, height, width) lowercase : Any =next(self.unet.parameters() ).dtype lowercase : Union[str, Any] =randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=UpperCAmelCase ) lowercase : Optional[int] =image.to(device=self.device , dtype=UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase , device=self.device ) lowercase : List[str] =self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase : Optional[int] =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase : int ='''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase : Any ={} if accepts_eta: lowercase : List[str] =eta for t in self.progress_bar(UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. lowercase : str =torch.cat([latents, image] , dim=1 ) lowercase : Tuple =self.scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) # predict the noise residual lowercase : List[str] =self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase : int =self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE lowercase : Any =self.vqvae.decode(UpperCAmelCase ).sample lowercase : Union[str, Any] =torch.clamp(UpperCAmelCase , -1.0 , 1.0 ) lowercase : List[str] =image / 2 + 0.5 lowercase : Dict =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : Any =self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
94
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ (__A ): def __init__( self : List[Any] , lowerCAmelCase_ : TransformeraDModel , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : KarrasDiffusionSchedulers , lowerCAmelCase_ : Optional[Dict[int, str]] = None , ) -> List[Any]: super().__init__() self.register_modules(transformer=lowerCAmelCase_ , vae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) # create a imagenet -> id dictionary for easier use UpperCAmelCase_ : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCAmelCase_ : Union[str, Any] = int(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = dict(sorted(self.labels.items() ) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, List[str]] ) -> List[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : str = list(lowerCAmelCase_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase_ ) UpperCAmelCase_ : int = self.transformer.config.sample_size UpperCAmelCase_ : Optional[Any] = self.transformer.config.in_channels UpperCAmelCase_ : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase_ : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase_ : List[Any] = torch.tensor(lowerCAmelCase_ , device=self.device ).reshape(-1 ) UpperCAmelCase_ : Optional[Any] = torch.tensor([1_000] * batch_size , device=self.device ) UpperCAmelCase_ : int = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase_ : Optional[Any] = latent_model_input[: len(lowerCAmelCase_ ) // 2] UpperCAmelCase_ : int = torch.cat([half, half] , dim=0 ) UpperCAmelCase_ : Optional[int] = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = t if not torch.is_tensor(lowerCAmelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase_ : List[Any] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase_ : int = torch.intaa if is_mps else torch.intaa UpperCAmelCase_ : Optional[int] = torch.tensor([timesteps] , dtype=lowerCAmelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase_ : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase_ : List[Any] = self.transformer( lowerCAmelCase_ , timestep=lowerCAmelCase_ , class_labels=lowerCAmelCase_ ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.split(lowerCAmelCase_ , len(lowerCAmelCase_ ) // 2 , dim=0 ) UpperCAmelCase_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase_ : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = torch.split(lowerCAmelCase_ , lowerCAmelCase_ , dim=1 ) else: UpperCAmelCase_ : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase_ : Optional[int] = latent_model_input UpperCAmelCase_ : Dict = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase_ : Dict = self.vae.decode(lowerCAmelCase_ ).sample UpperCAmelCase_ : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase_ )
95
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __lowerCamelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def a ( __UpperCAmelCase : Optional[Any] ) -> Optional[int]: __magic_name__: Optional[Any] = {} with open(__UpperCAmelCase , """r""" ) as file: for line_number, line in enumerate(__UpperCAmelCase ): __magic_name__: Dict = line.strip() if line: __magic_name__: str = line.split() __magic_name__: Tuple = line_number __magic_name__: Tuple = words[0] __magic_name__: Tuple = value return result def a ( __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ) -> Tuple: for attribute in key.split(""".""" ): __magic_name__: Dict = getattr(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCAmelCase ): __magic_name__: Any = PARAM_MAPPING[full_name.split(""".""" )[-1]] __magic_name__: Optional[int] = """param""" if weight_type is not None and weight_type != "param": __magic_name__: Tuple = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": __magic_name__: str = hf_pointer for attribute in hf_param_name.split(""".""" ): __magic_name__: List[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: int = shape_pointer.shape # let's reduce dimension __magic_name__: Any = value[0] else: __magic_name__: Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__: Tuple = value elif weight_type == "weight_g": __magic_name__: List[Any] = value elif weight_type == "weight_v": __magic_name__: int = value elif weight_type == "bias": __magic_name__: Optional[Any] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __magic_name__: Union[str, Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Dict = value else: __magic_name__: Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ) -> Optional[int]: __magic_name__: int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCAmelCase ): __magic_name__: Dict = PARAM_MAPPING[full_name.split(""".""" )[-1]] __magic_name__: List[str] = """param""" if weight_type is not None and weight_type != "param": __magic_name__: Optional[Any] = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __magic_name__: Any = """.""".join([key, hf_param_name] ) else: __magic_name__: Any = key __magic_name__: Optional[int] = value if """lm_head""" in full_key else value[0] __lowerCamelCase = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Union[str, Any]=None ) -> Optional[Any]: __magic_name__: Tuple = False for key, mapped_key in MAPPING.items(): __magic_name__: Any = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __magic_name__: Tuple = True if "*" in mapped_key: __magic_name__: Optional[Any] = name.split(__UpperCAmelCase )[0].split(""".""" )[-2] __magic_name__: Tuple = mapped_key.replace("""*""" , __UpperCAmelCase ) if "weight_g" in name: __magic_name__: Optional[Any] = """weight_g""" elif "weight_v" in name: __magic_name__: Optional[int] = """weight_v""" elif "bias" in name: __magic_name__: Tuple = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__: Union[str, Any] = """weight""" else: __magic_name__: Optional[int] = None if hf_dict is not None: rename_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return is_used return is_used def a ( __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any ) -> Dict: __magic_name__: List[str] = [] __magic_name__: int = fairseq_model.state_dict() __magic_name__: Tuple = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __magic_name__: Any = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __magic_name__: int = True else: __magic_name__: Dict = load_wavaveca_layer(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def a ( __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> List[str]: __magic_name__: List[str] = full_name.split("""conv_layers.""" )[-1] __magic_name__: List[Any] = name.split(""".""" ) __magic_name__: int = int(items[0] ) __magic_name__: List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__: Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__: Any = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __magic_name__: Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__: str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[Any]=False ) -> Any: if config_path is not None: __magic_name__: Tuple = WavaVecaConfig.from_pretrained(__UpperCAmelCase ) else: __magic_name__: int = WavaVecaConfig() if is_seq_class: __magic_name__: Optional[int] = read_txt_into_dict(__UpperCAmelCase ) __magic_name__: Any = idalabel __magic_name__: Tuple = WavaVecaForSequenceClassification(__UpperCAmelCase ) __magic_name__: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) feature_extractor.save_pretrained(__UpperCAmelCase ) elif is_finetuned: if dict_path: __magic_name__: Optional[int] = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__: Dict = target_dict.pad_index __magic_name__: Optional[Any] = target_dict.bos_index __magic_name__: str = target_dict.eos_index __magic_name__: List[str] = len(target_dict.symbols ) __magic_name__: Union[str, Any] = os.path.join(__UpperCAmelCase , """vocab.json""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __magic_name__: List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __magic_name__: List[str] = 0 __magic_name__: Union[str, Any] = 1 with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Optional[Any] = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__UpperCAmelCase , ) __magic_name__: Optional[Any] = True if config.feat_extract_norm == """layer""" else False __magic_name__: Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) __magic_name__: List[Any] = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) __magic_name__: List[Any] = WavaVecaForCTC(__UpperCAmelCase ) else: __magic_name__: Dict = WavaVecaForPreTraining(__UpperCAmelCase ) if is_finetuned or is_seq_class: __magic_name__, __magic_name__, __magic_name__: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __magic_name__: Optional[Any] = argparse.Namespace(task="""audio_pretraining""" ) __magic_name__: Optional[Any] = fairseq.tasks.setup_task(__UpperCAmelCase ) __magic_name__, __magic_name__, __magic_name__: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__UpperCAmelCase ) __magic_name__: List[Any] = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
96
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
0
def a ( snake_case__: list ): '''simple docstring''' if len(snake_case__ ) <= 1: return lst lowercase_ = 1 while i < len(snake_case__ ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase_ , lowercase_ = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase_ = 1 return lst if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
97
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''-m''', '''--pretrained_model_name_or_path''', type=lowercase, default=lowercase, required=lowercase, help='''Path to pretrained model or model identifier from huggingface.co/models.''', ) parser.add_argument( '''-c''', '''--caption''', type=lowercase, default='''robotic cat with wings''', help='''Text used to generate images.''', ) parser.add_argument( '''-n''', '''--images_num''', type=lowercase, default=4, help='''How much images to generate.''', ) parser.add_argument( '''-s''', '''--seed''', type=lowercase, default=42, help='''Seed for random process.''', ) parser.add_argument( '''-ci''', '''--cuda_id''', type=lowercase, default=0, help='''cuda_id.''', ) _UpperCamelCase = parser.parse_args() return args def a__ ( lowercase : Tuple, lowercase : int, lowercase : int ) -> List[str]: """simple docstring""" if not len(lowercase ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) _UpperCamelCase , _UpperCamelCase = imgs[0].size _UpperCamelCase = Image.new('''RGB''', size=(cols * w, rows * h) ) _UpperCamelCase , _UpperCamelCase = grid.size for i, img in enumerate(lowercase ): grid.paste(lowercase, box=(i % cols * w, i // cols * h) ) return grid def a__ ( lowercase : List[str], lowercase : int="robotic cat with wings", lowercase : Optional[int]=7.5, lowercase : List[str]=50, lowercase : List[str]=1, lowercase : str=42, ) -> Tuple: """simple docstring""" _UpperCamelCase = torch.Generator(pipeline.device ).manual_seed(lowercase ) _UpperCamelCase = pipeline( lowercase, guidance_scale=lowercase, num_inference_steps=lowercase, generator=lowercase, num_images_per_prompt=lowercase, ).images _UpperCamelCase = int(math.sqrt(lowercase ) ) _UpperCamelCase = image_grid(lowercase, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images lowercase__ : List[Any] = parse_args() # Load models and create wrapper for stable diffusion lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowercase__ : Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowercase__ : int = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowercase__ : int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowercase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase__ : Optional[Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowercase__ : int = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowercase__ : str = unet.to(torch.device('cuda', args.cuda_id)) lowercase__ : str = pipeline.to(unet.device) lowercase__ , lowercase__ : List[str] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowercase__ : Dict = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
98
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE = get_tests_dir('fixtures') SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/dummy_feature_extractor_config.json') SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/dummy-config.json') class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): __a = 0 def snake_case_ ( self ): __a = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__A , __A ) def snake_case_ ( self ): __a = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def snake_case_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __a = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __a = AutoFeatureExtractor.from_pretrained(__A ).to_dict() config_dict.pop("""feature_extractor_type""" ) __a = WavaVecaFeatureExtractor(**__A ) # save in new folder model_config.save_pretrained(__A ) config.save_pretrained(__A ) __a = AutoFeatureExtractor.from_pretrained(__A ) # make sure private variable is not incorrectly saved __a = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__A , __A ) def snake_case_ ( self ): __a = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def snake_case_ ( self ): with self.assertRaisesRegex( __A , """bert-base is not a local folder and is not a valid model identifier""" ): __a = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def snake_case_ ( self ): with self.assertRaisesRegex( __A , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __a = AutoFeatureExtractor.from_pretrained(__A , revision="""aaaaaa""" ) def snake_case_ ( self ): with self.assertRaisesRegex( __A , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __a = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def snake_case_ ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): __a = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): __a = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A ) __a = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__A ) __a = AutoFeatureExtractor.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def snake_case_ ( self ): try: AutoConfig.register("""custom""" , __A ) AutoFeatureExtractor.register(__A , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoFeatureExtractor.register(__A , __A ) # Now that the config is registered, it can be used as any other config with the auto-API __a = CustomFeatureExtractor.from_pretrained(__A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__A ) __a = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case_ ( self ): class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = True try: AutoConfig.register("""custom""" , __A ) AutoFeatureExtractor.register(__A , __A ) # If remote code is not set, the default is to use local __a = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __a = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __a = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(__A , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
99
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( lowerCAmelCase_ ) -> None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = analyze_text(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE__ = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE__ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE__ = single_char_strings[ch] SCREAMING_SNAKE_CASE__ = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase_ ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string SCREAMING_SNAKE_CASE__ = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE__ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE__ = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE__ = two_char_strings[sequence] SCREAMING_SNAKE_CASE__ = int(lowerCAmelCase_ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase_ ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __snake_case ( lowerCAmelCase_ ) -> tuple[dict, dict]: SCREAMING_SNAKE_CASE__ = Counter() # type: ignore SCREAMING_SNAKE_CASE__ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
100
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = parent SCREAMING_SNAKE_CASE_ : int = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : int = is_training SCREAMING_SNAKE_CASE_ : Any = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Any = use_labels SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : str = num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : int = None if self.use_labels: SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowerCAmelCase__ , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FalconModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = FalconModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Dict = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FalconForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = FalconForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE_ : List[str] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Any = config_and_inputs SCREAMING_SNAKE_CASE_ : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = (FalconForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FalconModelTester(self ) SCREAMING_SNAKE_CASE_ : Any = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE_ : Dict = alibi self.model_tester.create_and_check_model(lowerCAmelCase__ , *lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : int = 3 SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.ne(1 ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : int = FalconForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = 'single_label_classification' SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : str = FalconForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = FalconForCausalLM(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : Optional[int] = model._convert_to_rw_cache(result.past_key_values ) SCREAMING_SNAKE_CASE_ : Optional[int] = model._convert_cache_to_standard_format(lowerCAmelCase__ , lowerCAmelCase__ ) for layer in range(len(lowerCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = 3 SCREAMING_SNAKE_CASE_ : Dict = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : Dict = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Tuple = FalconForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowerCAmelCase__ , 'use_cache' ): return SCREAMING_SNAKE_CASE_ : Dict = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ ) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Any = model(**lowerCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE_ : Optional[Any] = ( getattr(lowerCAmelCase__ , 'decoder_layers' , lowerCAmelCase__ ) or getattr(lowerCAmelCase__ , 'num_decoder_layers' , lowerCAmelCase__ ) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowerCAmelCase__ , 'num_kv_heads' , config.num_attention_heads ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase__ , 'd_model' , config.hidden_size ) SCREAMING_SNAKE_CASE_ : List[str] = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = outputs['past_key_values'] self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs['input_ids'].shape for i in range(lowerCAmelCase__ ): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE_ : Any = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE_ : Any = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) SCREAMING_SNAKE_CASE_ : Dict = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=1_9 ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE_ : int = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = FalconForCausalLM.from_pretrained(lowerCAmelCase__ ) model.eval() model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowerCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=4 ) model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=4 ) model.generate(**lowerCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def UpperCamelCase__ ( self ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = FalconForCausalLM.from_pretrained(lowerCAmelCase__ ) model.eval() model.to(device=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowerCAmelCase__ ) # Test results are the same with and without cache SCREAMING_SNAKE_CASE_ : Optional[Any] = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=2_0 , use_cache=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=2_0 , use_cache=lowerCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
101
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
0
"""simple docstring""" import re def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : int = re.compile( r"""^(?:0|94|\+94|0{2}94)""" r"""7(0|1|2|4|5|6|7|8)""" r"""(-| |)""" r"""\d{7}$""" ) return bool(re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __magic_name__ : List[str] = """0094702343221""" print(is_sri_lankan_phone_number(phone))
102
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
0
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16000 ) -> str: _snake_case = int(round(sample_rate * max_length ) ) if len(lowerCAmelCase_ ) <= sample_length: return wav _snake_case = randint(0 , len(lowerCAmelCase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : A__ : Optional[str] = field(default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''Name of a dataset from the datasets package'''} ) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) A__ : str = field( default='''train''',metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' },) A__ : str = field( default='''validation''',metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) },) A__ : str = field( default='''audio''',metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''},) A__ : str = field( default='''label''',metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) A__ : Optional[int] = field( default=__SCREAMING_SNAKE_CASE,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) },) A__ : Optional[int] = field( default=__SCREAMING_SNAKE_CASE,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) },) A__ : float = field( default=20,metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''},) @dataclass class UpperCAmelCase : A__ : str = field( default='''facebook/wav2vec2-base''',metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''},) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) A__ : str = field( default='''main''',metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''},) A__ : Optional[str] = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''Name or path of preprocessor config.'''} ) A__ : bool = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) A__ : bool = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) A__ : bool = field( default=__SCREAMING_SNAKE_CASE,metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) },) A__ : Optional[bool] = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) A__ : bool = field( default=__SCREAMING_SNAKE_CASE,metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''},) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __lowerCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def snake_case ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. _snake_case = DatasetDict() _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--label_column_name` to the correct text column - one of ''' f"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _snake_case = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _snake_case = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _snake_case = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase_ ): _snake_case = [] for audio in batch[data_args.audio_column_name]: _snake_case = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCAmelCase_ ) _snake_case = feature_extractor(lowerCAmelCase_ , sampling_rate=feature_extractor.sampling_rate ) _snake_case = {model_input_name: inputs.get(lowerCAmelCase_ )} _snake_case = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase_ ): _snake_case = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _snake_case = feature_extractor(lowerCAmelCase_ , sampling_rate=feature_extractor.sampling_rate ) _snake_case = {model_input_name: inputs.get(lowerCAmelCase_ )} _snake_case = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _snake_case = raw_datasets['''train'''].features[data_args.label_column_name].names _snake_case , _snake_case = {}, {} for i, label in enumerate(lowerCAmelCase_ ): _snake_case = str(lowerCAmelCase_ ) _snake_case = label # Load the accuracy metric from the datasets package _snake_case = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ ): _snake_case = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCAmelCase_ , references=eval_pred.label_ids ) _snake_case = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase_ ) , labelaid=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _snake_case = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCAmelCase_ , output_all_columns=lowerCAmelCase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _snake_case = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCAmelCase_ , output_all_columns=lowerCAmelCase_ ) # Initialize our trainer _snake_case = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , ) # Training if training_args.do_train: _snake_case = None if training_args.resume_from_checkpoint is not None: _snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case = last_checkpoint _snake_case = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCAmelCase_ ) trainer.save_metrics('''eval''' , lowerCAmelCase_ ) # Write model card and (optionally) push to hub _snake_case = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) if __name__ == "__main__": main()
103
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _lowerCamelCase ( UpperCAmelCase_ : int = 1000000, UpperCAmelCase_ : int = 10 ) -> int: """simple docstring""" A__ = defaultdict(UpperCAmelCase_ ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: A__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: A__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCAmelCase_, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'{solution() = }')
104
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
import torch from torch import nn class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=1 ,snake_case__=False ): super().__init__() SCREAMING_SNAKE_CASE_ : Any = n_token SCREAMING_SNAKE_CASE_ : Tuple = d_embed SCREAMING_SNAKE_CASE_ : int = d_proj SCREAMING_SNAKE_CASE_ : Union[str, Any] = cutoffs + [n_token] SCREAMING_SNAKE_CASE_ : Dict = [0] + self.cutoffs SCREAMING_SNAKE_CASE_ : int = div_val SCREAMING_SNAKE_CASE_ : Tuple = self.cutoffs[0] SCREAMING_SNAKE_CASE_ : str = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE_ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) SCREAMING_SNAKE_CASE_ : int = nn.Parameter(torch.zeros(self.n_clusters ) ) SCREAMING_SNAKE_CASE_ : int = nn.ModuleList() SCREAMING_SNAKE_CASE_ : List[str] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(snake_case__ ,snake_case__ ) ) ) else: self.out_projs.append(snake_case__ ) self.out_layers.append(nn.Linear(snake_case__ ,snake_case__ ) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ : List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(snake_case__ ,snake_case__ ) ) ) self.out_layers.append(nn.Linear(snake_case__ ,r_idx - l_idx ) ) SCREAMING_SNAKE_CASE_ : Any = keep_order def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): if proj is None: SCREAMING_SNAKE_CASE_ : List[str] = nn.functional.linear(snake_case__ ,snake_case__ ,bias=snake_case__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: SCREAMING_SNAKE_CASE_ : int = nn.functional.linear(snake_case__ ,proj.t().contiguous() ) SCREAMING_SNAKE_CASE_ : Any = nn.functional.linear(snake_case__ ,snake_case__ ,bias=snake_case__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case ( self ,snake_case__ ,snake_case__=None ,snake_case__=False ): if labels is not None: # Shift so that tokens < n predict n SCREAMING_SNAKE_CASE_ : Dict = hidden[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden.view(-1 ,hidden.size(-1 ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: SCREAMING_SNAKE_CASE_ : str = self._compute_logit(snake_case__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: SCREAMING_SNAKE_CASE_ : Tuple = labels != -100 SCREAMING_SNAKE_CASE_ : Optional[int] = torch.zeros_like(snake_case__ ,dtype=hidden.dtype ,device=hidden.device ) SCREAMING_SNAKE_CASE_ : int = ( -nn.functional.log_softmax(snake_case__ ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.functional.log_softmax(snake_case__ ,dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ : Any = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE_ : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE_ : List[Any] = self.out_layers[i].weight SCREAMING_SNAKE_CASE_ : Optional[Any] = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(snake_case__ ) biases.append(snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self._compute_logit(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.functional.log_softmax(snake_case__ ,dim=1 ) if labels is None: SCREAMING_SNAKE_CASE_ : Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.zeros_like(snake_case__ ,dtype=hidden.dtype ,device=hidden.device ) SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : str = [0] + self.cutoffs for i in range(len(snake_case__ ) - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: SCREAMING_SNAKE_CASE_ : List[str] = (labels >= l_idx) & (labels < r_idx) SCREAMING_SNAKE_CASE_ : Tuple = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue SCREAMING_SNAKE_CASE_ : Any = labels.index_select(0 ,snake_case__ ) - l_idx SCREAMING_SNAKE_CASE_ : List[str] = head_logprob.index_select(0 ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = hidden.index_select(0 ,snake_case__ ) else: SCREAMING_SNAKE_CASE_ : Any = hidden if i == 0: if labels is not None: SCREAMING_SNAKE_CASE_ : List[str] = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE_ : Any = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE_ : int = self._compute_logit(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = nn.functional.log_softmax(snake_case__ ,dim=1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: SCREAMING_SNAKE_CASE_ : List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i SCREAMING_SNAKE_CASE_ : Dict = logprob_i if labels is not None: if (hasattr(self ,'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 ,snake_case__ ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def snake_case ( self ,snake_case__ ): if self.n_clusters == 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._compute_logit(snake_case__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(snake_case__ ,dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ : Optional[int] = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE_ : int = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE_ : Any = self.out_layers[i].weight SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE_ : str = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(snake_case__ ) biases.append(snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self._compute_logit(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) SCREAMING_SNAKE_CASE_ : str = nn.functional.log_softmax(snake_case__ ,dim=1 ) SCREAMING_SNAKE_CASE_ : Any = [0] + self.cutoffs for i in range(len(snake_case__ ) - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: SCREAMING_SNAKE_CASE_ : List[Any] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE_ : Optional[int] = self._compute_logit(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = nn.functional.log_softmax(snake_case__ ,dim=1 ) SCREAMING_SNAKE_CASE_ : Any = head_logprob[:, -i] + tail_logprob_i SCREAMING_SNAKE_CASE_ : Dict = logprob_i return out
105
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :Optional[int] ={ 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Tuple =[ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __snake_case :int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : List[str] = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] _UpperCAmelCase : int = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] _UpperCAmelCase : str = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): _UpperCAmelCase : Optional[int] = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __a: Tuple = '''sshleifer/bart-tiny-random''' __a: Any = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return AutoConfig.from_pretrained(lowerCamelCase ) def lowerCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(lowerCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(lowerCamelCase , tempfile.mkdtemp() , e=1 , d=lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(lowerCamelCase , tempfile.mkdtemp() , e=1 , d=lowerCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(lowerCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" with self.assertRaises(lowerCamelCase ): create_student_by_copying_alternating_layers(lowerCamelCase , tempfile.mkdtemp() , e=lowerCamelCase , d=lowerCamelCase )
108
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( _snake_case ): __UpperCamelCase : Dict = ['image_processor', 'tokenizer'] __UpperCamelCase : Any = 'ViltImageProcessor' __UpperCamelCase : List[str] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Dict ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : List[Any]=None ,**lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase ,) __SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor def __call__( self : int ,lowerCamelCase : Dict ,lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,lowerCamelCase : bool = True ,lowerCamelCase : Union[bool, str, PaddingStrategy] = False ,lowerCamelCase : Union[bool, str, TruncationStrategy] = None ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : int = 0 ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[Union[str, TensorType]] = None ,**lowerCamelCase : str ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCamelCase ,add_special_tokens=lowerCamelCase ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=lowerCamelCase ,stride=lowerCamelCase ,pad_to_multiple_of=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_attention_mask=lowerCamelCase ,return_overflowing_tokens=lowerCamelCase ,return_special_tokens_mask=lowerCamelCase ,return_offsets_mapping=lowerCamelCase ,return_length=lowerCamelCase ,verbose=lowerCamelCase ,return_tensors=lowerCamelCase ,**lowerCamelCase ,) # add pixel_values + pixel_mask __SCREAMING_SNAKE_CASE = self.image_processor(lowerCamelCase ,return_tensors=lowerCamelCase ) encoding.update(lowerCamelCase ) return encoding def UpperCAmelCase__ ( self : Optional[int] ,*lowerCamelCase : Any ,**lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ,*lowerCamelCase : Union[str, Any] ,**lowerCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase ,) return self.image_processor_class @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase ,) return self.image_processor
109
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
0
"""simple docstring""" def lowerCamelCase ( _snake_case = 100 ): UpperCAmelCase__ : Union[str, Any] = (n * (n + 1) // 2) ** 2 UpperCAmelCase__ : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
110
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github _UpperCamelCase = [ """good first issue""", """feature request""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCAmelCase__ : Dict = Github(os.environ["GITHUB_TOKEN"] ) lowerCAmelCase__ : str = g.get_repo("huggingface/accelerate" ) lowerCAmelCase__ : Optional[Any] = repo.get_issues(state="open" ) for issue in open_issues: lowerCAmelCase__ : List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowerCAmelCase__ ) lowerCAmelCase__ : Tuple = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCAmelCase__ : Tuple = dt.utcnow() lowerCAmelCase__ : str = (current_time - issue.updated_at).days lowerCAmelCase__ : str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
453
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
518
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : Any , _UpperCamelCase : int = None , _UpperCamelCase : Optional[Any] = None , _UpperCamelCase : Optional[Any] = None , _UpperCamelCase : str = False , _UpperCamelCase : int = False , _UpperCamelCase : int = None , _UpperCamelCase : Optional[Any] = None , **_UpperCamelCase : Optional[int] , ): super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowercase: Optional[Any] = field _lowercase: Optional[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowercase: List[str] = Json( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , field=_UpperCamelCase , **_UpperCamelCase , ) def UpperCAmelCase__ ( self : Optional[Any]): # Build iterable dataset if self.streaming: _lowercase: str = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowercase: Optional[int] = None _lowercase: Optional[int] = None _lowercase: Any = None _lowercase: Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowercase: List[Any] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset class A : '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] = None , _UpperCamelCase : Tuple = None , **_UpperCamelCase : List[str] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") _lowercase: Optional[int] = dataset _lowercase: List[str] = path_or_buf _lowercase: List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowercase: List[str] = num_proc _lowercase: Union[str, Any] = "utf-8" _lowercase: Union[str, Any] = to_json_kwargs def UpperCAmelCase__ ( self : int): _lowercase: int = self.to_json_kwargs.pop("path_or_buf" , _UpperCamelCase) _lowercase: Optional[Any] = self.to_json_kwargs.pop("orient" , "records") _lowercase: Union[str, Any] = self.to_json_kwargs.pop("lines" , True if orient == "records" else False) _lowercase: List[str] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True) _lowercase: str = self.to_json_kwargs.pop("compression" , _UpperCamelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"`datasets` currently does not support {compression} compression") if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , "wb" , compression=_UpperCamelCase) as buffer: _lowercase: str = self._write(file_obj=_UpperCamelCase , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( f"The compression parameter is not supported when writing to a buffer, but compression={compression}" " was passed. Please provide a local path instead.") _lowercase: List[Any] = self._write( file_obj=self.path_or_buf , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **self.to_json_kwargs) return written def UpperCAmelCase__ ( self : List[str] , _UpperCamelCase : Tuple): _lowercase , _lowercase , _lowercase , _lowercase , _lowercase: List[Any] = args _lowercase: int = query_table( table=self.dataset.data , key=slice(_UpperCamelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _lowercase: Union[str, Any] = batch.to_pandas().to_json( path_or_buf=_UpperCamelCase , orient=_UpperCamelCase , lines=_UpperCamelCase , index=_UpperCamelCase , **_UpperCamelCase) if not json_str.endswith("\n"): json_str += "\n" return json_str.encode(self.encoding) def UpperCAmelCase__ ( self : str , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Dict , _UpperCamelCase : Any , **_UpperCamelCase : Optional[Any] , ): _lowercase: Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): _lowercase: str = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(_UpperCamelCase) else: _lowercase , _lowercase: str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _UpperCamelCase , _UpperCamelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(_UpperCamelCase) return written
226
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
def lowerCAmelCase_ (lowercase__ : List[str] ) -> Any: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCAmelCase__ = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
668
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : List[str] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = (DDPMScheduler,) def lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__UpperCAmelCase ) return config def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' self.check_over_configs(thresholding=__UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__UpperCAmelCase ) _A = len(__UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter _A = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual _A = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 _A = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _A = pred_prev_sample _A = torch.sum(torch.abs(__UpperCAmelCase ) ) _A = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type="v_prediction" ) _A = scheduler_class(**__UpperCAmelCase ) _A = len(__UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter _A = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual _A = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 _A = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _A = pred_prev_sample _A = torch.sum(torch.abs(__UpperCAmelCase ) ) _A = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__UpperCAmelCase ) _A = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__UpperCAmelCase ) _A = scheduler.timesteps for i, timestep in enumerate(__UpperCAmelCase ): if i == len(__UpperCAmelCase ) - 1: _A = -1 else: _A = timesteps[i + 1] _A = scheduler.previous_timestep(__UpperCAmelCase ) _A = prev_t.item() self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__UpperCAmelCase ) _A = [100, 87, 50, 51, 0] with self.assertRaises(__UpperCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__UpperCAmelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__UpperCAmelCase ) _A = [100, 87, 50, 1, 0] _A = len(__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__UpperCAmelCase , timesteps=__UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**__UpperCAmelCase ) _A = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__UpperCAmelCase )
330
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
0
import argparse _lowercase : int = "docs/source/_static/js/custom.js" def _lowerCAmelCase ( UpperCamelCase__: int ) -> Any: """simple docstring""" with open(lowerCAmelCase__ , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() A = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 A = f'const stableVersion = \"v{version}\"\n' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f' \"v{version}\": \"v{version}\",\n' with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") _lowercase : List[Any] = parser.parse_args() update_custom_js(args.version)
641
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[str] , _A : int , _A : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = jnp.ones((batch_size, length)) / length return scores def _lowerCAmelCase ( self : str): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : str = 2_0 _SCREAMING_SNAKE_CASE : Dict = self._get_uniform_logits(batch_size=2 , length=_A) # tweak scores to not be uniform anymore _SCREAMING_SNAKE_CASE : Tuple = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch _SCREAMING_SNAKE_CASE : int = scores.at[1, 1_0].set((1 / length) - 0.4) # valley, 1st batch # compute softmax _SCREAMING_SNAKE_CASE : Optional[Any] = jax.nn.softmax(_A , axis=-1) _SCREAMING_SNAKE_CASE : str = FlaxTemperatureLogitsWarper(temperature=0.5) _SCREAMING_SNAKE_CASE : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3) _SCREAMING_SNAKE_CASE : List[Any] = jax.nn.softmax(temp_dist_warper_sharper(_A , scores.copy() , cur_len=_A) , axis=-1) _SCREAMING_SNAKE_CASE : Any = jax.nn.softmax(temp_dist_warper_smoother(_A , scores.copy() , cur_len=_A) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : List[Any] = 1_0 _SCREAMING_SNAKE_CASE : Dict = 2 # create ramp distribution _SCREAMING_SNAKE_CASE : Any = np.broadcast_to(np.arange(_A)[None, :] , (batch_size, vocab_size)).copy() _SCREAMING_SNAKE_CASE : List[str] = ramp_logits[1:, : vocab_size // 2] + vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = FlaxTopKLogitsWarper(3) _SCREAMING_SNAKE_CASE : Tuple = top_k_warp(_A , _A , cur_len=_A) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case _SCREAMING_SNAKE_CASE : Union[str, Any] = 5 _SCREAMING_SNAKE_CASE : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) _SCREAMING_SNAKE_CASE : str = np.broadcast_to(np.arange(_A)[None, :] , (batch_size, length)).copy() _SCREAMING_SNAKE_CASE : Tuple = top_k_warp_safety_check(_A , _A , cur_len=_A) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = 1_0 _SCREAMING_SNAKE_CASE : int = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _SCREAMING_SNAKE_CASE : str = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) _SCREAMING_SNAKE_CASE : List[str] = FlaxTopPLogitsWarper(0.8) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.exp(top_p_warp(_A , _A , cur_len=_A)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _SCREAMING_SNAKE_CASE : List[str] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(_A , _A , atol=1e-3)) # check edge cases with negative and extreme logits _SCREAMING_SNAKE_CASE : List[Any] = np.broadcast_to(np.arange(_A)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _SCREAMING_SNAKE_CASE : Dict = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept _SCREAMING_SNAKE_CASE : List[Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) _SCREAMING_SNAKE_CASE : Union[str, Any] = top_p_warp(_A , _A , cur_len=_A) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _lowerCAmelCase ( self : Union[str, Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = 2_0 _SCREAMING_SNAKE_CASE : str = 4 _SCREAMING_SNAKE_CASE : Dict = 0 _SCREAMING_SNAKE_CASE : List[str] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_A) # check that min length is applied at length 5 _SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((batch_size, 2_0) , vocab_size=2_0) _SCREAMING_SNAKE_CASE : Tuple = 5 _SCREAMING_SNAKE_CASE : str = self._get_uniform_logits(_A , _A) _SCREAMING_SNAKE_CASE : List[str] = min_dist_processor(_A , _A , cur_len=_A) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""")]) # check that min length is not applied anymore at length 15 _SCREAMING_SNAKE_CASE : Optional[int] = self._get_uniform_logits(_A , _A) _SCREAMING_SNAKE_CASE : List[Any] = 1_5 _SCREAMING_SNAKE_CASE : int = min_dist_processor(_A , _A , cur_len=_A) self.assertFalse(jnp.isinf(_A).any()) def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = 2_0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 4 _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_A) # check that all scores are -inf except the bos_token_id score _SCREAMING_SNAKE_CASE : Dict = ids_tensor((batch_size, 1) , vocab_size=2_0) _SCREAMING_SNAKE_CASE : Dict = 1 _SCREAMING_SNAKE_CASE : str = self._get_uniform_logits(_A , _A) _SCREAMING_SNAKE_CASE : Optional[Any] = logits_processor(_A , _A , cur_len=_A) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _SCREAMING_SNAKE_CASE : List[Any] = 3 _SCREAMING_SNAKE_CASE : List[str] = self._get_uniform_logits(_A , _A) _SCREAMING_SNAKE_CASE : Optional[int] = logits_processor(_A , _A , cur_len=_A) self.assertFalse(jnp.isinf(_A).any()) def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = 2_0 _SCREAMING_SNAKE_CASE : Tuple = 4 _SCREAMING_SNAKE_CASE : Dict = 0 _SCREAMING_SNAKE_CASE : Optional[Any] = 5 _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_A , eos_token_id=_A) # check that all scores are -inf except the eos_token_id when max_length is reached _SCREAMING_SNAKE_CASE : Any = ids_tensor((batch_size, 4) , vocab_size=2_0) _SCREAMING_SNAKE_CASE : Optional[Any] = 4 _SCREAMING_SNAKE_CASE : Tuple = self._get_uniform_logits(_A , _A) _SCREAMING_SNAKE_CASE : Any = logits_processor(_A , _A , cur_len=_A) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _SCREAMING_SNAKE_CASE : Union[str, Any] = 3 _SCREAMING_SNAKE_CASE : int = self._get_uniform_logits(_A , _A) _SCREAMING_SNAKE_CASE : int = logits_processor(_A , _A , cur_len=_A) self.assertFalse(jnp.isinf(_A).any()) def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = 4 _SCREAMING_SNAKE_CASE : Tuple = 1_0 _SCREAMING_SNAKE_CASE : str = 1_5 _SCREAMING_SNAKE_CASE : Any = 2 _SCREAMING_SNAKE_CASE : Optional[Any] = 1 _SCREAMING_SNAKE_CASE : Optional[Any] = 1_5 # dummy input_ids and scores _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((batch_size, sequence_length) , _A) _SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.copy() _SCREAMING_SNAKE_CASE : List[str] = self._get_uniform_logits(_A , _A) _SCREAMING_SNAKE_CASE : Optional[Any] = scores.copy() # instantiate all dist processors _SCREAMING_SNAKE_CASE : Dict = FlaxTemperatureLogitsWarper(temperature=0.5) _SCREAMING_SNAKE_CASE : Tuple = FlaxTopKLogitsWarper(3) _SCREAMING_SNAKE_CASE : str = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_A) _SCREAMING_SNAKE_CASE : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_A) _SCREAMING_SNAKE_CASE : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=_A , eos_token_id=_A) _SCREAMING_SNAKE_CASE : Union[str, Any] = 1_0 # no processor list _SCREAMING_SNAKE_CASE : str = temp_dist_warp(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : str = top_k_warp(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : Optional[Any] = top_p_warp(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : List[Any] = min_dist_proc(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : Optional[int] = bos_dist_proc(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : Optional[int] = eos_dist_proc(_A , _A , cur_len=_A) # with processor list _SCREAMING_SNAKE_CASE : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) _SCREAMING_SNAKE_CASE : List[str] = processor(_A , _A , cur_len=_A) # scores should be equal self.assertTrue(jnp.allclose(_A , _A , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = 4 _SCREAMING_SNAKE_CASE : Any = 1_0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 1_5 _SCREAMING_SNAKE_CASE : Tuple = 2 _SCREAMING_SNAKE_CASE : Any = 1 _SCREAMING_SNAKE_CASE : Optional[Any] = 1_5 # dummy input_ids and scores _SCREAMING_SNAKE_CASE : Tuple = ids_tensor((batch_size, sequence_length) , _A) _SCREAMING_SNAKE_CASE : str = input_ids.copy() _SCREAMING_SNAKE_CASE : int = self._get_uniform_logits(_A , _A) _SCREAMING_SNAKE_CASE : str = scores.copy() # instantiate all dist processors _SCREAMING_SNAKE_CASE : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5) _SCREAMING_SNAKE_CASE : Any = FlaxTopKLogitsWarper(3) _SCREAMING_SNAKE_CASE : Optional[Any] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors _SCREAMING_SNAKE_CASE : Any = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_A) _SCREAMING_SNAKE_CASE : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_A) _SCREAMING_SNAKE_CASE : int = FlaxForcedEOSTokenLogitsProcessor(max_length=_A , eos_token_id=_A) _SCREAMING_SNAKE_CASE : Dict = 1_0 # no processor list def run_no_processor_list(_A : Union[str, Any] , _A : Any , _A : Tuple): _SCREAMING_SNAKE_CASE : str = temp_dist_warp(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : Dict = top_k_warp(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : Union[str, Any] = top_p_warp(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : Union[str, Any] = min_dist_proc(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : List[Any] = bos_dist_proc(_A , _A , cur_len=_A) _SCREAMING_SNAKE_CASE : Any = eos_dist_proc(_A , _A , cur_len=_A) return scores # with processor list def run_processor_list(_A : Tuple , _A : Union[str, Any] , _A : List[str]): _SCREAMING_SNAKE_CASE : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) _SCREAMING_SNAKE_CASE : Union[str, Any] = processor(_A , _A , cur_len=_A) return scores _SCREAMING_SNAKE_CASE : Union[str, Any] = jax.jit(_A) _SCREAMING_SNAKE_CASE : Any = jax.jit(_A) _SCREAMING_SNAKE_CASE : Any = jitted_run_no_processor_list(_A , _A , _A) _SCREAMING_SNAKE_CASE : Any = jitted_run_processor_list(_A , _A , _A) # scores should be equal self.assertTrue(jnp.allclose(_A , _A , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
338
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Optional[int] = StableDiffusionDiffEditPipeline lowercase_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} lowercase_ : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} lowercase_ : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : Dict = frozenset([] ) def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCamelCase, ) _lowercase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) _lowercase : Optional[int] = DDIMInverseScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', clip_sample=lowerCamelCase, set_alpha_to_zero=lowerCamelCase, ) torch.manual_seed(0) _lowercase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=1_28, ) torch.manual_seed(0) _lowercase : Dict = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, hidden_act='gelu', projection_dim=5_12, ) _lowercase : Union[str, Any] = CLIPTextModel(lowerCamelCase) _lowercase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = floats_tensor((1, 16, 16), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[int] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Optional[Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Any: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Any = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : str = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB') if str(lowerCamelCase).startswith('mps'): _lowercase : List[str] = torch.manual_seed(lowerCamelCase) else: _lowercase : Union[str, Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Any = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> int: """simple docstring""" _lowercase : int = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Optional[int] = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Optional[int] = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB') if str(lowerCamelCase).startswith('mps'): _lowercase : Tuple = torch.manual_seed(lowerCamelCase) else: _lowercase : int = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[Any] = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> str: """simple docstring""" if not hasattr(self.pipeline_class, '_optional_components'): return _lowercase : Optional[Any] = self.get_dummy_components() _lowercase : str = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) _lowercase : Dict = self.get_dummy_inputs(lowerCamelCase) _lowercase : str = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : Dict = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase, lowerCamelCase) is None, F'''`{optional_component}` did not stay set to None after loading.''', ) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[str] = pipe_loaded(**lowerCamelCase)[0] _lowercase : Tuple = np.abs(output - output_loaded).max() self.assertLess(lowerCamelCase, 1E-4) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : int = 'cpu' _lowercase : Optional[int] = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = self.get_dummy_mask_inputs(lowerCamelCase) _lowercase : List[Any] = pipe.generate_mask(**lowerCamelCase) _lowercase : int = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16)) _lowercase : Tuple = np.array([0] * 9) _lowercase : Optional[Any] = np.abs(mask_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCamelCase, 1E-3) self.assertEqual(mask[0, -3, -4], 0) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = 'cpu' _lowercase : List[Any] = self.get_dummy_components() _lowercase : int = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inversion_inputs(lowerCamelCase) _lowercase : List[Any] = pipe.invert(**lowerCamelCase).images _lowercase : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3)) _lowercase : Union[str, Any] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9], ) _lowercase : List[Any] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = 'cpu' _lowercase : Dict = self.get_dummy_components() _lowercase : List[str] = {'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'beta_schedule': 'scaled_linear'} _lowercase : Tuple = DPMSolverMultistepScheduler(**lowerCamelCase) _lowercase : List[Any] = DPMSolverMultistepInverseScheduler(**lowerCamelCase) _lowercase : Any = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_dummy_inversion_inputs(lowerCamelCase) _lowercase : Any = pipe.invert(**lowerCamelCase).images _lowercase : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3)) _lowercase : str = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9], ) _lowercase : str = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCamelCase, 1E-3) @require_torch_gpu @slow class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase ( cls) -> Dict: """simple docstring""" _lowercase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png') _lowercase : str = raw_image.convert('RGB').resize((7_68, 7_68)) _lowercase : Union[str, Any] = raw_image def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[int] = torch.manual_seed(0) _lowercase : Any = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCamelCase, torch_dtype=torch.floataa) _lowercase : Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config) _lowercase : Optional[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = 'a bowl of fruit' _lowercase : Any = 'a bowl of pears' _lowercase : Optional[int] = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCamelCase, target_prompt=lowerCamelCase, generator=lowerCamelCase, ) _lowercase : Dict = pipe.invert( prompt=lowerCamelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCamelCase).latents _lowercase : Dict = pipe( prompt=lowerCamelCase, mask_image=lowerCamelCase, image_latents=lowerCamelCase, generator=lowerCamelCase, negative_prompt=lowerCamelCase, inpaint_strength=0.7, output_type='numpy', ).images[0] _lowercase : Optional[int] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png').resize((7_68, 7_68))) / 2_55 ) assert np.abs((expected_image - image).max()) < 5E-1 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Dict = torch.manual_seed(0) _lowercase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCamelCase, torch_dtype=torch.floataa) _lowercase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowercase : Optional[int] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'a bowl of fruit' _lowercase : str = 'a bowl of pears' _lowercase : int = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCamelCase, target_prompt=lowerCamelCase, generator=lowerCamelCase, ) _lowercase : Optional[int] = pipe.invert( prompt=lowerCamelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCamelCase, num_inference_steps=25, ).latents _lowercase : Optional[Any] = pipe( prompt=lowerCamelCase, mask_image=lowerCamelCase, image_latents=lowerCamelCase, generator=lowerCamelCase, negative_prompt=lowerCamelCase, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] _lowercase : int = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png').resize((7_68, 7_68))) / 2_55 ) assert np.abs((expected_image - image).max()) < 5E-1
89
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
0