code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __lowerCamelCase : def __init__( self , UpperCAmelCase , ): lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = '''gelu''' lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def UpperCAmelCase__ ( self ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self ): ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFEsmModel(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase_ = model(UpperCAmelCase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=UpperCAmelCase ) lowerCamelCase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } lowerCamelCase_ = model(UpperCAmelCase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCAmelCase , encoder_hidden_states=UpperCAmelCase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFEsmForMaskedLM(config=UpperCAmelCase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): a__: Optional[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) a__: Tuple = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) a__: str = False a__: Tuple = False def UpperCAmelCase__ ( self ): lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def UpperCAmelCase__ ( self ): pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(UpperCAmelCase , UpperCAmelCase ) for k, v in name.items(): assert isinstance(UpperCAmelCase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(UpperCAmelCase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(UpperCAmelCase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
29
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
1
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase_ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } lowerCamelCase_ = f"{src_lang}-{tgt_lang}" lowerCamelCase_ = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) print(f"Generating {path}" ) with open(lowerCAmelCase__ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(lowerCAmelCase__ ) # make sure we are under the root of the project A_ = Path(__file__).resolve().parent.parent.parent A_ = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: A_ = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
29
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return base * power(lowerCAmelCase__ ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") A_ = int(input("""Enter the base: """).strip()) A_ = int(input("""Enter the exponent: """).strip()) A_ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A_ = 1 / result print(f"{base} to the power of {exponent} is {result}")
29
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
1
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.exp(lowerCAmelCase__ ) lowerCamelCase_ = torch.sum(lowerCAmelCase__ ,dim=1 ) # sum of exp(x_i) lowerCamelCase_ = torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCAmelCase__ ) - B / A class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() lowerCamelCase_ = config.output_attentions lowerCamelCase_ = config.output_hidden_states lowerCamelCase_ = nn.ModuleList([BertLayer(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) lowerCamelCase_ = nn.ModuleList([BertHighway(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) lowerCamelCase_ = [-1 for _ in range(config.num_hidden_layers )] def UpperCAmelCase__ ( self , UpperCAmelCase ): if (type(UpperCAmelCase ) is float) or (type(UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCamelCase_ = x else: lowerCamelCase_ = x def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ): lowerCamelCase_ = () lowerCamelCase_ = () lowerCamelCase_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCamelCase_ = all_hidden_states + (hidden_states,) lowerCamelCase_ = layer_module( UpperCAmelCase , UpperCAmelCase , head_mask[i] , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = layer_outputs[0] if self.output_attentions: lowerCamelCase_ = all_attentions + (layer_outputs[1],) lowerCamelCase_ = (hidden_states,) if self.output_hidden_states: lowerCamelCase_ = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCamelCase_ = current_outputs + (all_attentions,) lowerCamelCase_ = self.highway[i](UpperCAmelCase ) # logits, pooled_output if not self.training: lowerCamelCase_ = highway_exit[0] lowerCamelCase_ = entropy(UpperCAmelCase ) lowerCamelCase_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCamelCase_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCamelCase_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase , i + 1 ) else: lowerCamelCase_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCamelCase_ = all_hidden_states + (hidden_states,) lowerCamelCase_ = (hidden_states,) if self.output_hidden_states: lowerCamelCase_ = outputs + (all_hidden_states,) if self.output_attentions: lowerCamelCase_ = outputs + (all_attentions,) lowerCamelCase_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , lowerCAmelCase , ) class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) lowerCamelCase_ = config lowerCamelCase_ = BertEmbeddings(UpperCAmelCase ) lowerCamelCase_ = DeeBertEncoder(UpperCAmelCase ) lowerCamelCase_ = BertPooler(UpperCAmelCase ) self.init_weights() def UpperCAmelCase__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def UpperCAmelCase__ ( self ): return self.embeddings.word_embeddings def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = value def UpperCAmelCase__ ( self , UpperCAmelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase ) @add_start_docstrings_to_model_forward(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: lowerCamelCase_ = input_ids.size() elif inputs_embeds is not None: lowerCamelCase_ = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) lowerCamelCase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCamelCase_ = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if encoder_attention_mask is None: lowerCamelCase_ = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if token_type_ids is None: lowerCamelCase_ = torch.zeros(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCamelCase_ = self.get_extended_attention_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCamelCase_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCamelCase_ = encoder_attention_mask[:, None, None, :] lowerCamelCase_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCamelCase_ = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCamelCase_ = self.get_head_mask(UpperCAmelCase , self.config.num_hidden_layers ) lowerCamelCase_ = self.embeddings( input_ids=UpperCAmelCase , position_ids=UpperCAmelCase , token_type_ids=UpperCAmelCase , inputs_embeds=UpperCAmelCase ) lowerCamelCase_ = self.encoder( UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) lowerCamelCase_ = encoder_outputs[0] lowerCamelCase_ = self.pooler(UpperCAmelCase ) lowerCamelCase_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = message lowerCamelCase_ = exit_layer # start from 1! class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() lowerCamelCase_ = BertPooler(UpperCAmelCase ) lowerCamelCase_ = nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase_ = nn.Linear(config.hidden_size , config.num_labels ) def UpperCAmelCase__ ( self , UpperCAmelCase ): # Pooler lowerCamelCase_ = encoder_outputs[0] lowerCamelCase_ = self.pooler(UpperCAmelCase ) # "return" pooler_output # BertModel lowerCamelCase_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCamelCase_ = bmodel_output[1] lowerCamelCase_ = self.dropout(UpperCAmelCase ) lowerCamelCase_ = self.classifier(UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , lowerCAmelCase , ) class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) lowerCamelCase_ = config.num_labels lowerCamelCase_ = config.num_hidden_layers lowerCamelCase_ = DeeBertModel(UpperCAmelCase ) lowerCamelCase_ = nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=-1 , UpperCAmelCase=False , ): lowerCamelCase_ = self.num_layers try: lowerCamelCase_ = self.bert( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCamelCase_ = outputs[1] lowerCamelCase_ = self.dropout(UpperCAmelCase ) lowerCamelCase_ = self.classifier(UpperCAmelCase ) lowerCamelCase_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCamelCase_ = e.message lowerCamelCase_ = e.exit_layer lowerCamelCase_ = outputs[0] if not self.training: lowerCamelCase_ = entropy(UpperCAmelCase ) lowerCamelCase_ = [] lowerCamelCase_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCamelCase_ = MSELoss() lowerCamelCase_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCamelCase_ = [] for highway_exit in outputs[-1]: lowerCamelCase_ = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCamelCase_ = MSELoss() lowerCamelCase_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase ) if train_highway: lowerCamelCase_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCamelCase_ = (loss,) + outputs if not self.training: lowerCamelCase_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCamelCase_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
29
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowerCamelCase ( lowerCAmelCase ): a__: Tuple = 'SpeechT5FeatureExtractor' a__: List[str] = 'SpeechT5Tokenizer' def __init__( self , UpperCAmelCase , UpperCAmelCase ): super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''audio''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''text''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''text_target''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''audio_target''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''sampling_rate''' , UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowerCamelCase_ = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) elif text is not None: lowerCamelCase_ = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) else: lowerCamelCase_ = None if audio_target is not None: lowerCamelCase_ = self.feature_extractor(audio_target=UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = targets['''input_values'''] elif text_target is not None: lowerCamelCase_ = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = targets['''input_ids'''] else: lowerCamelCase_ = None if inputs is None: return targets if targets is not None: lowerCamelCase_ = labels lowerCamelCase_ = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''input_values''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''input_ids''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''labels''' , UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowerCamelCase_ = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) elif input_ids is not None: lowerCamelCase_ = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) else: lowerCamelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase , UpperCAmelCase ) and "input_ids" in labels[0]): lowerCamelCase_ = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = targets['''input_ids'''] else: lowerCamelCase_ = self.feature_extractor.feature_size lowerCamelCase_ = self.feature_extractor.num_mel_bins lowerCamelCase_ = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = feature_size_hack lowerCamelCase_ = targets['''input_values'''] else: lowerCamelCase_ = None if inputs is None: return targets if targets is not None: lowerCamelCase_ = labels lowerCamelCase_ = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
29
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 ,input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
29
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A_ = open # noqa: we just need to have a builtin inside this module to test it properly
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A_ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase ): a__: Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__: Dict = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__: Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__: List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) lowerCamelCase_ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) lowerCamelCase_ = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}] ) lowerCamelCase_ = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], ] , ) lowerCamelCase_ = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) # Legacy behavior lowerCamelCase_ = text_classifier('''This is great !''' , return_all_scores=UpperCAmelCase ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) lowerCamelCase_ = text_classifier('''This is great !''' , return_all_scores=UpperCAmelCase ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}]] ) lowerCamelCase_ = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=UpperCAmelCase ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], ] , ) lowerCamelCase_ = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=UpperCAmelCase ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, ] , ) @require_torch def UpperCAmelCase__ ( self ): import torch lowerCamelCase_ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) lowerCamelCase_ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) @require_tf def UpperCAmelCase__ ( self ): lowerCamelCase_ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) lowerCamelCase_ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) @slow @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = pipeline('''text-classification''' ) lowerCamelCase_ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowerCamelCase_ = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowerCamelCase_ = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] ) @slow @require_tf def UpperCAmelCase__ ( self ): lowerCamelCase_ = pipeline('''text-classification''' , framework='''tf''' ) lowerCamelCase_ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowerCamelCase_ = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowerCamelCase_ = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TextClassificationPipeline(model=UpperCAmelCase , tokenizer=UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCamelCase_ = '''HuggingFace is in''' lowerCamelCase_ = text_classifier(UpperCAmelCase ) self.assertEqual(nested_simplify(UpperCAmelCase ) , [{'''label''': ANY(UpperCAmelCase ), '''score''': ANY(UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) lowerCamelCase_ = ['''HuggingFace is in ''', '''Paris is in France'''] lowerCamelCase_ = text_classifier(UpperCAmelCase ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{'''label''': ANY(UpperCAmelCase ), '''score''': ANY(UpperCAmelCase )}, {'''label''': ANY(UpperCAmelCase ), '''score''': ANY(UpperCAmelCase )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCamelCase_ = text_classifier(UpperCAmelCase , top_k=UpperCAmelCase ) lowerCamelCase_ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [[{'''label''': ANY(UpperCAmelCase ), '''score''': ANY(UpperCAmelCase )}] * N, [{'''label''': ANY(UpperCAmelCase ), '''score''': ANY(UpperCAmelCase )}] * N] , ) lowerCamelCase_ = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} lowerCamelCase_ = text_classifier(UpperCAmelCase ) self.assertEqual( nested_simplify(UpperCAmelCase ) , {'''label''': ANY(UpperCAmelCase ), '''score''': ANY(UpperCAmelCase )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCamelCase_ = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(UpperCAmelCase ): text_classifier(UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCamelCase_ = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{'''label''': ANY(UpperCAmelCase ), '''score''': ANY(UpperCAmelCase )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
29
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
1
"""simple docstring""" import random def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = num - 1 lowerCamelCase_ = 0 while s % 2 == 0: lowerCamelCase_ = s // 2 t += 1 for _ in range(5 ): lowerCamelCase_ = random.randrange(2 ,num - 1 ) lowerCamelCase_ = pow(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) if v != 1: lowerCamelCase_ = 0 while v != (num - 1): if i == t - 1: return False else: lowerCamelCase_ = i + 1 lowerCamelCase_ = (v**2) % num return True def lowercase ( lowerCAmelCase__ ): if num < 2: return False lowerCamelCase_ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ = 1_024 ): while True: lowerCamelCase_ = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase__ ): return num if __name__ == "__main__": A_ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
29
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
1
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowerCamelCase_ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCAmelCase__ ( self ): lowerCamelCase_ = f"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() lowerCamelCase_ = [sys.executable] + distributed_args execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
29
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
1
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A_ = direct_transformers_import(PATH_TO_TRANSFORMERS) A_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") A_ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = None # source code of `config_class` lowerCamelCase_ = inspect.getsource(lowerCAmelCase__ ) lowerCamelCase_ = _re_checkpoint.findall(lowerCAmelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowerCamelCase_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase_ = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: lowerCamelCase_ = ckpt_name break return checkpoint def lowercase ( ): lowerCamelCase_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCamelCase_ = get_checkpoint_from_config_class(lowerCAmelCase__ ) lowerCamelCase_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowerCamelCase_ = '''\n'''.join(sorted(lowerCAmelCase__ ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
29
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('''String lengths must match!''' ) lowerCamelCase_ = 0 for chara, chara in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
29
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __lowerCamelCase : def __init__( self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ): lowerCamelCase_ = d_model lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = prediction_length lowerCamelCase_ = context_length lowerCamelCase_ = cardinality lowerCamelCase_ = num_time_features lowerCamelCase_ = lags_sequence lowerCamelCase_ = embedding_dimension lowerCamelCase_ = is_training lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = context_length lowerCamelCase_ = prediction_length + label_length lowerCamelCase_ = label_length lowerCamelCase_ = moving_average lowerCamelCase_ = autocorrelation_factor def UpperCAmelCase__ ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = config.context_length + max(config.lags_sequence ) lowerCamelCase_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase_ = floats_tensor([self.batch_size, _past_length] ) lowerCamelCase_ = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase_ = floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase_ = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_config() lowerCamelCase_ = self.prepare_autoformer_inputs_dict(UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase__ ( self ): lowerCamelCase_ , lowerCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() lowerCamelCase_ = model(**UpperCAmelCase ) lowerCamelCase_ = outputs.encoder_last_hidden_state lowerCamelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = model.get_encoder() encoder.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = model.create_network_inputs(**UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase_ = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase_ = encoder(inputs_embeds=UpperCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCamelCase_ = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase_ = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase_ = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase_ = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = model.get_decoder() decoder.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase_ = decoder( trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): a__: Tuple = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a__: Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () a__: List[Any] = {'feature-extraction': AutoformerModel} if is_torch_available() else {} a__: str = False a__: int = False a__: Dict = False a__: List[str] = False a__: Optional[int] = False a__: Optional[Any] = False def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoformerModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertEqual(info['''missing_keys'''] , [] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = inspect.signature(getattr(UpperCAmelCase , '''forward''' ) ) # The main input is the name of the argument after `self` lowerCamelCase_ = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCAmelCase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase ) lowerCamelCase_ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase ) lowerCamelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase ) lowerCamelCase_ = getattr(self.model_tester , '''d_model''' , UpperCAmelCase ) lowerCamelCase_ = getattr(self.model_tester , '''num_attention_heads''' , UpperCAmelCase ) lowerCamelCase_ = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCamelCase_ = outputs.encoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # decoder attentions lowerCamelCase_ = outputs.decoder_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase_ = outputs.cross_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + 2 , len(UpperCAmelCase ) ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase__ ( self ): super().test_retain_grad_hidden_states_attentions() def lowercase ( lowerCAmelCase__="train-batch.pt" ): lowerCamelCase_ = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' ,filename=lowerCAmelCase__ ,repo_type='''dataset''' ) lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location=lowerCAmelCase__ ) return batch @require_torch @slow class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCAmelCase ) lowerCamelCase_ = prepare_batch() with torch.no_grad(): lowerCamelCase_ = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] lowerCamelCase_ = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCAmelCase ) lowerCamelCase_ = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCAmelCase ) lowerCamelCase_ = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCamelCase_ = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state lowerCamelCase_ = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCAmelCase ) lowerCamelCase_ = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCAmelCase ) lowerCamelCase_ = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCamelCase_ = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) lowerCamelCase_ = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCAmelCase ) lowerCamelCase_ = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=UpperCAmelCase ) lowerCamelCase_ = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
29
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Dict = DebertaTokenizer a__: int = True a__: List[str] = DebertaTokenizerFast def UpperCAmelCase__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowerCamelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase_ = {'''unk_token''': '''[UNK]'''} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = tokenizer('''Hello''' , '''World''' ) lowerCamelCase_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase_ = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase_ = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase ) lowerCamelCase_ = [tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase_ = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase_ = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCAmelCase ) for expected, decoded in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __lowerCamelCase ( lowerCAmelCase ): def __get__( self , UpperCAmelCase , UpperCAmelCase=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowerCamelCase_ = '''__cached_''' + self.fget.__name__ lowerCamelCase_ = getattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if cached is None: lowerCamelCase_ = self.fget(UpperCAmelCase ) setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return cached def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"invalid truth value {val!r}" ) def lowercase ( lowerCAmelCase__ ): if is_torch_fx_proxy(lowerCAmelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase__ ,torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase__ ,tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase__ ,(jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase__ ,np.ndarray ) def lowercase ( lowerCAmelCase__ ): return isinstance(lowerCAmelCase__ ,np.ndarray ) def lowercase ( lowerCAmelCase__ ): return _is_numpy(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): import torch return isinstance(lowerCAmelCase__ ,torch.Tensor ) def lowercase ( lowerCAmelCase__ ): return False if not is_torch_available() else _is_torch(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): import torch return isinstance(lowerCAmelCase__ ,torch.device ) def lowercase ( lowerCAmelCase__ ): return False if not is_torch_available() else _is_torch_device(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): import torch if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) else: return False return isinstance(lowerCAmelCase__ ,torch.dtype ) def lowercase ( lowerCAmelCase__ ): return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): import tensorflow as tf return isinstance(lowerCAmelCase__ ,tf.Tensor ) def lowercase ( lowerCAmelCase__ ): return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase__ ,'''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(lowerCAmelCase__ ) return type(lowerCAmelCase__ ) == tf.Tensor def lowercase ( lowerCAmelCase__ ): return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase__ ,jnp.ndarray ) def lowercase ( lowerCAmelCase__ ): return False if not is_flax_available() else _is_jax(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ ,(dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ ,(list, tuple) ): return [to_py_obj(lowerCAmelCase__ ) for o in obj] elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ).tolist() elif isinstance(lowerCAmelCase__ ,(np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ ,(dict, UserDict) ): return {k: to_numpy(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ ,(list, tuple) ): return np.array(lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ) else: return obj class __lowerCamelCase ( lowerCAmelCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = fields(self ) # Safety and consistency checks if not len(UpperCAmelCase ): raise ValueError(f"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"{self.__class__.__name__} should not have more than one required field." ) lowerCamelCase_ = getattr(self , class_fields[0].name ) lowerCamelCase_ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = first_field.items() lowerCamelCase_ = True else: try: lowerCamelCase_ = iter(UpperCAmelCase ) lowerCamelCase_ = True except TypeError: lowerCamelCase_ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCAmelCase ): if ( not isinstance(UpperCAmelCase , (list, tuple) ) or not len(UpperCAmelCase ) == 2 or not isinstance(element[0] , UpperCAmelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase_ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowerCamelCase_ = element[1] elif first_field is not None: lowerCamelCase_ = first_field else: for field in class_fields: lowerCamelCase_ = getattr(self , field.name ) if v is not None: lowerCamelCase_ = v def __delitem__( self , *UpperCAmelCase , **UpperCAmelCase ): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self , UpperCAmelCase ): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCAmelCase , UpperCAmelCase ) super().__setattr__(UpperCAmelCase , UpperCAmelCase ) def __setitem__( self , UpperCAmelCase , UpperCAmelCase ): # Will raise a KeyException if needed super().__setitem__(UpperCAmelCase , UpperCAmelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): return tuple(self[k] for k in self.keys() ) class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase ): @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase ): raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class __lowerCamelCase ( lowerCAmelCase ): a__: Tuple = 'longest' a__: Dict = 'max_length' a__: Optional[int] = 'do_not_pad' class __lowerCamelCase ( lowerCAmelCase ): a__: Any = 'pt' a__: Union[str, Any] = 'tf' a__: int = 'np' a__: List[str] = 'jax' class __lowerCamelCase : def __init__( self , UpperCAmelCase ): lowerCamelCase_ = context_managers lowerCamelCase_ = ExitStack() def __enter__( self ): for context_manager in self.context_managers: self.stack.enter_context(UpperCAmelCase ) def __exit__( self , *UpperCAmelCase , **UpperCAmelCase ): self.stack.__exit__(*UpperCAmelCase , **UpperCAmelCase ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = infer_framework(lowerCAmelCase__ ) if framework == "tf": lowerCamelCase_ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase_ = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase_ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = model_class.__name__ lowerCamelCase_ = infer_framework(lowerCAmelCase__ ) if framework == "tf": lowerCamelCase_ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase_ = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase_ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ = "" ,lowerCAmelCase__ = "." ): def _flatten_dict(lowerCAmelCase__ ,lowerCAmelCase__="" ,lowerCAmelCase__="." ): for k, v in d.items(): lowerCamelCase_ = str(lowerCAmelCase__ ) + delimiter + str(lowerCAmelCase__ ) if parent_key else k if v and isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): yield from flatten_dict(lowerCAmelCase__ ,lowerCAmelCase__ ,delimiter=lowerCAmelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ) @contextmanager def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): if is_numpy_array(lowerCAmelCase__ ): return np.transpose(lowerCAmelCase__ ,axes=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.T if axes is None else array.permute(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.transpose(lowerCAmelCase__ ,perm=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.transpose(lowerCAmelCase__ ,axes=lowerCAmelCase__ ) else: raise ValueError(f"Type not supported for transpose: {type(lowerCAmelCase__ )}." ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if is_numpy_array(lowerCAmelCase__ ): return np.reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.reshape(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) else: raise ValueError(f"Type not supported for reshape: {type(lowerCAmelCase__ )}." ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): if is_numpy_array(lowerCAmelCase__ ): return np.squeeze(lowerCAmelCase__ ,axis=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase__ ,axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.squeeze(lowerCAmelCase__ ,axis=lowerCAmelCase__ ) else: raise ValueError(f"Type not supported for squeeze: {type(lowerCAmelCase__ )}." ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if is_numpy_array(lowerCAmelCase__ ): return np.expand_dims(lowerCAmelCase__ ,lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.unsqueeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase__ ,axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.expand_dims(lowerCAmelCase__ ,axis=lowerCAmelCase__ ) else: raise ValueError(f"Type not supported for expand_dims: {type(lowerCAmelCase__ )}." ) def lowercase ( lowerCAmelCase__ ): if is_numpy_array(lowerCAmelCase__ ): return np.size(lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.numel() elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.size(lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return array.size else: raise ValueError(f"Type not supported for expand_dims: {type(lowerCAmelCase__ )}." ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): for key, value in auto_map.items(): if isinstance(lowerCAmelCase__ ,(tuple, list) ): lowerCamelCase_ = [f"{repo_id}--{v}" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase_ = f"{repo_id}--{value}" return auto_map def lowercase ( lowerCAmelCase__ ): for base_class in inspect.getmro(lowerCAmelCase__ ): lowerCamelCase_ = base_class.__module__ lowerCamelCase_ = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"Could not infer framework from class {model_class}." )
29
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A_ = """src/diffusers""" # Matches is_xxx_available() A_ = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A_ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A_ = """ {0} = None """ A_ = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A_ = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _re_backend.findall(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 0: return None return "_and_".join(lowerCAmelCase__ ) def lowercase ( ): with open(os.path.join(lowerCAmelCase__ ,'''__init__.py''' ) ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: lowerCamelCase_ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ = 0 lowerCamelCase_ = {} # Go through the end of the file while line_index < len(lowerCAmelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCAmelCase__ ) and len(lines[line_index] ) > 1: lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _re_single_line_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCAmelCase__ ) > 0: lowerCamelCase_ = objects else: line_index += 1 return backend_specific_objects def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if name.isupper(): return DUMMY_CONSTANT.format(lowerCAmelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCAmelCase__ ,lowerCAmelCase__ ) else: return DUMMY_CLASS.format(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__=None ): if backend_specific_objects is None: lowerCamelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ = '''[''' + ''', '''.join(f"\"{b}\"" for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCAmelCase__ ,lowerCAmelCase__ ) for o in objects] ) lowerCamelCase_ = dummy_file return dummy_files def lowercase ( lowerCAmelCase__=False ): lowerCamelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''utils''' ) lowerCamelCase_ = { backend: os.path.join(lowerCAmelCase__ ,f"dummy_{short_names.get(lowerCAmelCase__ ,lowerCAmelCase__ )}_objects.py" ) for backend in dummy_files.keys() } lowerCamelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: lowerCamelCase_ = f.read() else: lowerCamelCase_ = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating diffusers.utils.dummy_{short_names.get(lowerCAmelCase__ ,lowerCAmelCase__ )}_objects.py as the main " '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f"diffusers.utils.dummy_{short_names.get(lowerCAmelCase__ ,lowerCAmelCase__ )}_objects.py. Run `make fix-copies` " '''to fix this.''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
29
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) class __lowerCamelCase ( lowerCAmelCase ): a__: Union[str, Any] = 'encoder-decoder' a__: List[Any] = True def __init__( self , **UpperCAmelCase ): super().__init__(**UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCamelCase_ = kwargs.pop('''encoder''' ) lowerCamelCase_ = encoder_config.pop('''model_type''' ) lowerCamelCase_ = kwargs.pop('''decoder''' ) lowerCamelCase_ = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase_ = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = True @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowerCamelCase_ = True lowerCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.encoder.to_dict() lowerCamelCase_ = self.decoder.to_dict() lowerCamelCase_ = self.__class__.model_type return output
29
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCamelCase ( lowerCAmelCase ): a__: jnp.ndarray @flax_register_to_config class __lowerCamelCase ( nn.Module , lowerCAmelCase , lowerCAmelCase ): a__: int = 32 a__: int = 4 a__: int = 4 a__: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a__: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") a__: Union[bool, Tuple[bool]] = False a__: Tuple[int] = (320, 640, 1280, 1280) a__: int = 2 a__: Union[int, Tuple[int]] = 8 a__: Optional[Union[int, Tuple[int]]] = None a__: int = 1280 a__: float = 0.0 a__: bool = False a__: jnp.dtype = jnp.floataa a__: bool = True a__: int = 0 a__: bool = False def UpperCAmelCase__ ( self , UpperCAmelCase ): # init input tensors lowerCamelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ = jnp.zeros(UpperCAmelCase , dtype=jnp.floataa ) lowerCamelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ , lowerCamelCase_ = jax.random.split(UpperCAmelCase ) lowerCamelCase_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )["params"] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.block_out_channels lowerCamelCase_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ = FlaxTimestepEmbedding(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase_ = self.only_cross_attention if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ = [] lowerCamelCase_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ = output_channel lowerCamelCase_ = block_out_channels[i] lowerCamelCase_ = i == len(UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ = FlaxCrossAttnDownBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase_ = FlaxDownBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCAmelCase ) lowerCamelCase_ = down_blocks # mid lowerCamelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCamelCase_ = [] lowerCamelCase_ = list(reversed(UpperCAmelCase ) ) lowerCamelCase_ = list(reversed(UpperCAmelCase ) ) lowerCamelCase_ = list(reversed(UpperCAmelCase ) ) lowerCamelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCamelCase_ = output_channel lowerCamelCase_ = reversed_block_out_channels[i] lowerCamelCase_ = reversed_block_out_channels[min(i + 1 , len(UpperCAmelCase ) - 1 )] lowerCamelCase_ = i == len(UpperCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCamelCase_ = FlaxCrossAttnUpBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase_ = FlaxUpBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(UpperCAmelCase ) lowerCamelCase_ = output_channel lowerCamelCase_ = up_blocks # out lowerCamelCase_ = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , UpperCAmelCase = False , ): # 1. time if not isinstance(UpperCAmelCase , jnp.ndarray ): lowerCamelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ = jnp.expand_dims(UpperCAmelCase , 0 ) lowerCamelCase_ = self.time_proj(UpperCAmelCase ) lowerCamelCase_ = self.time_embedding(UpperCAmelCase ) # 2. pre-process lowerCamelCase_ = jnp.transpose(UpperCAmelCase , (0, 2, 3, 1) ) lowerCamelCase_ = self.conv_in(UpperCAmelCase ) # 3. down lowerCamelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = down_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train ) else: lowerCamelCase_ , lowerCamelCase_ = down_block(UpperCAmelCase , UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCamelCase_ = () for down_block_res_sample, down_block_additional_residual in zip( UpperCAmelCase , UpperCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ = new_down_block_res_samples # 4. mid lowerCamelCase_ = self.mid_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCamelCase_ = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCamelCase_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = up_block( UpperCAmelCase , temb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , deterministic=not train , ) else: lowerCamelCase_ = up_block(UpperCAmelCase , temb=UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , deterministic=not train ) # 6. post-process lowerCamelCase_ = self.conv_norm_out(UpperCAmelCase ) lowerCamelCase_ = nn.silu(UpperCAmelCase ) lowerCamelCase_ = self.conv_out(UpperCAmelCase ) lowerCamelCase_ = jnp.transpose(UpperCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=UpperCAmelCase )
29
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
1
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( lowerCAmelCase__ ): for param in module.parameters(): lowerCamelCase_ = False def lowercase ( ): lowerCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCamelCase_ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def lowercase ( ): lowerCamelCase_ = datetime.now() lowerCamelCase_ = current_time.strftime('''%H:%M:%S''' ) return timestamp
29
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
1
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) A_ = None A_ = { """7B""": 1_1008, """13B""": 1_3824, """30B""": 1_7920, """65B""": 2_2016, """70B""": 2_8672, } A_ = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ,lowerCAmelCase__=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase ( lowerCAmelCase__ ): with open(lowerCAmelCase__ ,'''r''' ) as f: return json.load(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): with open(lowerCAmelCase__ ,'''w''' ) as f: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''tmp''' ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = read_json(os.path.join(lowerCAmelCase__ ,'''params.json''' ) ) lowerCamelCase_ = NUM_SHARDS[model_size] lowerCamelCase_ = params['''n_layers'''] lowerCamelCase_ = params['''n_heads'''] lowerCamelCase_ = n_heads // num_shards lowerCamelCase_ = params['''dim'''] lowerCamelCase_ = dim // n_heads lowerCamelCase_ = 10_000.0 lowerCamelCase_ = 1.0 / (base ** (torch.arange(0 ,lowerCAmelCase__ ,2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCamelCase_ = params['''n_kv_heads'''] # for GQA / MQA lowerCamelCase_ = n_heads_per_shard // num_key_value_heads lowerCamelCase_ = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCamelCase_ = n_heads lowerCamelCase_ = n_heads_per_shard lowerCamelCase_ = dim # permute for sliced rotary def permute(lowerCAmelCase__ ,lowerCAmelCase__=n_heads ,lowerCAmelCase__=dim ,lowerCAmelCase__=dim ): return w.view(lowerCAmelCase__ ,dima // n_heads // 2 ,2 ,lowerCAmelCase__ ).transpose(1 ,2 ).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCamelCase_ = torch.load(os.path.join(lowerCAmelCase__ ,'''consolidated.00.pth''' ) ,map_location='''cpu''' ) else: # Sharded lowerCamelCase_ = [ torch.load(os.path.join(lowerCAmelCase__ ,f"consolidated.{i:02d}.pth" ) ,map_location='''cpu''' ) for i in range(lowerCAmelCase__ ) ] lowerCamelCase_ = 0 lowerCamelCase_ = {'''weight_map''': {}} for layer_i in range(lowerCAmelCase__ ): lowerCamelCase_ = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCamelCase_ = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCamelCase_ = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } lowerCamelCase_ = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ) ] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ) ] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,) lowerCamelCase_ = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ) ] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(lowerCAmelCase__ )] ,dim=1 ) lowerCamelCase_ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(lowerCAmelCase__ )] ,dim=0 ) lowerCamelCase_ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(lowerCAmelCase__ )] ,dim=1 ) lowerCamelCase_ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(lowerCAmelCase__ )] ,dim=0 ) lowerCamelCase_ = inv_freq for k, v in state_dict.items(): lowerCamelCase_ = filename param_count += v.numel() torch.save(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCamelCase_ = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: lowerCamelCase_ = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(lowerCAmelCase__ )] ,dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(lowerCAmelCase__ )] ,dim=0 ), } for k, v in state_dict.items(): lowerCamelCase_ = filename param_count += v.numel() torch.save(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ) # Write configs lowerCamelCase_ = {'''total_size''': param_count * 2} write_json(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin.index.json''' ) ) lowerCamelCase_ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 lowerCamelCase_ = params['''multiple_of'''] if '''multiple_of''' in params else 256 lowerCamelCase_ = LlamaConfig( hidden_size=lowerCAmelCase__ ,intermediate_size=compute_intermediate_size(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ,num_attention_heads=params['''n_heads'''] ,num_hidden_layers=params['''n_layers'''] ,rms_norm_eps=params['''norm_eps'''] ,num_key_value_heads=lowerCAmelCase__ ,) config.save_pretrained(lowerCAmelCase__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) lowerCamelCase_ = LlamaForCausalLM.from_pretrained(lowerCAmelCase__ ,torch_dtype=torch.floataa ,low_cpu_mem_usage=lowerCAmelCase__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(lowerCAmelCase__ ,safe_serialization=lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): # Initialize the tokenizer based on the `spm` model lowerCamelCase_ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) lowerCamelCase_ = tokenizer_class(lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) def lowercase ( ): lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' ,help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' ,) parser.add_argument( '''--model_size''' ,choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] ,) parser.add_argument( '''--output_dir''' ,help='''Location to write HF model and tokenizer''' ,) parser.add_argument('''--safe_serialization''' ,type=lowerCAmelCase__ ,help='''Whether or not to save using `safetensors`.''' ) lowerCamelCase_ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir ,input_base_path=os.path.join(args.input_dir ,args.model_size ) ,model_size=args.model_size ,safe_serialization=args.safe_serialization ,) lowerCamelCase_ = os.path.join(args.input_dir ,'''tokenizer.model''' ) write_tokenizer(args.output_dir ,lowerCAmelCase__ ) if __name__ == "__main__": main()
29
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): stooge(lowerCAmelCase__ ,0 ,len(lowerCAmelCase__ ) - 1 ) return arr def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCamelCase_ , lowerCamelCase_ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCamelCase_ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowerCAmelCase__ ,lowerCAmelCase__ ,(h - t) ) # Recursively sort last 2/3 elements stooge(lowerCAmelCase__ ,i + t ,(lowerCAmelCase__) ) # Recursively sort first 2/3 elements stooge(lowerCAmelCase__ ,lowerCAmelCase__ ,(h - t) ) if __name__ == "__main__": A_ = input("""Enter numbers separated by a comma:\n""").strip() A_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
29
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class __lowerCamelCase ( lowerCAmelCase ): a__: Tuple = ['pixel_values'] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = 32 , UpperCAmelCase=PILImageResampling.BILINEAR , UpperCAmelCase = True , **UpperCAmelCase , ): lowerCamelCase_ = do_resize lowerCamelCase_ = do_rescale lowerCamelCase_ = size_divisor lowerCamelCase_ = resample super().__init__(**UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = get_image_size(UpperCAmelCase ) # Rounds the height and width down to the closest multiple of size_divisor lowerCamelCase_ = height // size_divisor * size_divisor lowerCamelCase_ = width // size_divisor * size_divisor lowerCamelCase_ = resize(UpperCAmelCase , (new_h, new_w) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) return image def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ): return rescale(image=UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ): lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = size_divisor if size_divisor is not None else self.size_divisor lowerCamelCase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) lowerCamelCase_ = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(UpperCAmelCase ) for img in images] if do_resize: lowerCamelCase_ = [self.resize(UpperCAmelCase , size_divisor=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(UpperCAmelCase , scale=1 / 255 ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowerCamelCase_ = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
29
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
1
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A_ = logging.get_logger(__name__) A_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} A_ = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } A_ = { """Salesforce/codegen-350M-mono""": 2048, } class __lowerCamelCase ( lowerCAmelCase ): a__: List[str] = VOCAB_FILES_NAMES a__: Any = PRETRAINED_VOCAB_FILES_MAP a__: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__: Union[str, Any] = ['input_ids', 'attention_mask'] a__: List[str] = CodeGenTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) if kwargs.pop('''add_bos_token''' , UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space: lowerCamelCase_ = getattr(UpperCAmelCase , pre_tok_state.pop('''type''' ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**UpperCAmelCase ) lowerCamelCase_ = add_prefix_space def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): lowerCamelCase_ = super().decode( token_ids=UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , **UpperCAmelCase , ) if truncate_before_pattern is not None and len(UpperCAmelCase ) > 0: lowerCamelCase_ = self.truncate(UpperCAmelCase , UpperCAmelCase ) return decoded_text def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): def find_re(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = pattern.search(UpperCAmelCase , UpperCAmelCase ) return m.start() if m else -1 lowerCamelCase_ = [re.compile(UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] lowerCamelCase_ = list(re.finditer('''^print''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowerCamelCase_ = completion[: prints[1].start()] lowerCamelCase_ = list(re.finditer('''^def''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowerCamelCase_ = completion[: defs[1].start()] lowerCamelCase_ = 0 lowerCamelCase_ = [ pos for pos in [find_re(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(UpperCAmelCase ) > 0: return completion[: min(UpperCAmelCase )] else: return completion
29
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCamelCase_ = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
29
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowercase ( lowerCAmelCase__ ): # vision encoder if "img_encoder.pos_embed" in name: lowerCamelCase_ = name.replace('''img_encoder.pos_embed''' ,'''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: lowerCamelCase_ = name.replace('''img_encoder.patch_embed.proj''' ,'''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: lowerCamelCase_ = name.replace('''img_encoder.patch_embed.norm''' ,'''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: lowerCamelCase_ = name.replace('''img_encoder.layers''' ,'''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "attn" in name and "pre_assign" not in name: lowerCamelCase_ = name.replace('''attn''' ,'''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCamelCase_ = name.replace('''proj''' ,'''out_proj''' ) if "pre_assign_attn.attn.proj" in name: lowerCamelCase_ = name.replace('''pre_assign_attn.attn.proj''' ,'''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: lowerCamelCase_ = name.replace('''norm1''' ,'''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: lowerCamelCase_ = name.replace('''norm2''' ,'''layer_norm2''' ) if "img_encoder.norm" in name: lowerCamelCase_ = name.replace('''img_encoder.norm''' ,'''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: lowerCamelCase_ = name.replace('''text_encoder.token_embedding''' ,'''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: lowerCamelCase_ = name.replace('''text_encoder.positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: lowerCamelCase_ = name.replace('''text_encoder.transformer.resblocks.''' ,'''text_model.encoder.layers.''' ) if "ln_1" in name: lowerCamelCase_ = name.replace('''ln_1''' ,'''layer_norm1''' ) if "ln_2" in name: lowerCamelCase_ = name.replace('''ln_2''' ,'''layer_norm2''' ) if "c_fc" in name: lowerCamelCase_ = name.replace('''c_fc''' ,'''fc1''' ) if "c_proj" in name: lowerCamelCase_ = name.replace('''c_proj''' ,'''fc2''' ) if "text_encoder" in name: lowerCamelCase_ = name.replace('''text_encoder''' ,'''text_model''' ) if "ln_final" in name: lowerCamelCase_ = name.replace('''ln_final''' ,'''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: lowerCamelCase_ = name.replace('''img_projector.linear_hidden.''' ,'''visual_projection.''' ) if "img_projector.linear_out." in name: lowerCamelCase_ = name.replace('''img_projector.linear_out.''' ,'''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: lowerCamelCase_ = name.replace('''text_projector.linear_hidden''' ,'''text_projection''' ) if "text_projector.linear_out" in name: lowerCamelCase_ = name.replace('''text_projector.linear_out''' ,'''text_projection.3''' ) return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ , lowerCamelCase_ = int(key_split[2] ), int(key_split[4] ) lowerCamelCase_ = config.vision_config.hidden_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = int(key_split[3] ) lowerCamelCase_ = config.text_config.hidden_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCamelCase_ = val.squeeze_() else: lowerCamelCase_ = val return orig_state_dict def lowercase ( ): lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__="groupvit-gcc-yfcc" ,lowerCAmelCase__=False ): lowerCamelCase_ = GroupViTConfig() lowerCamelCase_ = GroupViTModel(lowerCAmelCase__ ).eval() lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] lowerCamelCase_ = convert_state_dict(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = model.load_state_dict(lowerCAmelCase__ ,strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowerCamelCase_ = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = processor(text=['''a photo of a cat''', '''a photo of a dog'''] ,images=lowerCAmelCase__ ,padding=lowerCAmelCase__ ,return_tensors='''pt''' ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowerCamelCase_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCamelCase_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image ,lowerCAmelCase__ ,atol=1E-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print('''Successfully saved processor and model to''' ,lowerCAmelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ,organization='''nielsr''' ) model.push_to_hub(lowerCAmelCase__ ,organization='''nielsr''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) A_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A_ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ ,lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def lowercase ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' ,number=10_000 ,globals=globals() ,) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' ,number=10_000 ,globals=globals() ,) ) benchmark()
29
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
1
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A_ = """http://www.mocksite.com/file1.txt""" A_ = """\"text\": [\"foo\", \"foo\"]""" A_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __lowerCamelCase : a__: str = 200 a__: Tuple = {'Content-Length': '100'} a__: Any = {} def UpperCAmelCase__ ( self , **UpperCAmelCase ): return [bytes(UpperCAmelCase , '''utf-8''' )] def lowercase ( *lowerCAmelCase__ ,**lowerCAmelCase__ ): return MockResponse() @pytest.mark.parametrize('''urls_type''' ,[str, list, dict] ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): import requests monkeypatch.setattr(lowerCAmelCase__ ,'''request''' ,lowerCAmelCase__ ) lowerCamelCase_ = URL if issubclass(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = url elif issubclass(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [url] elif issubclass(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = {'''train''': url} lowerCamelCase_ = '''dummy''' lowerCamelCase_ = '''downloads''' lowerCamelCase_ = tmp_path lowerCamelCase_ = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ,use_etag=lowerCAmelCase__ ,) lowerCamelCase_ = DownloadManager(dataset_name=lowerCAmelCase__ ,download_config=lowerCAmelCase__ ) lowerCamelCase_ = dl_manager.download(lowerCAmelCase__ ) lowerCamelCase_ = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [downloaded_paths] lowerCamelCase_ = [urls] elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): assert "train" in downloaded_paths.keys() lowerCamelCase_ = downloaded_paths.values() lowerCamelCase_ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCamelCase_ = Path(lowerCAmelCase__ ) lowerCamelCase_ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCamelCase_ = downloaded_path.read_text() assert content == CONTENT lowerCamelCase_ = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() lowerCamelCase_ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' ,[str, list, dict] ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if issubclass(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = filename elif issubclass(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [filename] elif issubclass(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = {'''train''': filename} lowerCamelCase_ = '''dummy''' lowerCamelCase_ = xz_file.parent lowerCamelCase_ = '''extracted''' lowerCamelCase_ = DownloadConfig( cache_dir=lowerCAmelCase__ ,use_etag=lowerCAmelCase__ ,) lowerCamelCase_ = DownloadManager(dataset_name=lowerCAmelCase__ ,download_config=lowerCAmelCase__ ) lowerCamelCase_ = dl_manager.extract(lowerCAmelCase__ ) lowerCamelCase_ = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [extracted_paths] lowerCamelCase_ = [paths] elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): assert "train" in extracted_paths.keys() lowerCamelCase_ = extracted_paths.values() lowerCamelCase_ = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCamelCase_ = Path(lowerCAmelCase__ ) lowerCamelCase_ = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase__ ,etag=lowerCAmelCase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCamelCase_ = extracted_path.read_text() lowerCamelCase_ = text_file.read_text() assert extracted_file_content == expected_file_content def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(lowerCAmelCase__ ,start=1 ): lowerCamelCase_ = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' ,['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = request.getfixturevalue(lowerCAmelCase__ ) lowerCamelCase_ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase__ ) ,start=1 ): _test_jsonl(lowerCAmelCase__ ,lowerCAmelCase__ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' ,['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = request.getfixturevalue(lowerCAmelCase__ ) lowerCamelCase_ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase__ ) ,start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase__ ) ,start=1 ): _test_jsonl(lowerCAmelCase__ ,lowerCAmelCase__ ) assert num_tar == 1 assert num_jsonl == 2 def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase__ ) ,start=1 ): assert os.path.basename(lowerCAmelCase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
29
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() # fmt: off lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=0 ): return sorted(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : x[column] ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=float('''inf''' ) ): for i in range(points_counts - 1 ): for j in range(i + 1 ,lowerCAmelCase__ ): lowerCamelCase_ = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: lowerCamelCase_ = current_dis return min_dis def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=float('''inf''' ) ): for i in range(min(6 ,points_counts - 1 ) ,lowerCAmelCase__ ): for j in range(max(0 ,i - 6 ) ,lowerCAmelCase__ ): lowerCamelCase_ = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: lowerCamelCase_ = current_dis return min_dis def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): # base case if points_counts <= 3: return dis_between_closest_pair(lowerCAmelCase__ ,lowerCAmelCase__ ) # recursion lowerCamelCase_ = points_counts // 2 lowerCamelCase_ = closest_pair_of_points_sqr( lowerCAmelCase__ ,points_sorted_on_y[:mid] ,lowerCAmelCase__ ) lowerCamelCase_ = closest_pair_of_points_sqr( lowerCAmelCase__ ,points_sorted_on_y[mid:] ,points_counts - mid ) lowerCamelCase_ = min(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCAmelCase__ ) lowerCamelCase_ = dis_between_closest_in_strip( lowerCAmelCase__ ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ) return min(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = column_based_sort(lowerCAmelCase__ ,column=0 ) lowerCamelCase_ = column_based_sort(lowerCAmelCase__ ,column=1 ) return ( closest_pair_of_points_sqr( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ) ** 0.5 if __name__ == "__main__": A_ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
1
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Optional[Any] = PhobertTokenizer a__: Optional[Any] = False def UpperCAmelCase__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] lowerCamelCase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowerCamelCase_ = ['''#version: 0.2''', '''l à</w>'''] lowerCamelCase_ = {'''unk_token''': '''<unk>'''} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = '''Tôi là VinAI Research''' lowerCamelCase_ = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def UpperCAmelCase__ ( self ): lowerCamelCase_ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = '''Tôi là VinAI Research''' lowerCamelCase_ = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) print(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
29
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
1
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING A_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(UpperCAmelCase ) def __call__( self , UpperCAmelCase , **UpperCAmelCase ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return {}, {}, {} def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = load_image(UpperCAmelCase ) lowerCamelCase_ = image.size lowerCamelCase_ = self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = self.model(**UpperCAmelCase ) return model_outputs def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = model_outputs.predicted_depth lowerCamelCase_ = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=UpperCAmelCase ) lowerCamelCase_ = prediction.squeeze().cpu().numpy() lowerCamelCase_ = (output * 255 / np.max(UpperCAmelCase )).astype('''uint8''' ) lowerCamelCase_ = Image.fromarray(UpperCAmelCase ) lowerCamelCase_ = {} lowerCamelCase_ = predicted_depth lowerCamelCase_ = depth return output_dict
29
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): a__: str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) a__: Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) a__: str = False a__: Tuple = False def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ): lowerCamelCase_ = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class in get_values(UpperCAmelCase ): lowerCamelCase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = embedding_size def UpperCAmelCase__ ( self ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFMobileBertModel(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ = model(UpperCAmelCase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFMobileBertForMaskedLM(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFMobileBertForNextSentencePrediction(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFMobileBertForPreTraining(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFMobileBertForSequenceClassification(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFMobileBertForMultipleChoice(config=UpperCAmelCase ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFMobileBertForTokenClassification(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFMobileBertForQuestionAnswering(config=UpperCAmelCase ) lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def UpperCAmelCase__ ( self ): lowerCamelCase_ = TFMobileBertModelTest.TFMobileBertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: lowerCamelCase_ = TFMobileBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(UpperCAmelCase )[0] lowerCamelCase_ = [1, 6, 3_0522] self.assertEqual(output.shape , UpperCAmelCase ) lowerCamelCase_ = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
29
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( lowerCAmelCase ): a__: int = 'ClapFeatureExtractor' a__: Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , UpperCAmelCase , UpperCAmelCase ): super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''sampling_rate''' , UpperCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: lowerCamelCase_ = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if audios is not None: lowerCamelCase_ = self.feature_extractor( UpperCAmelCase , sampling_rate=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and audios is not None: lowerCamelCase_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer.model_input_names lowerCamelCase_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) A_ = logging.getLogger(__name__) def lowercase ( ): lowerCamelCase_ = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' ,type=lowerCAmelCase__ ,default='''data/dump.txt''' ,help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' ,type=lowerCAmelCase__ ,default='''bert''' ,choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' ,type=lowerCAmelCase__ ,default='''bert-base-uncased''' ,help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' ,type=lowerCAmelCase__ ,default='''data/dump''' ,help='''The dump file prefix.''' ) lowerCamelCase_ = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": lowerCamelCase_ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` lowerCamelCase_ = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCamelCase_ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map['''cls_token'''] # `<s>` lowerCamelCase_ = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": lowerCamelCase_ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` lowerCamelCase_ = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path ,'''r''' ,encoding='''utf8''' ) as fp: lowerCamelCase_ = fp.readlines() logger.info('''Start encoding''' ) logger.info(f"{len(lowerCAmelCase__ )} examples to process." ) lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = 10_000 lowerCamelCase_ = time.time() for text in data: lowerCamelCase_ = f"{bos} {text.strip()} {sep}" lowerCamelCase_ = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) rslt.append(lowerCAmelCase__ ) iter += 1 if iter % interval == 0: lowerCamelCase_ = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) lowerCamelCase_ = time.time() logger.info('''Finished binarization''' ) logger.info(f"{len(lowerCAmelCase__ )} examples processed." ) lowerCamelCase_ = f"{args.dump_file}.{args.tokenizer_name}.pickle" lowerCamelCase_ = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCamelCase_ = [np.uintaa(lowerCAmelCase__ ) for d in rslt] else: lowerCamelCase_ = [np.intaa(lowerCAmelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(lowerCAmelCase__ ,'''wb''' ) as handle: pickle.dump(rslt_ ,lowerCAmelCase__ ,protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
29
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class __lowerCamelCase ( lowerCAmelCase ): a__: str = 'efficientformer' def __init__( self , UpperCAmelCase = [3, 2, 6, 4] , UpperCAmelCase = [48, 96, 224, 448] , UpperCAmelCase = [True, True, True, True] , UpperCAmelCase = 448 , UpperCAmelCase = 32 , UpperCAmelCase = 4 , UpperCAmelCase = 7 , UpperCAmelCase = 5 , UpperCAmelCase = 8 , UpperCAmelCase = 4 , UpperCAmelCase = 0.0 , UpperCAmelCase = 16 , UpperCAmelCase = 3 , UpperCAmelCase = 3 , UpperCAmelCase = 3 , UpperCAmelCase = 2 , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 1 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = 1e-5 , UpperCAmelCase = "gelu" , UpperCAmelCase = 0.0_2 , UpperCAmelCase = 1e-1_2 , UpperCAmelCase = 224 , UpperCAmelCase = 1e-0_5 , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = hidden_sizes lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = depths lowerCamelCase_ = mlp_expansion_ratio lowerCamelCase_ = downsamples lowerCamelCase_ = dim lowerCamelCase_ = key_dim lowerCamelCase_ = attention_ratio lowerCamelCase_ = resolution lowerCamelCase_ = pool_size lowerCamelCase_ = downsample_patch_size lowerCamelCase_ = downsample_stride lowerCamelCase_ = downsample_pad lowerCamelCase_ = drop_path_rate lowerCamelCase_ = num_metaad_blocks lowerCamelCase_ = distillation lowerCamelCase_ = use_layer_scale lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = image_size lowerCamelCase_ = batch_norm_eps
29
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
1
"""simple docstring""" import os def lowercase ( ): with open(os.path.dirname(lowerCAmelCase__ ) + '''/grid.txt''' ) as f: lowerCamelCase_ = [] # noqa: E741 for _ in range(20 ): l.append([int(lowerCAmelCase__ ) for x in f.readline().split()] ) lowerCamelCase_ = 0 # right for i in range(20 ): for j in range(17 ): lowerCamelCase_ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCamelCase_ = temp # down for i in range(17 ): for j in range(20 ): lowerCamelCase_ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCamelCase_ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCamelCase_ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCamelCase_ = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): lowerCamelCase_ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCamelCase_ = temp return maximum if __name__ == "__main__": print(solution())
29
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
1
"""simple docstring""" A_ = 8.3144598 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example A_ = 300 A_ = 28 A_ = rms_speed_of_molecule(temperature, molar_mass) print(f"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
29
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( lowerCAmelCase ): a__: int = ['pixel_values'] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) lowerCamelCase_ = size if size is not None else {'''shortest_edge''': 224} lowerCamelCase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowerCamelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase , param_name='''crop_size''' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase_ = do_convert_rgb def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ): lowerCamelCase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCamelCase_ = get_resize_output_image_size(UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): lowerCamelCase_ = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ): lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(UpperCAmelCase , param_name='''size''' , default_to_square=UpperCAmelCase ) lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(UpperCAmelCase , param_name='''crop_size''' , default_to_square=UpperCAmelCase ) lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ = [convert_to_rgb(UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowerCamelCase_ = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
29
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase ( lowerCAmelCase__ ): return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) A_ = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class __lowerCamelCase ( lowerCAmelCase ): @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): lowerCamelCase_ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=UpperCAmelCase , required=UpperCAmelCase , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=UpperCAmelCase , required=UpperCAmelCase , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=UpperCAmelCase , required=UpperCAmelCase , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=UpperCAmelCase , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=UpperCAmelCase ) def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , ): lowerCamelCase_ = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f"Loading model {model_type}" ) lowerCamelCase_ = model_type lowerCamelCase_ = tf_checkpoint lowerCamelCase_ = pytorch_dump_output lowerCamelCase_ = config lowerCamelCase_ = finetuning_task_name def UpperCAmelCase__ ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): lowerCamelCase_ = self._tf_checkpoint lowerCamelCase_ = '''''' else: lowerCamelCase_ = self._tf_checkpoint lowerCamelCase_ = '''''' convert_transfo_xl_checkpoint_to_pytorch( UpperCAmelCase , self._config , self._pytorch_dump_output , UpperCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
1
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} lowerCamelCase_ = Text( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , **UpperCAmelCase , ) def UpperCAmelCase__ ( self ): # Build iterable dataset if self.streaming: lowerCamelCase_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) lowerCamelCase_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
29
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
1
"""simple docstring""" from __future__ import annotations A_ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class __lowerCamelCase : def __init__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase_ = {} lowerCamelCase_ = source_vertex def UpperCAmelCase__ ( self ): lowerCamelCase_ = {self.source_vertex} lowerCamelCase_ = None lowerCamelCase_ = [self.source_vertex] # first in first out queue while queue: lowerCamelCase_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCAmelCase ) lowerCamelCase_ = vertex queue.append(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase_ = self.parent.get(UpperCAmelCase ) if target_vertex_parent is None: lowerCamelCase_ = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(UpperCAmelCase ) return self.shortest_path(UpperCAmelCase ) + f"->{target_vertex}" if __name__ == "__main__": A_ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
29
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) lowerCamelCase_ = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowerCamelCase_ = model(UpperCAmelCase )['''last_hidden_state'''] lowerCamelCase_ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , UpperCAmelCase ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
29
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = """▁""" A_ = {"""vocab_file""": """sentencepiece.bpe.model"""} A_ = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } A_ = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off A_ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class __lowerCamelCase ( lowerCAmelCase ): a__: Union[str, Any] = VOCAB_FILES_NAMES a__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__: List[Any] = PRETRAINED_VOCAB_FILES_MAP a__: Tuple = ['input_ids', 'attention_mask'] a__: List[int] = [] a__: List[int] = [] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase=None , **UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenizer_file=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) lowerCamelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ = 1 lowerCamelCase_ = len(self.sp_model ) lowerCamelCase_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCAmelCase ) } lowerCamelCase_ = {v: k for k, v in self.lang_code_to_id.items()} lowerCamelCase_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCamelCase_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowerCamelCase_ = src_lang if src_lang is not None else '''en_XX''' lowerCamelCase_ = self.lang_code_to_id[self._src_lang] lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None lowerCamelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCAmelCase ): lowerCamelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCAmelCase__ ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase__ ( self ): return self._src_lang @src_lang.setter def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) lowerCamelCase_ = [1] * len(self.prefix_tokens ) lowerCamelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase )) + ([0] * len(UpperCAmelCase )) + suffix_ones def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tgt_lang_id return inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self , UpperCAmelCase ): return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ = self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self , UpperCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = ''''''.join(UpperCAmelCase ).replace(UpperCAmelCase , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase_ = os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , '''wb''' ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = "en_XX" , UpperCAmelCase = None , UpperCAmelCase = "ro_RO" , **UpperCAmelCase , ): lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase__ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = self.lang_code_to_id[src_lang] lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = self.lang_code_to_id[lang] lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code]
29
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
1
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = """▁""" A_ = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} A_ = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } A_ = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } A_ = { """ernie-m-base""": 514, """ernie-m-large""": 514, } A_ = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class __lowerCamelCase ( lowerCAmelCase ): a__: List[str] = ["input_ids"] a__: Dict = VOCAB_FILES_NAMES a__: Any = PRETRAINED_INIT_CONFIGURATION a__: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__: str = RESOURCE_FILES_NAMES def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase="utf8" , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase = None , **UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , vocab_file=UpperCAmelCase , encoding=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = sentencepiece_model_ckpt lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCamelCase_ = self.load_vocab(filepath=UpperCAmelCase ) else: lowerCamelCase_ = {self.sp_model.id_to_piece(UpperCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} lowerCamelCase_ = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self , UpperCAmelCase ): if text is None: return None lowerCamelCase_ = self.tokenize(UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ = '''''', [] for i, ch in enumerate(UpperCAmelCase ): if ch in self.SP_CHAR_MAPPING: lowerCamelCase_ = self.SP_CHAR_MAPPING.get(UpperCAmelCase ) else: lowerCamelCase_ = unicodedata.normalize('''NFKC''' , UpperCAmelCase ) if self.is_whitespace(UpperCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCAmelCase ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = normalized_text, [], 0 if self.do_lower_case: lowerCamelCase_ = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCamelCase_ = token[1:] lowerCamelCase_ = text[offset:].index(UpperCAmelCase ) + offset lowerCamelCase_ = start + len(UpperCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCamelCase_ = end return token_mapping @property def UpperCAmelCase__ ( self ): return len(self.vocab ) def UpperCAmelCase__ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCAmelCase ): lowerCamelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self , UpperCAmelCase ): return "".join((self.SP_CHAR_MAPPING.get(UpperCAmelCase , UpperCAmelCase ) for c in text) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=64 , UpperCAmelCase=0.1 ): if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowerCamelCase_ = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowerCamelCase_ = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowerCamelCase_ = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowerCamelCase_ = self.sp_model.EncodeAsPieces(UpperCAmelCase ) else: lowerCamelCase_ = self.sp_model.SampleEncodeAsPieces(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = [] for pi, piece in enumerate(UpperCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCAmelCase ) and pi != 0: new_pieces.append(UpperCAmelCase ) continue else: continue lowerCamelCase_ = 0 for i, chunk in enumerate(UpperCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCAmelCase ) or self.is_punct(UpperCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCAmelCase ) lowerCamelCase_ = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCamelCase_ = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCamelCase_ = i if len(UpperCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = ''''''.join(UpperCAmelCase ).replace(UpperCAmelCase , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = self.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = ''''''.join(UpperCAmelCase ).replace(UpperCAmelCase , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self , UpperCAmelCase ): return self.vocab.get(UpperCAmelCase , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self , UpperCAmelCase ): return self.reverse_vocab.get(UpperCAmelCase , self.unk_token ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCAmelCase ) + 1) + [1] * (len(UpperCAmelCase ) + 3) def UpperCAmelCase__ ( self , UpperCAmelCase ): if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self , UpperCAmelCase ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self , UpperCAmelCase ): if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self , UpperCAmelCase ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCAmelCase ) == 1: lowerCamelCase_ = unicodedata.category(UpperCAmelCase ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = {} with io.open(UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(UpperCAmelCase ): lowerCamelCase_ = line.rstrip('''\n''' ) lowerCamelCase_ = int(UpperCAmelCase ) return token_to_idx def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = 0 if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCamelCase_ = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ''' Please check that the vocabulary is not corrupted!''' ) lowerCamelCase_ = token_index writer.write(token + '''\n''' ) index += 1 lowerCamelCase_ = os.path.join(UpperCAmelCase , '''sentencepiece.bpe.model''' ) with open(UpperCAmelCase , '''wb''' ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (vocab_file,)
29
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
1
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A_ = logging.get_logger(__name__) A_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCAmelCase )} ) a__: str = field( default=lowerCAmelCase , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) a__: int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) a__: int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) a__: int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) a__: float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) a__: int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) a__: int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) a__: int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __lowerCamelCase ( lowerCAmelCase ): a__: int = 'train' a__: Any = 'dev' class __lowerCamelCase ( lowerCAmelCase ): a__: SquadDataTrainingArguments a__: List[SquadFeatures] a__: Split a__: bool def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = Split.train , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "pt" , ): lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCAmelCase , UpperCAmelCase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = '''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + '''.lock''' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features['''features'''] lowerCamelCase_ = self.old_features.get('''dataset''' , UpperCAmelCase ) lowerCamelCase_ = self.old_features.get('''examples''' , UpperCAmelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=UpperCAmelCase , ) lowerCamelCase_ = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , UpperCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self ): return len(self.features ) def __getitem__( self , UpperCAmelCase ): # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
29
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
1
"""simple docstring""" import enum import shutil import sys A_ , A_ = shutil.get_terminal_size() A_ = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class __lowerCamelCase ( enum.Enum ): a__: Union[str, Any] = 0 a__: List[str] = 1 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="" ): sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__="" ): forceWrite(f"\u001b[{color}m{content}\u001b[0m" ,lowerCAmelCase__ ) def lowercase ( ): forceWrite('''\r''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" ) def lowercase ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def lowercase ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = BlipImageProcessor() lowerCamelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) lowerCamelCase_ = BlipaProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def UpperCAmelCase__ ( self , **UpperCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
29
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowerCamelCase : def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=36 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=6 , UpperCAmelCase=6 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , UpperCAmelCase=1000 , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = text_seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = coordinate_size lowerCamelCase_ = shape_size lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase_ = text_seq_length lowerCamelCase_ = (image_size // patch_size) ** 2 + 1 lowerCamelCase_ = self.text_seq_length + self.image_seq_length def UpperCAmelCase__ ( self ): lowerCamelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase_ = bbox[i, j, 3] lowerCamelCase_ = bbox[i, j, 1] lowerCamelCase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase_ = bbox[i, j, 2] lowerCamelCase_ = bbox[i, j, 0] lowerCamelCase_ = t lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCamelCase_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = LayoutLMvaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # text + image lowerCamelCase_ = model(UpperCAmelCase , pixel_values=UpperCAmelCase ) lowerCamelCase_ = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase_ = model(pixel_values=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = LayoutLMvaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase_ = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = LayoutLMvaForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase_ = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase_ = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): a__: Optional[int] = False a__: List[Any] = False a__: Tuple = False a__: str = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) a__: Dict = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCAmelCase__ ( self ): lowerCamelCase_ = LayoutLMvaModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ): lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): lowerCamelCase_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): lowerCamelCase_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) elif model_class in get_values(UpperCAmelCase ): lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) elif model_class in [ *get_values(UpperCAmelCase ), ]: lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) elif model_class in [ *get_values(UpperCAmelCase ), ]: lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase , ) return inputs_dict def UpperCAmelCase__ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = LayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase ( ): lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __lowerCamelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self ): return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(UpperCAmelCase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(UpperCAmelCase ) lowerCamelCase_ = torch.tensor([[1, 2]] ) lowerCamelCase_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCamelCase_ = model( input_ids=input_ids.to(UpperCAmelCase ) , bbox=bbox.to(UpperCAmelCase ) , pixel_values=pixel_values.to(UpperCAmelCase ) , ) # verify the logits lowerCamelCase_ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) lowerCamelCase_ = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
29
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
1
"""simple docstring""" A_ = """Alexander Joslin""" import operator as op from .stack import Stack def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCAmelCase__ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCAmelCase__ ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowerCAmelCase__ ,lowerCAmelCase__ ) operand_stack.push(lowerCAmelCase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A_ = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
29
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
1
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline A_ = """path-to-your-trained-model""" A_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") A_ = """A photo of sks dog in a bucket""" A_ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
1
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
1
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase ( lowerCAmelCase ): a__: Union[str, Any] = 'M-CLIP' def __init__( self , UpperCAmelCase=1024 , UpperCAmelCase=768 , **UpperCAmelCase ): lowerCamelCase_ = transformerDimSize lowerCamelCase_ = imageDimSize super().__init__(**UpperCAmelCase ) class __lowerCamelCase ( lowerCAmelCase ): a__: Any = MCLIPConfig def __init__( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ): super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
29
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
1
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [] for part_id in partition_order: lowerCamelCase_ = df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(lowerCAmelCase__ ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(100 ).repartition(1 ) lowerCamelCase_ = Spark(lowerCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(10 ).repartition(2 ) lowerCamelCase_ = [1, 0] lowerCamelCase_ = _generate_iterable_examples(lowerCAmelCase__ ,lowerCAmelCase__ ) # Reverse the partitions. lowerCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ ,lowerCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowerCamelCase_ , lowerCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(10 ).repartition(1 ) lowerCamelCase_ = SparkExamplesIterable(lowerCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: lowerCamelCase_ = lambda lowerCAmelCase__ : x.reverse() lowerCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ ,[2, 1, 0] ) lowerCamelCase_ = SparkExamplesIterable(lowerCAmelCase__ ).shuffle_data_sources(lowerCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowerCamelCase_ = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=0 ,num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ ,[0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowerCamelCase_ = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=1 ,num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ ,[1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(100 ).repartition(1 ) lowerCamelCase_ = Spark(lowerCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
29
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) return n == n[::-1] def lowercase ( lowerCAmelCase__ = 1_000_000 ): lowerCamelCase_ = 0 for i in range(1 ,lowerCAmelCase__ ): if is_palindrome(lowerCAmelCase__ ) and is_palindrome(bin(lowerCAmelCase__ ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
1
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
29
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
1
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCamelCase_ = range(3 ,int(math.sqrt(lowerCAmelCase__ ) + 1 ) ,2 ) return not any(not number % i for i in odd_numbers ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ,**lowerCAmelCase__ ): lowerCamelCase_ = factor * value lowerCamelCase_ = value while not is_prime(lowerCAmelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 ,**lowerCAmelCase__ ) return value
29
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return int((input_a, input_a).count(0 ) == 0 ) def lowercase ( ): assert and_gate(0 ,0 ) == 0 assert and_gate(0 ,1 ) == 0 assert and_gate(1 ,0 ) == 0 assert and_gate(1 ,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
29
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
1
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters A_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ): # Recurse if needed if "." in tensor_name: lowerCamelCase_ = tensor_name.split('''.''' ) for split in splits[:-1]: lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) lowerCamelCase_ = new_module lowerCamelCase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}." ) lowerCamelCase_ = tensor_name in module._buffers lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) lowerCamelCase_ = False lowerCamelCase_ = False if is_buffer or not is_bitsandbytes_available(): lowerCamelCase_ = False lowerCamelCase_ = False else: lowerCamelCase_ = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) lowerCamelCase_ = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: lowerCamelCase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCamelCase_ = old_value.to(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ ,torch.Tensor ): lowerCamelCase_ = value.to('''cpu''' ) if value.dtype == torch.inta: lowerCamelCase_ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,lowerCAmelCase__ ) and fpaa_statistics is None: lowerCamelCase_ = new_value.T lowerCamelCase_ = old_value.__dict__ if is_abit: lowerCamelCase_ = bnb.nn.IntaParams(lowerCAmelCase__ ,requires_grad=lowerCAmelCase__ ,**lowerCAmelCase__ ).to(lowerCAmelCase__ ) elif is_abit: lowerCamelCase_ = bnb.nn.Paramsabit(lowerCAmelCase__ ,requires_grad=lowerCAmelCase__ ,**lowerCAmelCase__ ).to(lowerCAmelCase__ ) lowerCamelCase_ = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(lowerCAmelCase__ ) ) else: if value is None: lowerCamelCase_ = old_value.to(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ ,torch.Tensor ): lowerCamelCase_ = value.to(lowerCAmelCase__ ) else: lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ,device=lowerCAmelCase__ ) if is_buffer: lowerCamelCase_ = new_value else: lowerCamelCase_ = nn.Parameter(lowerCAmelCase__ ,requires_grad=old_value.requires_grad ) lowerCamelCase_ = new_value def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=False ): for name, module in model.named_children(): if current_key_name is None: lowerCamelCase_ = [] current_key_name.append(lowerCAmelCase__ ) if (isinstance(lowerCAmelCase__ ,nn.Linear ) or isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(lowerCAmelCase__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = module.weight.shape else: lowerCamelCase_ = module.in_features lowerCamelCase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCamelCase_ = bnb.nn.LinearabitLt( lowerCAmelCase__ ,lowerCAmelCase__ ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) lowerCamelCase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCamelCase_ = bnb.nn.Linearabit( lowerCAmelCase__ ,lowerCAmelCase__ ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) lowerCamelCase_ = True # Store the module class in case we need to transpose the weight later lowerCamelCase_ = type(lowerCAmelCase__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowerCAmelCase__ ) if len(list(module.children() ) ) > 0: lowerCamelCase_ , lowerCamelCase_ = _replace_with_bnb_linear( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,has_been_replaced=lowerCAmelCase__ ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ): lowerCamelCase_ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert lowerCamelCase_ , lowerCamelCase_ = _replace_with_bnb_linear( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowercase ( *lowerCAmelCase__ ,**lowerCAmelCase__ ): warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,lowerCAmelCase__ ,) return replace_with_bnb_linear(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def lowercase ( *lowerCAmelCase__ ,**lowerCAmelCase__ ): warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,lowerCAmelCase__ ,) return set_module_quantized_tensor_to_device(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCamelCase_ = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: lowerCamelCase_ = sum(lowerCAmelCase__ ,[] ) lowerCamelCase_ = len(lowerCAmelCase__ ) > 0 # Check if it is a base model lowerCamelCase_ = not hasattr(lowerCAmelCase__ ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase_ = list(model.named_children() ) lowerCamelCase_ = [list_modules[-1][0]] # add last module together with tied weights lowerCamelCase_ = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) lowerCamelCase_ = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys lowerCamelCase_ = ['''.weight''', '''.bias'''] lowerCamelCase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase_ = name.replace(lowerCAmelCase__ ,'''''' ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names
29
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
1
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def lowercase ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowerCAmelCase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( ): lowerCamelCase_ = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def lowercase ( lowerCAmelCase__ = 2_000_000 ): return sum(takewhile(lambda lowerCAmelCase__ : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f"{solution() = }")
29
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=18 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=True , UpperCAmelCase=32 , UpperCAmelCase=True , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size_divisor lowerCamelCase_ = do_rescale def UpperCAmelCase__ ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Optional[Any] = GLPNImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ): lowerCamelCase_ = GLPNImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''size_divisor''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''resample''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_rescale''' ) ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
29
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class __lowerCamelCase ( lowerCAmelCase ): a__: Dict = 'realm' def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=768 , UpperCAmelCase=128 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=8 , UpperCAmelCase=3072 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=256 , UpperCAmelCase=10 , UpperCAmelCase=1e-3 , UpperCAmelCase=5 , UpperCAmelCase=320 , UpperCAmelCase=1335_3718 , UpperCAmelCase=5000 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = retriever_proj_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = num_candidates lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = type_vocab_size lowerCamelCase_ = layer_norm_eps # Reader config lowerCamelCase_ = span_hidden_size lowerCamelCase_ = max_span_width lowerCamelCase_ = reader_layer_norm_eps lowerCamelCase_ = reader_beam_size lowerCamelCase_ = reader_seq_len # Retrieval config lowerCamelCase_ = num_block_records lowerCamelCase_ = searcher_beam_size
29
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCamelCase_ = key.replace('''module.encoder''' ,'''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCamelCase_ = key.replace('''module.decoder''' ,'''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase_ = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCamelCase_ = key.replace(f"patch_embed{idx}" ,f"patch_embeddings.{int(lowerCAmelCase__ )-1}" ) if "norm" in key: lowerCamelCase_ = key.replace('''norm''' ,'''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase_ = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCamelCase_ = key.replace(f"layer_norm{idx}" ,f"layer_norm.{int(lowerCAmelCase__ )-1}" ) if "layer_norm1" in key: lowerCamelCase_ = key.replace('''layer_norm1''' ,'''layer_norm_1''' ) if "layer_norm2" in key: lowerCamelCase_ = key.replace('''layer_norm2''' ,'''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase_ = key[key.find('''block''' ) + len('''block''' )] lowerCamelCase_ = key.replace(f"block{idx}" ,f"block.{int(lowerCAmelCase__ )-1}" ) if "attn.q" in key: lowerCamelCase_ = key.replace('''attn.q''' ,'''attention.self.query''' ) if "attn.proj" in key: lowerCamelCase_ = key.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in key: lowerCamelCase_ = key.replace('''attn''' ,'''attention.self''' ) if "fc1" in key: lowerCamelCase_ = key.replace('''fc1''' ,'''dense1''' ) if "fc2" in key: lowerCamelCase_ = key.replace('''fc2''' ,'''dense2''' ) if "linear_pred" in key: lowerCamelCase_ = key.replace('''linear_pred''' ,'''classifier''' ) if "linear_fuse" in key: lowerCamelCase_ = key.replace('''linear_fuse.conv''' ,'''linear_fuse''' ) lowerCamelCase_ = key.replace('''linear_fuse.bn''' ,'''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase_ = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCamelCase_ = key.replace(f"linear_c{idx}" ,f"linear_c.{int(lowerCAmelCase__ )-1}" ) if "bot_conv" in key: lowerCamelCase_ = key.replace('''bot_conv''' ,'''0.convolution''' ) if "skip_conv1" in key: lowerCamelCase_ = key.replace('''skip_conv1''' ,'''1.convolution''' ) if "skip_conv2" in key: lowerCamelCase_ = key.replace('''skip_conv2''' ,'''2.convolution''' ) if "fusion1" in key: lowerCamelCase_ = key.replace('''fusion1''' ,'''1.fusion''' ) if "fusion2" in key: lowerCamelCase_ = key.replace('''fusion2''' ,'''2.fusion''' ) if "fusion3" in key: lowerCamelCase_ = key.replace('''fusion3''' ,'''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCamelCase_ = key.replace('''conv''' ,'''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCamelCase_ = key.replace('''module.last_layer_depth''' ,'''head.head''' ) lowerCamelCase_ = value return new_state_dict def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase_ = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) lowerCamelCase_ = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict lowerCamelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCamelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase_ = kv_bias[config.hidden_sizes[i] :] def lowercase ( ): lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=None ): lowerCamelCase_ = GLPNConfig(hidden_sizes=[64, 128, 320, 512] ,decoder_hidden_size=64 ,depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase_ = GLPNImageProcessor() # prepare image lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location=torch.device('''cpu''' ) ) # rename keys lowerCamelCase_ = rename_keys(lowerCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ ,lowerCAmelCase__ ) # create HuggingFace model and load state dict lowerCamelCase_ = GLPNForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass lowerCamelCase_ = model(lowerCAmelCase__ ) lowerCamelCase_ = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase_ = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase_ = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f"Unknown model name: {model_name}" ) lowerCamelCase_ = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ ,lowerCAmelCase__ ) ,organization='''nielsr''' ,commit_message='''Add model''' ,use_temp_dir=lowerCAmelCase__ ,) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ ,lowerCAmelCase__ ) ,organization='''nielsr''' ,commit_message='''Add image processor''' ,use_temp_dir=lowerCAmelCase__ ,) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) A_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
29
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = '''ZinengTang/tvlt-base''' lowerCamelCase_ = tempfile.mkdtemp() def UpperCAmelCase__ ( self , **UpperCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase ) lowerCamelCase_ = np.ones([1_2000] ) lowerCamelCase_ = feature_extractor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(audio=UpperCAmelCase , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase ) lowerCamelCase_ = np.ones([3, 224, 224] ) lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase ) lowerCamelCase_ = np.ones([1_2000] ) lowerCamelCase_ = np.ones([3, 224, 224] ) lowerCamelCase_ = processor(audio=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = TvltProcessor(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
1
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=[] ): lowerCamelCase_ = size[0] - overlap_pixels * 2 lowerCamelCase_ = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCamelCase_ = np.ones((size_y, size_x) ,dtype=np.uinta ) * 255 lowerCamelCase_ = np.pad(lowerCAmelCase__ ,mode='''linear_ramp''' ,pad_width=lowerCAmelCase__ ,end_values=0 ) if "l" in remove_borders: lowerCamelCase_ = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCamelCase_ = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCamelCase_ = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCamelCase_ = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): return max(lowerCAmelCase__ ,min(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): return ( clamp(rect[0] ,min[0] ,max[0] ), clamp(rect[1] ,min[1] ,max[1] ), clamp(rect[2] ,min[0] ,max[0] ), clamp(rect[3] ,min[1] ,max[1] ), ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = list(lowerCAmelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCamelCase_ = clamp_rect(lowerCAmelCase__ ,[0, 0] ,[image_size[0], image_size[1]] ) return rect def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = Image.new('''RGB''' ,(tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) ,Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) ,(0, 0) ,) result.paste(lowerCAmelCase__ ,(original_slice, 0) ) return result def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCamelCase_ = tile.crop(lowerCAmelCase__ ) return tile def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = n % d return n - divisor class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 350 , ): super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): torch.manual_seed(0 ) lowerCamelCase_ = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCamelCase_ = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) lowerCamelCase_ = image.crop(UpperCAmelCase ) lowerCamelCase_ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCamelCase_ = translated_slice_x - (original_image_slice / 2) lowerCamelCase_ = max(0 , UpperCAmelCase ) lowerCamelCase_ = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = to_input.size lowerCamelCase_ = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCamelCase_ = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] lowerCamelCase_ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCamelCase_ = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCamelCase_ = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) lowerCamelCase_ = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='''L''' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 75 , UpperCAmelCase = 9.0 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 128 , UpperCAmelCase = 32 , UpperCAmelCase = 32 , ): lowerCamelCase_ = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) lowerCamelCase_ = math.ceil(image.size[0] / tile_size ) lowerCamelCase_ = math.ceil(image.size[1] / tile_size ) lowerCamelCase_ = tcx * tcy lowerCamelCase_ = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowercase ( ): # Run a demo lowerCamelCase_ = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCamelCase_ = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCAmelCase__ ,revision='''fp16''' ,torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to('''cuda''' ) lowerCamelCase_ = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(lowerCAmelCase__ ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save('''diffusers_library_progress.jpg''' ) lowerCamelCase_ = pipe(image=lowerCAmelCase__ ,prompt='''Black font, white background, vector''' ,noise_level=40 ,callback=lowerCAmelCase__ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
29
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __lowerCamelCase ( enum.Enum ): a__: Any = 0 a__: Tuple = 1 a__: Optional[Any] = 2 @add_end_docstrings(lowerCAmelCase ) class __lowerCamelCase ( lowerCAmelCase ): a__: Tuple = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCamelCase_ = None if self.model.config.prefix is not None: lowerCamelCase_ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCamelCase_ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._sanitize_parameters(prefix=UpperCAmelCase , **self._forward_params ) lowerCamelCase_ = {**self._preprocess_params, **preprocess_params} lowerCamelCase_ = {**self._forward_params, **forward_params} def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ): lowerCamelCase_ = {} if prefix is not None: lowerCamelCase_ = prefix if prefix: lowerCamelCase_ = self.tokenizer( UpperCAmelCase , padding=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=self.framework ) lowerCamelCase_ = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) lowerCamelCase_ = handle_long_generation preprocess_params.update(UpperCAmelCase ) lowerCamelCase_ = generate_kwargs lowerCamelCase_ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) lowerCamelCase_ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) lowerCamelCase_ = ReturnType.TENSORS if return_type is not None: lowerCamelCase_ = return_type if clean_up_tokenization_spaces is not None: lowerCamelCase_ = clean_up_tokenization_spaces if stop_sequence is not None: lowerCamelCase_ = self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) if len(UpperCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowerCamelCase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*UpperCAmelCase , **UpperCAmelCase ) def __call__( self , UpperCAmelCase , **UpperCAmelCase ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase="" , UpperCAmelCase=None , **UpperCAmelCase ): lowerCamelCase_ = self.tokenizer( prefix + prompt_text , padding=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=self.framework ) lowerCamelCase_ = prompt_text if handle_long_generation == "hole": lowerCamelCase_ = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCamelCase_ = generate_kwargs['''max_new_tokens'''] else: lowerCamelCase_ = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCamelCase_ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) lowerCamelCase_ = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: lowerCamelCase_ = inputs['''attention_mask'''][:, -keep_length:] return inputs def UpperCAmelCase__ ( self , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = model_inputs['''input_ids'''] lowerCamelCase_ = model_inputs.get('''attention_mask''' , UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = 1 else: lowerCamelCase_ = input_ids.shape[0] lowerCamelCase_ = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCamelCase_ = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: lowerCamelCase_ = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: lowerCamelCase_ = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCamelCase_ = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCamelCase_ = self.model.generate(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = generated_sequence.shape[0] if self.framework == "pt": lowerCamelCase_ = generated_sequence.reshape(UpperCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCamelCase_ = tf.reshape(UpperCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=ReturnType.FULL_TEXT , UpperCAmelCase=True ): lowerCamelCase_ = model_outputs['''generated_sequence'''][0] lowerCamelCase_ = model_outputs['''input_ids'''] lowerCamelCase_ = model_outputs['''prompt_text'''] lowerCamelCase_ = generated_sequence.numpy().tolist() lowerCamelCase_ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCamelCase_ = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCamelCase_ = self.tokenizer.decode( UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCamelCase_ = 0 else: lowerCamelCase_ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: lowerCamelCase_ = prompt_text + text[prompt_length:] else: lowerCamelCase_ = text[prompt_length:] lowerCamelCase_ = {'''generated_text''': all_text} records.append(UpperCAmelCase ) return records
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __lowerCamelCase ( lowerCAmelCase ): a__: Any = 'blenderbot-small' a__: Tuple = ['past_key_values'] a__: Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , UpperCAmelCase=5_0265 , UpperCAmelCase=512 , UpperCAmelCase=8 , UpperCAmelCase=2048 , UpperCAmelCase=16 , UpperCAmelCase=8 , UpperCAmelCase=2048 , UpperCAmelCase=16 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="gelu" , UpperCAmelCase=512 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1 , UpperCAmelCase=False , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=2 , **UpperCAmelCase , ): lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = d_model lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = encoder_layers lowerCamelCase_ = encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = activation_function lowerCamelCase_ = init_std lowerCamelCase_ = encoder_layerdrop lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = encoder_layers lowerCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , forced_eos_token_id=UpperCAmelCase , **UpperCAmelCase , ) class __lowerCamelCase ( lowerCAmelCase ): @property def UpperCAmelCase__ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase_ = {0: '''batch'''} lowerCamelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCamelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} lowerCamelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase_ , lowerCamelCase_ = self.num_layers for i in range(UpperCAmelCase ): lowerCamelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCamelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def UpperCAmelCase__ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = super().outputs else: lowerCamelCase_ = super(UpperCAmelCase , self ).outputs if self.use_past: lowerCamelCase_ , lowerCamelCase_ = self.num_layers for i in range(UpperCAmelCase ): lowerCamelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Generate decoder inputs lowerCamelCase_ = seq_length if not self.use_past else 1 lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase_ = dict(**UpperCAmelCase , **UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['''input_ids'''].shape lowerCamelCase_ = common_inputs['''decoder_input_ids'''].shape[1] lowerCamelCase_ , lowerCamelCase_ = self.num_attention_heads lowerCamelCase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase_ = decoder_seq_length + 3 lowerCamelCase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase_ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCAmelCase , UpperCAmelCase )] , dim=1 ) lowerCamelCase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase_ , lowerCamelCase_ = self.num_layers lowerCamelCase_ = min(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = max(UpperCAmelCase , UpperCAmelCase ) - min_num_layers lowerCamelCase_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase ), ) ) # TODO: test this. lowerCamelCase_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(UpperCAmelCase , UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) ) return common_inputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCamelCase_ = seqlen + 2 lowerCamelCase_ , lowerCamelCase_ = self.num_layers lowerCamelCase_ , lowerCamelCase_ = self.num_attention_heads lowerCamelCase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase_ = common_inputs['''attention_mask'''].dtype lowerCamelCase_ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) lowerCamelCase_ = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(UpperCAmelCase ) ] return common_inputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase_ = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase_ = tokenizer.num_special_tokens_to_add(UpperCAmelCase ) lowerCamelCase_ = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase_ = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase_ = dict(tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase ) ) return common_inputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) elif self.task == "causal-lm": lowerCamelCase_ = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) else: lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) return common_inputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = super()._flatten_past_key_values_(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: lowerCamelCase_ = super(UpperCAmelCase , self )._flatten_past_key_values_( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
29
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
1
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar A_ = TypeVar("""_T""") class __lowerCamelCase ( Generic[_T] ): def __init__( self , UpperCAmelCase = None ): lowerCamelCase_ = list(iterable or [] ) lowerCamelCase_ = [] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return f"Queue({tuple(self._stacka[::-1] + self._stacka )})" def UpperCAmelCase__ ( self , UpperCAmelCase ): self._stacka.append(UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self._stacka.pop lowerCamelCase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
29
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
1
def __lowercase ( snake_case ): """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True __magic_name__ :Any = 4 __magic_name__ :Optional[Any] = (1 << p) - 1 for _ in range(p - 2 ): __magic_name__ :Tuple = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
0
from random import randint, random def _A ( _lowercase , _lowercase , _lowercase , _lowercase = False , _lowercase = False , _lowercase = 5 , ) -> list: """simple docstring""" __UpperCamelCase = [[-1] * number_of_cells] # Create a highway without any car __UpperCamelCase = 0 __UpperCamelCase = max(_lowercase , 0 ) while i < number_of_cells: __UpperCamelCase = ( randint(0 , _lowercase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = highway_now[car_index + 1 :] for cell in range(len(_lowercase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_lowercase , -1 ) def _A ( _lowercase , _lowercase , _lowercase ) -> list: """simple docstring""" __UpperCamelCase = len(_lowercase ) # Beforce calculations, the highway is empty __UpperCamelCase = [-1] * number_of_cells for car_index in range(_lowercase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __UpperCamelCase = min(highway_now[car_index] + 1 , _lowercase ) # Number of empty cell before the next car __UpperCamelCase = get_distance(_lowercase , _lowercase ) - 1 # We can't have the car causing an accident __UpperCamelCase = min(next_highway[car_index] , _lowercase ) if random() < probability: # Randomly, a driver will slow down __UpperCamelCase = max(next_highway[car_index] - 1 , 0 ) return next_highway def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> list: """simple docstring""" __UpperCamelCase = len(highway[0] ) for i in range(_lowercase ): __UpperCamelCase = update(highway[i] , _lowercase , _lowercase ) __UpperCamelCase = [-1] * number_of_cells for car_index in range(_lowercase ): __UpperCamelCase = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __UpperCamelCase = (car_index + speed) % number_of_cells # Commit the change of position __UpperCamelCase = speed highway.append(_lowercase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : Any , __lowerCAmelCase : List[Any] , ) -> Tuple: _A = parent _A = 13 _A = 7 _A = True _A = True _A = False _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = '''gelu''' _A = 0.1 _A = 0.1 _A = 5_12 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def snake_case_ ( self : str ) -> Optional[int]: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Any: _A = TFDistilBertModel(config=__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) _A = [input_ids, input_mask] _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = TFDistilBertForMaskedLM(config=__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> Optional[Any]: _A = TFDistilBertForQuestionAnswering(config=__lowerCAmelCase ) _A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> Tuple: _A = self.num_labels _A = TFDistilBertForSequenceClassification(__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ) -> str: _A = self.num_choices _A = TFDistilBertForMultipleChoice(__lowerCAmelCase ) _A = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ) -> Dict: _A = self.num_labels _A = TFDistilBertForTokenClassification(__lowerCAmelCase ) _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Optional[int] ) -> Any: _A = self.prepare_config_and_inputs() ((_A) , (_A) , (_A) , (_A) , (_A) , (_A)) = config_and_inputs _A = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a__ : Dict = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a__ : str = False a__ : Optional[Any] = False def snake_case_ ( self : int ) -> Optional[int]: _A = TFDistilBertModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase , dim=37 ) def snake_case_ ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def snake_case_ ( self : Optional[Any] ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__lowerCAmelCase ) @slow def snake_case_ ( self : List[str] ) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _A = TFDistilBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def snake_case_ ( self : Dict ) -> Union[str, Any]: _A = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(__lowerCAmelCase )[0] _A = [1, 6, 7_68] self.assertEqual(output.shape , __lowerCAmelCase ) _A = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 )
2
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
3
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
0
"""simple docstring""" import os import sys import unittest __UpperCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __UpperCamelCase : Dict = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __UpperCamelCase : int = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = get_test_to_tester_mapping(_snake_case ) lowerCAmelCase = get_test_to_tester_mapping(_snake_case ) lowerCAmelCase = {'BertModelTest': 'BertModelTester'} lowerCAmelCase = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case ) self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = get_model_to_test_mapping(_snake_case ) lowerCAmelCase = get_model_to_test_mapping(_snake_case ) lowerCAmelCase = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowerCAmelCase = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case ) self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = get_model_to_tester_mapping(_snake_case ) lowerCAmelCase = get_model_to_tester_mapping(_snake_case ) lowerCAmelCase = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowerCAmelCase = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case ) self.assertEqual(get_test_info.to_json(_snake_case ) , _snake_case )
4
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _lowerCamelCase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _lowerCamelCase = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('\n'.join(upper_files) + '\n') _lowerCamelCase = [file for file in filepaths if ' ' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('\n'.join(space_files) + '\n') _lowerCamelCase = [file for file in filepaths if '-' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('\n'.join(hyphen_files) + '\n') _lowerCamelCase = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('\n'.join(nodir_files) + '\n') _lowerCamelCase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
6
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
0
"""simple docstring""" from math import factorial, pi def _snake_case ( _snake_case : float , _snake_case : int = 30 ) -> float: '''simple docstring''' if not isinstance(_snake_case , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_snake_case , _snake_case ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) _A = float(_snake_case ) _A = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_snake_case ) ) def _snake_case ( _snake_case : float , _snake_case : int = 30 ) -> float: '''simple docstring''' if not isinstance(_snake_case , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_snake_case , _snake_case ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) _A = float(_snake_case ) _A = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
7
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
0
'''simple docstring''' import os from pathlib import Path def _lowerCAmelCase ( ) -> int: from torch.utils.cpp_extension import load __A : Tuple = Path(__snake_case ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' __A : Any = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , __snake_case , with_cuda=__snake_case , extra_include_paths=[str(__snake_case )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
8
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
0
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "unispeech-sat" def __init__( self : List[Any] , _A : Dict=32 , _A : int=768 , _A : str=12 , _A : str=12 , _A : Any=3072 , _A : List[str]="gelu" , _A : Any=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=0.0 , _A : List[str]=0.0 , _A : Optional[Any]=0.1 , _A : str=0.1 , _A : List[str]=0.02 , _A : Optional[int]=1e-5 , _A : Dict="group" , _A : str="gelu" , _A : List[str]=(512, 512, 512, 512, 512, 512, 512) , _A : Any=(5, 2, 2, 2, 2, 2, 2) , _A : Dict=(10, 3, 3, 3, 3, 2, 2) , _A : Union[str, Any]=False , _A : str=128 , _A : Tuple=16 , _A : Optional[int]=False , _A : Dict=True , _A : Optional[Any]=0.05 , _A : Any=10 , _A : str=2 , _A : Dict=0.0 , _A : List[str]=10 , _A : Union[str, Any]=0 , _A : List[str]=320 , _A : List[Any]=2 , _A : Optional[Any]=0.1 , _A : Optional[Any]=100 , _A : List[str]=256 , _A : Any=256 , _A : List[Any]=0.1 , _A : Dict="mean" , _A : Dict=False , _A : List[str]=False , _A : List[Any]=256 , _A : Any=(512, 512, 512, 512, 1500) , _A : Any=(5, 3, 3, 1, 1) , _A : Dict=(1, 2, 3, 1, 1) , _A : str=512 , _A : Dict=0 , _A : List[str]=1 , _A : Tuple=2 , _A : Optional[Any]=504 , **_A : int , ): super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = conv_bias _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim ) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = vocab_size _UpperCamelCase = num_clusters _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length _UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = feat_quantizer_dropout _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = xvector_output_dim @property def UpperCamelCase_ ( self : List[str] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
10
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = 'rwkv' __lowerCamelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__(self , A=50_277 , A=1_024 , A=4_096 , A=32 , A=None , A=None , A=1E-5 , A=0 , A=0 , A=6 , A=False , A=True , **A , ) -> Union[str, Any]: """simple docstring""" _a = vocab_size _a = context_length _a = hidden_size _a = num_hidden_layers _a = attention_hidden_size if attention_hidden_size is not None else hidden_size _a = intermediate_size if intermediate_size is not None else 4 * hidden_size _a = layer_norm_epsilon _a = rescale_every _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( tie_word_embeddings=A , bos_token_id=A , eos_token_id=A , **A )
11
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = """ylacombe/bark-small""" lowercase__ : Dict = tempfile.mkdtemp() lowercase__ : Any = """en_speaker_1""" lowercase__ : Optional[int] = """This is a test string""" lowercase__ : Tuple = """speaker_embeddings_path.json""" lowercase__ : str = """speaker_embeddings""" def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.get_tokenizer() lowercase__ : int = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_) processor.save_pretrained(self.tmpdirname) lowercase__ : List[str] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") lowercase__ : Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ : Optional[int] = 35 lowercase__ : Tuple = 2 lowercase__ : Dict = 8 lowercase__ : Optional[int] = { """semantic_prompt""": np.ones(SCREAMING_SNAKE_CASE_), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len)), """fine_prompt""": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset lowercase__ : Tuple = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist()) # test loading voice preset from npz file lowercase__ : List[Any] = os.path.join(self.tmpdirname , """file.npz""") np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : str = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist()) # test loading voice preset from the hub lowercase__ : int = processor(text=self.input_string , voice_preset=self.voice_preset) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.get_tokenizer() lowercase__ : str = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = processor(text=self.input_string) lowercase__ : List[str] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
12
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCAmelCase__ ( ) -> List[str]: __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=UpperCAmelCase_ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=UpperCAmelCase_ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=UpperCAmelCase_ , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=UpperCAmelCase_ , default=0 , help='cuda_id.' , ) __lowerCamelCase : Union[str, Any] = parser.parse_args() return args def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> Optional[Any]: if not len(UpperCAmelCase_ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) __lowerCamelCase , __lowerCamelCase : Tuple = imgs[0].size __lowerCamelCase : Any = Image.new('RGB' , size=(cols * w, rows * h) ) __lowerCamelCase , __lowerCamelCase : Dict = grid.size for i, img in enumerate(UpperCAmelCase_ ): grid.paste(UpperCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]="robotic cat with wings" , UpperCAmelCase_ : Dict=7.5 , UpperCAmelCase_ : Optional[Any]=50 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Tuple=42 , ) -> str: __lowerCamelCase : Dict = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase_ ) __lowerCamelCase : List[str] = pipeline( UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , ).images __lowerCamelCase : Dict = int(math.sqrt(UpperCAmelCase_ ) ) __lowerCamelCase : List[Any] = image_grid(UpperCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images A__ : Any = parse_args() # Load models and create wrapper for stable diffusion A__ : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") A__ : Optional[int] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") A__ : List[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") A__ : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") A__ : Any = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) A__ : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): A__ : Optional[Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: A__ : List[Any] = unet.to(torch.device("""cuda""", args.cuda_id)) A__ : str = pipeline.to(unet.device) A__ , A__ : int = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) A__ : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
13
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3_2 , _a=3 , _a=4 , _a=[1_0, 2_0, 3_0, 4_0] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=3_7 , _a="gelu" , _a=1_0 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=3 , _a=None , ) -> Any: _a : Dict = parent _a : List[str] = batch_size _a : Any = image_size _a : Optional[int] = num_channels _a : List[Any] = num_stages _a : List[str] = hidden_sizes _a : Tuple = depths _a : Any = is_training _a : Optional[int] = use_labels _a : Optional[Any] = intermediate_size _a : Optional[int] = hidden_act _a : Dict = type_sequence_label_size _a : str = initializer_range _a : Optional[int] = out_features _a : List[str] = num_labels _a : Optional[Any] = scope _a : Optional[int] = num_stages def __lowercase ( self ) -> List[Any]: _a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Tuple = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Any = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> Dict: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowercase ( self ) -> Union[str, Any]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=_a , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def __lowercase ( self , _a , _a , _a ) -> Any: _a : Dict = UperNetForSemanticSegmentation(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowercase ( self ) -> Optional[Any]: _a : Tuple = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) : Dict = config_and_inputs _a : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False def __lowercase ( self ) -> str: _a : Dict = UperNetModelTester(self ) _a : Tuple = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=3_7 ) def __lowercase ( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self ) -> Optional[int]: return def __lowercase ( self ) -> Tuple: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(_a ) _a : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Any = [*signature.parameters.keys()] _a : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> Tuple: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowercase ( self ) -> Optional[int]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowercase ( self ) -> int: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowercase ( self ) -> Any: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> List[str]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Any = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : int = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> int: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() _a : List[str] = _config_zero_init(_a ) _a : Tuple = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowercase ( self ) -> List[Any]: pass @slow def __lowercase ( self ) -> Union[str, Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Tuple = UperNetForSemanticSegmentation.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _a : str = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' ,repo_type='''dataset''' ,filename='''ADE_val_00000001.jpg''' ) _a : Optional[int] = Image.open(__a ).convert('''RGB''' ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) _a : List[str] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_a ) _a : List[str] = prepare_img() _a : Union[str, Any] = processor(images=_a , return_tensors='''pt''' ).to(_a ) with torch.no_grad(): _a : Union[str, Any] = model(**_a ) _a : str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , _a ) _a : Tuple = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _a , atol=1e-4 ) ) def __lowercase ( self ) -> str: _a : Tuple = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) _a : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_a ) _a : Dict = prepare_img() _a : Union[str, Any] = processor(images=_a , return_tensors='''pt''' ).to(_a ) with torch.no_grad(): _a : Dict = model(**_a ) _a : int = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , _a ) _a : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _a , atol=1e-4 ) )
14
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Union[str, Any]=False ) -> Dict: """simple docstring""" try: lowercase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ = default else: # KEY is set, convert it to True or False. try: lowercase__ = strtobool(__magic_name__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value A : int = parse_flag_from_env('RUN_SLOW', default=False) def UpperCamelCase ( __magic_name__ : Tuple ) -> Dict: """simple docstring""" return unittest.skip("""Test was skipped""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Any ) -> str: """simple docstring""" return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[Any] ) -> str: """simple docstring""" return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : str ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" if test_case is None: return partial(__magic_name__ , version=__magic_name__ ) return unittest.skipUnless(is_torch_version(""">=""" , __magic_name__ ) , f'''test requires torch version >= {version}''' )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> str: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Dict ) -> str: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__magic_name__ ) A : Any = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCamelCase ( __magic_name__ : Dict ) -> Tuple: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__magic_name__ ) class A ( unittest.TestCase ): '''simple docstring''' A__ = True @classmethod def lowerCamelCase__ (cls : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = tempfile.mkdtemp() @classmethod def lowerCamelCase__ (cls : str ) -> Optional[Any]: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCAmelCase ) class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Union[mock.Mock, List[mock.Mock]] ) -> int: """simple docstring""" lowercase__ = mocks if isinstance(_UpperCAmelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCamelCase ( __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = AcceleratorState() lowercase__ = tensor[None].clone().to(state.device ) lowercase__ = gather(__magic_name__ ).cpu() lowercase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __magic_name__ ): return False return True class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = returncode lowercase__ = stdout lowercase__ = stderr async def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" while True: lowercase__ = await stream.readline() if line: callback(__magic_name__ ) else: break async def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : Tuple=None , __magic_name__ : int=False , __magic_name__ : Any=False ) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(__magic_name__ ) ) lowercase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__magic_name__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__magic_name__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ = [] lowercase__ = [] def tee(__magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Any="" ): lowercase__ = line.decode("""utf-8""" ).rstrip() sink.append(__magic_name__ ) if not quiet: print(__magic_name__ , __magic_name__ , file=__magic_name__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __magic_name__ : tee(__magic_name__ , __magic_name__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __magic_name__ : tee(__magic_name__ , __magic_name__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=__magic_name__ , ) return _RunOutput(await p.wait() , __magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : str=None , __magic_name__ : Dict=None , __magic_name__ : Tuple=180 , __magic_name__ : str=False , __magic_name__ : Any=True ) -> _RunOutput: """simple docstring""" lowercase__ = asyncio.get_event_loop() lowercase__ = loop.run_until_complete( _stream_subprocess(__magic_name__ , env=__magic_name__ , stdin=__magic_name__ , timeout=__magic_name__ , quiet=__magic_name__ , echo=__magic_name__ ) ) lowercase__ = """ """.join(__magic_name__ ) if result.returncode > 0: lowercase__ = """\n""".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class A ( UpperCAmelCase__ ): '''simple docstring''' pass def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[int]=False ) -> Dict: """simple docstring""" try: lowercase__ = subprocess.check_output(__magic_name__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__magic_name__ , """decode""" ): lowercase__ = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(__magic_name__ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
15
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
0
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
0
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> str: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def _snake_case ( self ) -> Tuple: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> Optional[int]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = BioGptModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Tuple: _lowerCAmelCase = BioGptForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = BioGptModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # create attention mask _lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=_lowerCAmelCase ) _lowerCAmelCase = self.seq_length // 2 _lowerCAmelCase = 0 # first forward pass _lowerCAmelCase , _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _lowerCAmelCase = ids_tensor((1,) , _lowerCAmelCase ).item() + 1 _lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _lowerCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_lowerCAmelCase )] , dim=1 , ) # get two different outputs _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )["last_hidden_state"] _lowerCAmelCase = model(_lowerCAmelCase , past_key_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )["last_hidden_state"] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Dict: _lowerCAmelCase = BioGptModel(config=_lowerCAmelCase ).to(_lowerCAmelCase ).eval() _lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=_lowerCAmelCase ) # first forward pass _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )["last_hidden_state"] _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[ "last_hidden_state" ] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , _lowerCAmelCase=False ) -> Optional[int]: _lowerCAmelCase = BioGptForCausalLM(_lowerCAmelCase ) model.to(_lowerCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _snake_case ( self , _lowerCAmelCase , *_lowerCAmelCase ) -> int: _lowerCAmelCase = BioGptModel(_lowerCAmelCase ) _lowerCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.num_labels _lowerCAmelCase = BioGptForTokenClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[int] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __lowerCamelCase : int = (BioGptForCausalLM,) if is_torch_available() else () __lowerCamelCase : str = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : int = False def _snake_case ( self ) -> str: _lowerCAmelCase = BioGptModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _snake_case ( self ) -> Dict: self.config_tester.run_common_tests() def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_lowerCAmelCase , gradient_checkpointing=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_lowerCAmelCase ) def _snake_case ( self ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_lowerCAmelCase ) @slow def _snake_case ( self ) -> Tuple: _lowerCAmelCase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(_lowerCAmelCase ) _lowerCAmelCase = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _lowerCAmelCase = "left" # Define PAD Token = EOS Token = 50256 _lowerCAmelCase = tokenizer.eos_token _lowerCAmelCase = model.config.eos_token_id # use different length sentences to test batching _lowerCAmelCase = [ "Hello, my dog is a little", "Today, I", ] _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase ) _lowerCAmelCase = inputs["input_ids"].to(_lowerCAmelCase ) _lowerCAmelCase = model.generate( input_ids=_lowerCAmelCase , attention_mask=inputs["attention_mask"].to(_lowerCAmelCase ) , ) _lowerCAmelCase = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(input_ids=_lowerCAmelCase ) _lowerCAmelCase = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() _lowerCAmelCase = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(input_ids=_lowerCAmelCase , max_length=model.config.max_length - num_paddings ) _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def _snake_case ( self ) -> Tuple: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = BioGptModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _snake_case ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = input_dict["input_ids"] _lowerCAmelCase = input_ids.ne(1 ).to(_lowerCAmelCase ) _lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase = BioGptForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = "multi_label_classification" _lowerCAmelCase = input_dict["input_ids"] _lowerCAmelCase = input_ids.ne(1 ).to(_lowerCAmelCase ) _lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase = BioGptForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> str: _lowerCAmelCase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) _lowerCAmelCase = torch.tensor([[2, 4805, 9, 656, 21]] ) _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 42384 _lowerCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def _snake_case ( self ) -> List[str]: _lowerCAmelCase = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _lowerCAmelCase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(_lowerCAmelCase ) torch.manual_seed(0 ) _lowerCAmelCase = tokenizer("COVID-19 is" , return_tensors="pt" ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate( **_lowerCAmelCase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=_lowerCAmelCase , ) _lowerCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
18
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
0
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _UpperCAmelCase( lowerCamelCase ): lowercase__ = '' lowercase__ = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __a = None , __a = None , **__a , ) -> int: '''simple docstring''' super().__init__(self , **__a) _UpperCamelCase = repo_info _UpperCamelCase = token _UpperCamelCase = None def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' if self.dir_cache is None: _UpperCamelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _UpperCamelCase = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(__a): {'''name''': str(__a), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def UpperCAmelCase ( self , __a , __a = "rb" , **__a , ) -> List[str]: '''simple docstring''' if not isinstance(self.repo_info , __a): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''') _UpperCamelCase = hf_hub_url(self.repo_info.id , __a , revision=self.repo_info.sha) return fsspec.open( __a , mode=__a , headers=get_authentication_headers_for_url(__a , use_auth_token=self.token) , client_kwargs={'''trust_env''': True} , ).open() def UpperCAmelCase ( self , __a , **__a) -> Dict: '''simple docstring''' self._get_dirs() _UpperCamelCase = self._strip_protocol(__a) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__a) def UpperCAmelCase ( self , __a , __a=False , **__a) -> str: '''simple docstring''' self._get_dirs() _UpperCamelCase = PurePosixPath(path.strip('''/''')) _UpperCamelCase = {} for p, f in self.dir_cache.items(): _UpperCamelCase = PurePosixPath(p.strip('''/''')) _UpperCamelCase = p.parent if root == path: _UpperCamelCase = f _UpperCamelCase = list(paths.values()) if detail: return out else: return sorted(f['''name'''] for f in out)
19
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
0