code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "upernet" def __init__( self : List[str] , _A : Union[str, Any]=None , _A : List[Any]=512 , _A : Dict=0.02 , _A : str=[1, 2, 3, 6] , _A : Tuple=True , _A : List[Any]=0.4 , _A : Optional[Any]=384 , _A : List[Any]=256 , _A : Optional[int]=1 , _A : str=False , _A : str=255 , **_A : int , ): super().__init__(**_A ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(_A , _A ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(_A ) _UpperCamelCase = backbone_config _UpperCamelCase = hidden_size _UpperCamelCase = initializer_range _UpperCamelCase = pool_scales _UpperCamelCase = use_auxiliary_head _UpperCamelCase = auxiliary_loss_weight _UpperCamelCase = auxiliary_in_channels _UpperCamelCase = auxiliary_channels _UpperCamelCase = auxiliary_num_convs _UpperCamelCase = auxiliary_concat_input _UpperCamelCase = loss_ignore_index def UpperCamelCase_ ( self : str ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
from __future__ import annotations _lowerCAmelCase = 1.6021E-19 # units = C def _snake_case ( __snake_case , __snake_case , __snake_case , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
import requests _lowerCAmelCase = "YOUR API KEY" def _snake_case ( __snake_case , __snake_case = giphy_api_key ): _UpperCamelCase = '''+'''.join(query.split() ) _UpperCamelCase = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" _UpperCamelCase = requests.get(__snake_case ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
from __future__ import annotations from typing import Any def _snake_case ( __snake_case ): if not postfix_notation: return 0 _UpperCamelCase = {'''+''', '''-''', '''*''', '''/'''} _UpperCamelCase = [] for token in postfix_notation: if token in operations: _UpperCamelCase , _UpperCamelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowerCAmelCase = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def _snake_case ( __snake_case , __snake_case=False ): try: _UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCamelCase = default else: # KEY is set, convert it to True or False. try: _UpperCamelCase = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value _lowerCAmelCase = parse_flag_from_env("RUN_SLOW", default=False) _lowerCAmelCase = parse_flag_from_env("RUN_REMOTE", default=False) _lowerCAmelCase = parse_flag_from_env("RUN_LOCAL", default=True) _lowerCAmelCase = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression _lowerCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") _lowerCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") _lowerCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio _lowerCAmelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam _lowerCAmelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility _lowerCAmelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows _lowerCAmelCase = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def _snake_case ( __snake_case ): try: import faiss # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires faiss''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): try: import regex # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires regex''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): try: import elasticsearch # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): try: import sqlalchemy # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not config.TORCH_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires PyTorch''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not config.TF_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not config.JAX_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires JAX''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not config.PIL_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires Pillow''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): def _require_spacy_model(__snake_case ): try: import spacy # noqa F401 spacy.load(__snake_case ) except ImportError: return unittest.skip('''test requires spacy''' )(__snake_case ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__snake_case ) )(__snake_case ) else: return test_case return _require_spacy_model def _snake_case ( __snake_case ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): if not _run_slow_tests or _run_slow_tests == 0: _UpperCamelCase = unittest.skip('''test is slow''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not _run_local_tests or _run_local_tests == 0: _UpperCamelCase = unittest.skip('''test is local''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCamelCase = unittest.skip('''test is packaged''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not _run_remote_tests or _run_remote_tests == 0: _UpperCamelCase = unittest.skip('''test requires remote''' )(__snake_case ) return test_case def _snake_case ( *__snake_case ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__snake_case ) and name.startswith('''test''' ): for decorator in decorators: _UpperCamelCase = decorator(__snake_case ) setattr(cls , __snake_case , __snake_case ) return cls return decorate class lowerCAmelCase_ ( __lowercase ): pass class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 2 @contextmanager def _snake_case ( __snake_case=OfflineSimulationMode.CONNECTION_FAILS , __snake_case=1E-16 ): _UpperCamelCase = requests.Session().request def timeout_request(__snake_case , __snake_case , __snake_case , **__snake_case ): # Change the url to an invalid url so that the connection hangs _UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _UpperCamelCase = timeout try: return online_request(__snake_case , __snake_case , **__snake_case ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCamelCase = url _UpperCamelCase = e.args[0] _UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' , f"""OfflineMock[{url}]""" ),) _UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__snake_case , __snake_case , **__snake_case ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=__snake_case ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , __snake_case ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , __snake_case ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , __snake_case ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def _snake_case ( *__snake_case , **__snake_case ): _UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__snake_case , **__snake_case ) as tmp_dir: try: os.chdir(__snake_case ) yield finally: os.chdir(__snake_case ) @contextmanager def _snake_case ( ): import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _snake_case ( ): import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _snake_case ( __snake_case , __snake_case ): return deepcopy(__snake_case ).integers(0 , 100 , 10 ).tolist() == deepcopy(__snake_case ).integers(0 , 100 , 10 ).tolist() def _snake_case ( __snake_case ): import decorator from requests.exceptions import HTTPError def _wrapper(__snake_case , *__snake_case , **__snake_case ): try: return func(*__snake_case , **__snake_case ) except HTTPError as err: if str(__snake_case ).startswith('''500''' ) or str(__snake_case ).startswith('''502''' ): pytest.xfail(str(__snake_case ) ) raise err return decorator.decorator(_wrapper , __snake_case ) class lowerCAmelCase_ : def __init__( self : Any , _A : Dict , _A : str , _A : Any ): _UpperCamelCase = returncode _UpperCamelCase = stdout _UpperCamelCase = stderr async def _snake_case ( __snake_case , __snake_case ): while True: _UpperCamelCase = await stream.readline() if line: callback(__snake_case ) else: break async def _snake_case ( __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False ): if echo: print('''\nRunning: ''' , ''' '''.join(__snake_case ) ) _UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCamelCase = [] _UpperCamelCase = [] def tee(__snake_case , __snake_case , __snake_case , __snake_case="" ): _UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __snake_case : tee(__snake_case , __snake_case , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda __snake_case : tee(__snake_case , __snake_case , sys.stderr , label='''stderr:''' ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def _snake_case ( __snake_case , __snake_case=None , __snake_case=None , __snake_case=180 , __snake_case=False , __snake_case=True ): _UpperCamelCase = asyncio.get_event_loop() _UpperCamelCase = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) _UpperCamelCase = ''' '''.join(__snake_case ) if result.returncode > 0: _UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def _snake_case ( ): _UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) _UpperCamelCase = re.sub(R'''^gw''' , '''''' , __snake_case , 0 , re.M ) return int(__snake_case ) def _snake_case ( ): _UpperCamelCase = 29500 _UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCAmelCase_ : UpperCAmelCase = BlenderbotConfig UpperCAmelCase = {} UpperCAmelCase = "gelu" def __init__( self : List[str] , _A : List[str] , _A : Union[str, Any]=13 , _A : List[Any]=7 , _A : Any=True , _A : Tuple=False , _A : str=99 , _A : int=32 , _A : Optional[Any]=2 , _A : Optional[int]=4 , _A : Optional[Any]=37 , _A : Any=0.1 , _A : int=0.1 , _A : Union[str, Any]=20 , _A : List[str]=2 , _A : Tuple=1 , _A : Any=0 , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : str ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_blenderbot_inputs_dict(_A , _A , _A ) return config, inputs_dict def UpperCamelCase_ ( self : Union[str, Any] , _A : Union[str, Any] , _A : Union[str, Any] ): _UpperCamelCase = TFBlenderbotModel(config=_A ).get_decoder() _UpperCamelCase = inputs_dict['''input_ids'''] _UpperCamelCase = input_ids[:1, :] _UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] _UpperCamelCase = inputs_dict['''head_mask'''] _UpperCamelCase = 1 # first forward pass _UpperCamelCase = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase = model(_A , attention_mask=_A )[0] _UpperCamelCase = model(_A , attention_mask=_A , past_key_values=_A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_A , _A , rtol=1e-3 ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , ): if attention_mask is None: _UpperCamelCase = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCAmelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = TFBlenderbotModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_tokenizers @require_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = ["My friends are cool but they eat too many carbs."] UpperCAmelCase = "facebook/blenderbot-400M-distill" @cached_property def UpperCamelCase_ ( self : List[str] ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.tokenizer(self.src_text , return_tensors='''tf''' ) _UpperCamelCase = self.model.generate( model_inputs.input_ids , ) _UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_A )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
def _snake_case ( __snake_case , __snake_case , __snake_case ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__snake_case ) ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): # Base Case if index == len(__snake_case ): return True # Recursive Step for i in range(__snake_case ): if valid_coloring(graph[index] , __snake_case , __snake_case ): # Color current vertex _UpperCamelCase = i # Validate coloring if util_color(__snake_case , __snake_case , __snake_case , index + 1 ): return True # Backtrack _UpperCamelCase = -1 return False def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [-1] * len(__snake_case ) if util_color(__snake_case , __snake_case , __snake_case , 0 ): return colored_vertices return []
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
_lowerCAmelCase = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _snake_case ( ): _UpperCamelCase = [randint(-1000 , 1000 ) for i in range(10 )] _UpperCamelCase = randint(-5000 , 5000 ) return (arr, r) _lowerCAmelCase = make_dataset() def _snake_case ( __snake_case , __snake_case ): for triplet in permutations(__snake_case , 3 ): if sum(__snake_case ) == target: return tuple(sorted(__snake_case ) ) return (0, 0, 0) def _snake_case ( __snake_case , __snake_case ): arr.sort() _UpperCamelCase = len(__snake_case ) for i in range(n - 1 ): _UpperCamelCase , _UpperCamelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _snake_case ( ): _UpperCamelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' _UpperCamelCase = ''' triplet_sum1(*dataset) ''' _UpperCamelCase = ''' triplet_sum2(*dataset) ''' _UpperCamelCase = repeat(setup=__snake_case , stmt=__snake_case , repeat=5 , number=10000 ) _UpperCamelCase = repeat(setup=__snake_case , stmt=__snake_case , repeat=5 , number=10000 ) return (min(__snake_case ), min(__snake_case )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase = solution_times() print(f'The time for naive implementation is {times[0]}.') print(f'The time for optimized implementation is {times[1]}.')
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case ): if isinstance(__snake_case , np.ndarray ): return list(tensor.shape ) _UpperCamelCase = tf.shape(__snake_case ) if tensor.shape == tf.TensorShape(__snake_case ): return dynamic _UpperCamelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__snake_case )] def _snake_case ( __snake_case , __snake_case = None , __snake_case = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=__snake_case , name=__snake_case ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case=1E-5 , __snake_case=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__snake_case , __snake_case ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized _UpperCamelCase , _UpperCamelCase = tf.nn.moments(__snake_case , axes=[axis] , keepdims=__snake_case ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _UpperCamelCase = [1] * inputs.shape.rank _UpperCamelCase = shape_list(__snake_case )[axis] _UpperCamelCase = tf.reshape(__snake_case , __snake_case ) _UpperCamelCase = tf.reshape(__snake_case , __snake_case ) # Compute layer normalization using the batch_normalization # function. _UpperCamelCase = tf.nn.batch_normalization( __snake_case , __snake_case , __snake_case , offset=__snake_case , scale=__snake_case , variance_epsilon=__snake_case , ) return outputs def _snake_case ( __snake_case , __snake_case=0 , __snake_case=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _UpperCamelCase = tf.shape(__snake_case ) _UpperCamelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _UpperCamelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__snake_case , __snake_case ) def _snake_case ( __snake_case ): if not isinstance(__snake_case , tf.Tensor ): _UpperCamelCase = tf.convert_to_tensor(__snake_case ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _UpperCamelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _UpperCamelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _UpperCamelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _snake_case ( __snake_case , __snake_case , __snake_case = "input_ids" ): tf.debugging.assert_less( __snake_case , tf.cast(__snake_case , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(__snake_case )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _UpperCamelCase = [x for x in data if len(__snake_case ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) _UpperCamelCase = np.asarray(__snake_case ) _UpperCamelCase = 1 _UpperCamelCase = np.array_split(__snake_case , __snake_case ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _UpperCamelCase = np.array_split(__snake_case , __snake_case ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__snake_case ): _UpperCamelCase = chunk_data else: _UpperCamelCase = data def _snake_case ( __snake_case , __snake_case ): if name in group.attrs: _UpperCamelCase = [n.decode('''utf8''' ) if hasattr(__snake_case , '''decode''' ) else n for n in group.attrs[name]] else: _UpperCamelCase = [] _UpperCamelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(__snake_case , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def _snake_case ( __snake_case ): def _expand_single_ad_tensor(__snake_case ): if isinstance(__snake_case , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__snake_case , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __snake_case )
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCAmelCase_ ( __lowercase ): def __init__( self : int , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ): _UpperCamelCase = dataset _UpperCamelCase = process _UpperCamelCase = params def __len__( self : Optional[Any] ): return len(self.dataset ) def __getitem__( self : Any , _A : Union[str, Any] ): _UpperCamelCase = self.dataset[i] _UpperCamelCase = self.process(_A , **self.params ) return processed class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[str] , _A : Union[str, Any] , _A : List[Any] , _A : Optional[int] , _A : Any=None ): _UpperCamelCase = loader _UpperCamelCase = infer _UpperCamelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCamelCase = None _UpperCamelCase = loader_batch_size # Internal bookkeeping _UpperCamelCase = None _UpperCamelCase = None def __len__( self : str ): return len(self.loader ) def __iter__( self : str ): _UpperCamelCase = iter(self.loader ) return self def UpperCamelCase_ ( self : List[str] ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCamelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCamelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_A , _A ): # Convert ModelOutput to tuple first _UpperCamelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_A , _A ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCamelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCamelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCamelCase = self._loader_batch_data.__class__(_A ) self._loader_batch_index += 1 return result def UpperCamelCase_ ( self : Dict ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCamelCase = next(self.iterator ) _UpperCamelCase = self.infer(_A , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_A , torch.Tensor ): _UpperCamelCase = processed else: _UpperCamelCase = list(processed.keys() )[0] _UpperCamelCase = processed[key] if isinstance(_A , _A ): _UpperCamelCase = len(_A ) else: _UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCamelCase = processed _UpperCamelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCAmelCase_ ( __lowercase ): def __init__( self : str , _A : Dict , _A : List[str] , _A : str , _A : int=None ): super().__init__(_A , _A , _A ) def __iter__( self : Optional[int] ): _UpperCamelCase = iter(self.loader ) _UpperCamelCase = None return self def UpperCamelCase_ ( self : Optional[int] ): if self.subiterator is None: _UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCamelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCamelCase = next(self.subiterator ) return processed class lowerCAmelCase_ ( __lowercase ): def __iter__( self : Optional[Any] ): _UpperCamelCase = iter(self.loader ) return self def UpperCamelCase_ ( self : Union[str, Any] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _UpperCamelCase = False _UpperCamelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase = self.loader_batch_item() _UpperCamelCase = item.pop('''is_last''' ) accumulator.append(_A ) if is_last: return accumulator while not is_last: _UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_A , torch.Tensor ): _UpperCamelCase = processed else: _UpperCamelCase = list(processed.keys() )[0] _UpperCamelCase = processed[key] if isinstance(_A , _A ): _UpperCamelCase = len(_A ) else: _UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase = observed_batch_size _UpperCamelCase = processed _UpperCamelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase = self.loader_batch_item() _UpperCamelCase = item.pop('''is_last''' ) accumulator.append(_A ) if is_last: return accumulator else: _UpperCamelCase = processed _UpperCamelCase = item.pop('''is_last''' ) accumulator.append(_A ) return accumulator class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[str] , _A : Dataset , _A : str ): _UpperCamelCase = dataset _UpperCamelCase = key def __len__( self : List[str] ): return len(self.dataset ) def __getitem__( self : Tuple , _A : Union[str, Any] ): return self.dataset[i][self.key] class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[Any] , _A : Dataset , _A : str , _A : str ): _UpperCamelCase = dataset _UpperCamelCase = keya _UpperCamelCase = keya def __len__( self : List[str] ): return len(self.dataset ) def __getitem__( self : Optional[int] , _A : Any ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def UpperCamelCase_ ( self : Dict ): super().setUp() _UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _UpperCamelCase = dict(zip(_A , range(len(_A ) ) ) ) _UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCamelCase = {'''unk_token''': '''<unk>'''} _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def UpperCamelCase_ ( self : List[Any] , **_A : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def UpperCamelCase_ ( self : Any , **_A : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def UpperCamelCase_ ( self : Tuple , _A : str ): return "lower newer", "lower newer" @cached_property def UpperCamelCase_ ( self : str ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def UpperCamelCase_ ( self : Any ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _UpperCamelCase = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCamelCase = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCamelCase = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCamelCase = tokenizer(text_target=_A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def UpperCamelCase_ ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCamelCase = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = ['''A long paragraph for summarization.'''] _UpperCamelCase = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCamelCase = tokenizer(_A , return_tensors='''pt''' ) _UpperCamelCase = tokenizer(text_target=_A , return_tensors='''pt''' ) _UpperCamelCase = inputs['''input_ids'''] _UpperCamelCase = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCamelCase_ ( self : str ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCamelCase = ['''Summary of the text.''', '''Another summary.'''] _UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _UpperCamelCase = tokenizer(_A , padding=_A ) _UpperCamelCase = [[0] * len(_A ) for x in encoded_output['''input_ids''']] _UpperCamelCase = tokenizer.pad(_A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(_A , **_A ) _UpperCamelCase = self.tokenizer_class.from_pretrained(_A , **_A ) _UpperCamelCase = '''A, <mask> AllenNLP sentence.''' _UpperCamelCase = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) _UpperCamelCase = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
import random def _snake_case ( __snake_case , __snake_case , __snake_case = False ): _UpperCamelCase = {i: [] for i in range(__snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__snake_case ): for j in range(i + 1 , __snake_case ): if random.random() < probability: graph[i].append(__snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__snake_case ) return graph def _snake_case ( __snake_case ): return { i: [j for j in range(__snake_case ) if i != j] for i in range(__snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCAmelCase_ ( __lowercase ): def __get__( self : Union[str, Any] , _A : Any , _A : Union[str, Any]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) _UpperCamelCase = '''__cached_''' + self.fget.__name__ _UpperCamelCase = getattr(_A , _A , _A ) if cached is None: _UpperCamelCase = self.fget(_A ) setattr(_A , _A , _A ) return cached def _snake_case ( __snake_case ): _UpperCamelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def _snake_case ( __snake_case ): if is_torch_fx_proxy(__snake_case ): return True if is_torch_available(): import torch if isinstance(__snake_case , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__snake_case , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__snake_case , (jnp.ndarray, Tracer) ): return True return isinstance(__snake_case , np.ndarray ) def _snake_case ( __snake_case ): return isinstance(__snake_case , np.ndarray ) def _snake_case ( __snake_case ): return _is_numpy(__snake_case ) def _snake_case ( __snake_case ): import torch return isinstance(__snake_case , torch.Tensor ) def _snake_case ( __snake_case ): return False if not is_torch_available() else _is_torch(__snake_case ) def _snake_case ( __snake_case ): import torch return isinstance(__snake_case , torch.device ) def _snake_case ( __snake_case ): return False if not is_torch_available() else _is_torch_device(__snake_case ) def _snake_case ( __snake_case ): import torch if isinstance(__snake_case , __snake_case ): if hasattr(__snake_case , __snake_case ): _UpperCamelCase = getattr(__snake_case , __snake_case ) else: return False return isinstance(__snake_case , torch.dtype ) def _snake_case ( __snake_case ): return False if not is_torch_available() else _is_torch_dtype(__snake_case ) def _snake_case ( __snake_case ): import tensorflow as tf return isinstance(__snake_case , tf.Tensor ) def _snake_case ( __snake_case ): return False if not is_tf_available() else _is_tensorflow(__snake_case ) def _snake_case ( __snake_case ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__snake_case , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(__snake_case ) return type(__snake_case ) == tf.Tensor def _snake_case ( __snake_case ): return False if not is_tf_available() else _is_tf_symbolic_tensor(__snake_case ) def _snake_case ( __snake_case ): import jax.numpy as jnp # noqa: F811 return isinstance(__snake_case , jnp.ndarray ) def _snake_case ( __snake_case ): return False if not is_flax_available() else _is_jax(__snake_case ) def _snake_case ( __snake_case ): if isinstance(__snake_case , (dict, UserDict) ): return {k: to_py_obj(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return [to_py_obj(__snake_case ) for o in obj] elif is_tf_tensor(__snake_case ): return obj.numpy().tolist() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().tolist() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ).tolist() elif isinstance(__snake_case , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _snake_case ( __snake_case ): if isinstance(__snake_case , (dict, UserDict) ): return {k: to_numpy(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return np.array(__snake_case ) elif is_tf_tensor(__snake_case ): return obj.numpy() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().numpy() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ) else: return obj class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) _UpperCamelCase = getattr(self , class_fields[0].name ) _UpperCamelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): _UpperCamelCase = first_field.items() _UpperCamelCase = True else: try: _UpperCamelCase = iter(_A ) _UpperCamelCase = True except TypeError: _UpperCamelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCamelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _UpperCamelCase = element[1] elif first_field is not None: _UpperCamelCase = first_field else: for field in class_fields: _UpperCamelCase = getattr(self , field.name ) if v is not None: _UpperCamelCase = v def __delitem__( self : Any , *_A : Union[str, Any] , **_A : Tuple ): raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def UpperCamelCase_ ( self : Optional[Any] , *_A : Dict , **_A : Any ): raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def UpperCamelCase_ ( self : Dict , *_A : int , **_A : Any ): raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def UpperCamelCase_ ( self : Union[str, Any] , *_A : List[str] , **_A : int ): raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Dict , _A : str ): if isinstance(_A , _A ): _UpperCamelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , _A : Dict , _A : Optional[Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : List[str] , _A : Optional[int] , _A : Optional[Any] ): # Will raise a KeyException if needed super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def UpperCamelCase_ ( self : Any ): return tuple(self[k] for k in self.keys() ) class lowerCAmelCase_ ( __lowercase, __lowercase ): @classmethod def UpperCamelCase_ ( cls : Optional[int] , _A : str ): raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "longest" UpperCAmelCase = "max_length" UpperCAmelCase = "do_not_pad" class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "pt" UpperCAmelCase = "tf" UpperCAmelCase = "np" UpperCAmelCase = "jax" class lowerCAmelCase_ : def __init__( self : Union[str, Any] , _A : List[ContextManager] ): _UpperCamelCase = context_managers _UpperCamelCase = ExitStack() def __enter__( self : int ): for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : str , *_A : Dict , **_A : Tuple ): self.stack.__exit__(*_A , **_A ) def _snake_case ( __snake_case ): _UpperCamelCase = infer_framework(__snake_case ) if framework == "tf": _UpperCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCamelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _snake_case ( __snake_case ): _UpperCamelCase = model_class.__name__ _UpperCamelCase = infer_framework(__snake_case ) if framework == "tf": _UpperCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCamelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _snake_case ( __snake_case , __snake_case = "" , __snake_case = "." ): def _flatten_dict(__snake_case , __snake_case="" , __snake_case="." ): for k, v in d.items(): _UpperCamelCase = str(__snake_case ) + delimiter + str(__snake_case ) if parent_key else k if v and isinstance(__snake_case , __snake_case ): yield from flatten_dict(__snake_case , __snake_case , delimiter=__snake_case ).items() else: yield key, v return dict(_flatten_dict(__snake_case , __snake_case , __snake_case ) ) @contextmanager def _snake_case ( __snake_case , __snake_case = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _snake_case ( __snake_case , __snake_case=None ): if is_numpy_array(__snake_case ): return np.transpose(__snake_case , axes=__snake_case ) elif is_torch_tensor(__snake_case ): return array.T if axes is None else array.permute(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.transpose(__snake_case , perm=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.transpose(__snake_case , axes=__snake_case ) else: raise ValueError(f"""Type not supported for transpose: {type(__snake_case )}.""" ) def _snake_case ( __snake_case , __snake_case ): if is_numpy_array(__snake_case ): return np.reshape(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.reshape(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.reshape(__snake_case , __snake_case ) elif is_jax_tensor(__snake_case ): return jnp.reshape(__snake_case , __snake_case ) else: raise ValueError(f"""Type not supported for reshape: {type(__snake_case )}.""" ) def _snake_case ( __snake_case , __snake_case=None ): if is_numpy_array(__snake_case ): return np.squeeze(__snake_case , axis=__snake_case ) elif is_torch_tensor(__snake_case ): return array.squeeze() if axis is None else array.squeeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.squeeze(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.squeeze(__snake_case , axis=__snake_case ) else: raise ValueError(f"""Type not supported for squeeze: {type(__snake_case )}.""" ) def _snake_case ( __snake_case , __snake_case ): if is_numpy_array(__snake_case ): return np.expand_dims(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.unsqueeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.expand_dims(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.expand_dims(__snake_case , axis=__snake_case ) else: raise ValueError(f"""Type not supported for expand_dims: {type(__snake_case )}.""" ) def _snake_case ( __snake_case ): if is_numpy_array(__snake_case ): return np.size(__snake_case ) elif is_torch_tensor(__snake_case ): return array.numel() elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.size(__snake_case ) elif is_jax_tensor(__snake_case ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(__snake_case )}.""" ) def _snake_case ( __snake_case , __snake_case ): for key, value in auto_map.items(): if isinstance(__snake_case , (tuple, list) ): _UpperCamelCase = [f"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCamelCase = f"""{repo_id}--{value}""" return auto_map def _snake_case ( __snake_case ): for base_class in inspect.getmro(__snake_case ): _UpperCamelCase = base_class.__module__ _UpperCamelCase = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCAmelCase = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") _lowerCAmelCase = f'https://www.google.com/search?q={query}&num=100' _lowerCAmelCase = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: _lowerCAmelCase = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: _lowerCAmelCase = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = "▁" _lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} _lowerCAmelCase = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } _lowerCAmelCase = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off _lowerCAmelCase = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = ["input_ids", "attention_mask"] UpperCAmelCase = [] UpperCAmelCase = [] def __init__( self : int , _A : Union[str, Any] , _A : Optional[int]="<s>" , _A : str="</s>" , _A : Optional[int]="</s>" , _A : Tuple="<s>" , _A : Dict="<unk>" , _A : List[str]="<pad>" , _A : Dict="<mask>" , _A : Optional[Any]=None , _A : Union[str, Any]=None , _A : Any=None , _A : Optional[Dict[str, Any]] = None , _A : List[str]=None , _A : str=False , **_A : int , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCamelCase = legacy_behaviour super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_A , **_A , ) _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase = 1 _UpperCamelCase = len(self.sp_model ) _UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } _UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _UpperCamelCase = src_lang if src_lang is not None else '''eng_Latn''' _UpperCamelCase = self.lang_code_to_id[self._src_lang] _UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _A : Any ): _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase_ ( self : Optional[int] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase_ ( self : int ): return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : int , _A : str ): _UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) _UpperCamelCase = [1] * len(self.prefix_tokens ) _UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def UpperCamelCase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Optional[int] , _A : str , _A : str , _A : Optional[str] , _A : Optional[str] , **_A : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _UpperCamelCase = src_lang _UpperCamelCase = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) _UpperCamelCase = self.convert_tokens_to_ids(_A ) _UpperCamelCase = tgt_lang_id return inputs def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : int , _A : str ): return self.sp_model.encode(_A , out_type=_A ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase_ ( self : Union[str, Any] , _A : str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : List[Any] , _A : Dict ): _UpperCamelCase = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self : Union[str, Any] , _A : str , _A : Optional[str] = None ): if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] , _A : List[str] , _A : str = "eng_Latn" , _A : Optional[List[str]] = None , _A : str = "fra_Latn" , **_A : Optional[int] , ): _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def UpperCamelCase_ ( self : Union[str, Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : Optional[int] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : Optional[int] , _A : Tuple ): _UpperCamelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id] def UpperCamelCase_ ( self : Optional[Any] , _A : str ): _UpperCamelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id]
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase_ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCAmelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def _snake_case ( ): if os.name == "nt": _UpperCamelCase = CursorInfo() _UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__snake_case , ctypes.byref(__snake_case ) ) _UpperCamelCase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__snake_case , ctypes.byref(__snake_case ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def _snake_case ( ): if os.name == "nt": _UpperCamelCase = CursorInfo() _UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__snake_case , ctypes.byref(__snake_case ) ) _UpperCamelCase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__snake_case , ctypes.byref(__snake_case ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def _snake_case ( ): try: hide_cursor() yield finally: show_cursor()
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip_vision_model" def __init__( self : str , _A : Dict=1408 , _A : Union[str, Any]=6144 , _A : Union[str, Any]=39 , _A : int=16 , _A : Dict=224 , _A : Dict=14 , _A : Any="gelu" , _A : Dict=1e-6 , _A : List[str]=0.0 , _A : List[str]=1e-10 , _A : List[str]=True , **_A : Dict , ): super().__init__(**_A ) _UpperCamelCase = hidden_size _UpperCamelCase = intermediate_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = patch_size _UpperCamelCase = image_size _UpperCamelCase = initializer_range _UpperCamelCase = attention_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = hidden_act _UpperCamelCase = qkv_bias @classmethod def UpperCamelCase_ ( cls : Dict , _A : Union[str, os.PathLike] , **_A : Union[str, Any] ): cls._set_token_in_kwargs(_A ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": _UpperCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip_qformer" def __init__( self : List[str] , _A : int=3_0522 , _A : Tuple=768 , _A : List[str]=12 , _A : List[Any]=12 , _A : Any=3072 , _A : int="gelu" , _A : Union[str, Any]=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Any=0.02 , _A : Optional[int]=1e-12 , _A : Tuple=0 , _A : Any="absolute" , _A : Dict=2 , _A : Dict=1408 , **_A : Optional[Any] , ): super().__init__(pad_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = cross_attention_frequency _UpperCamelCase = encoder_hidden_size @classmethod def UpperCamelCase_ ( cls : List[str] , _A : Union[str, os.PathLike] , **_A : Tuple ): cls._set_token_in_kwargs(_A ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": _UpperCamelCase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip" UpperCAmelCase = True def __init__( self : Tuple , _A : List[str]=None , _A : str=None , _A : Optional[int]=None , _A : Any=32 , **_A : Dict ): super().__init__(**_A ) if vision_config is None: _UpperCamelCase = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: _UpperCamelCase = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: _UpperCamelCase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) _UpperCamelCase = InstructBlipVisionConfig(**_A ) _UpperCamelCase = InstructBlipQFormerConfig(**_A ) _UpperCamelCase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _UpperCamelCase = CONFIG_MAPPING[text_model_type](**_A ) _UpperCamelCase = self.text_config.tie_word_embeddings _UpperCamelCase = self.text_config.is_encoder_decoder _UpperCamelCase = num_query_tokens _UpperCamelCase = self.vision_config.hidden_size _UpperCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCamelCase = 1.0 _UpperCamelCase = 0.02 @classmethod def UpperCamelCase_ ( cls : str , _A : InstructBlipVisionConfig , _A : InstructBlipQFormerConfig , _A : PretrainedConfig , **_A : Tuple , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.qformer_config.to_dict() _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
def _snake_case ( __snake_case ): _UpperCamelCase = [0] * len(__snake_case ) for i in range(1 , len(__snake_case ) ): # use last results for better performance - dynamic programming _UpperCamelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _UpperCamelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _UpperCamelCase = j return prefix_result def _snake_case ( __snake_case ): return max(prefix_function(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
def _snake_case ( __snake_case , __snake_case ): print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__snake_case ): for j in range(__snake_case ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [[float('''inf''' ) for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): _UpperCamelCase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__snake_case ): # looping through rows of graph array for i in range(__snake_case ): # looping through columns of graph array for j in range(__snake_case ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _UpperCamelCase = dist[i][k] + dist[k][j] _print_dist(__snake_case , __snake_case ) return dist, v if __name__ == "__main__": _lowerCAmelCase = int(input("Enter number of vertices: ")) _lowerCAmelCase = int(input("Enter number of edges: ")) _lowerCAmelCase = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): _lowerCAmelCase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) _lowerCAmelCase = int(input("Enter source:")) _lowerCAmelCase = int(input("Enter destination:")) _lowerCAmelCase = float(input("Enter weight:")) _lowerCAmelCase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _lowerCAmelCase = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): UpperCAmelCase = None UpperCAmelCase = None class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): UpperCAmelCase = datasets.Audio() UpperCAmelCase = "audio" UpperCAmelCase = AudioFolderConfig UpperCAmelCase = 42 # definition at the bottom of the script UpperCAmelCase = AudioClassification(audio_column="audio", label_column="label" ) _lowerCAmelCase = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] _lowerCAmelCase = AUDIO_EXTENSIONS
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase_ : def __init__( self : Dict , _A : Optional[Any] , _A : Dict=13 , _A : int=7 , _A : List[str]=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : Optional[Any]=True , _A : List[Any]=99 , _A : Any=32 , _A : Union[str, Any]=2 , _A : Optional[int]=4 , _A : int=37 , _A : Any="gelu" , _A : int=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : List[Any]=16 , _A : Tuple=2 , _A : List[Any]=0.02 , _A : List[Any]=False , _A : int=True , _A : Union[str, Any]="None" , _A : Optional[Any]=3 , _A : Dict=4 , _A : Any=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = relative_attention _UpperCamelCase = position_biased_input _UpperCamelCase = pos_att_type _UpperCamelCase = scope def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : List[str] , _A : Optional[Any] , _A : Tuple , _A : Optional[Any] , _A : str , _A : str , _A : Optional[Any] , _A : Dict ): _UpperCamelCase = TFDebertaVaModel(config=_A ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[Any] , _A : int , _A : List[str] , _A : str , _A : Tuple , _A : List[Any] , _A : Dict , _A : Union[str, Any] ): _UpperCamelCase = TFDebertaVaForMaskedLM(config=_A ) _UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : int , _A : str , _A : str , _A : Union[str, Any] , _A : int , _A : Optional[Any] , _A : str , _A : Dict ): _UpperCamelCase = self.num_labels _UpperCamelCase = TFDebertaVaForSequenceClassification(config=_A ) _UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : List[Any] , _A : List[str] , _A : Tuple , _A : int , _A : int , _A : Tuple , _A : Tuple , _A : int ): _UpperCamelCase = self.num_labels _UpperCamelCase = TFDebertaVaForTokenClassification(config=_A ) _UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Dict , _A : Any , _A : Union[str, Any] , _A : List[str] , _A : Dict , _A : Tuple , _A : Any , _A : Union[str, Any] ): _UpperCamelCase = TFDebertaVaForQuestionAnswering(config=_A ) _UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCamelCase = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = TFDebertaVaModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(_A ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def UpperCamelCase_ ( self : int ): pass @slow def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) _UpperCamelCase = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _UpperCamelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase = model(_A , attention_mask=_A )[0] _UpperCamelCase = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _A , atol=1e-4 )
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "speech_to_text_2" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , _A : Dict=1_0000 , _A : Any=6 , _A : Optional[int]=2048 , _A : str=4 , _A : int=0.0 , _A : Tuple=True , _A : Dict="relu" , _A : Optional[Any]=256 , _A : str=0.1 , _A : List[Any]=0.0 , _A : Tuple=0.0 , _A : Optional[int]=0.02 , _A : Optional[Any]=2 , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : Optional[int]=0 , _A : List[Any]=2 , _A : str=1024 , **_A : str , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = decoder_layers _UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCamelCase = max_target_positions super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = LayoutLMTokenizer UpperCAmelCase = LayoutLMTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() _UpperCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Optional[int] , **_A : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCamelCase_ ( self : int , _A : Any ): _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = '''unwanted, running''' return input_text, output_text def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.tokenizer_class(self.vocab_file ) _UpperCamelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : List[str] ): pass
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : def __init__( self : Union[str, Any] , _A : List[Any] , _A : Union[str, Any]=13 , _A : int=30 , _A : Union[str, Any]=2 , _A : Tuple=3 , _A : str=True , _A : Optional[int]=True , _A : Optional[int]=32 , _A : Dict=2 , _A : Optional[Any]=4 , _A : Optional[int]=37 , _A : Tuple="gelu" , _A : Tuple=0.1 , _A : Optional[int]=0.1 , _A : Any=10 , _A : Any=0.02 , _A : Union[str, Any]=3 , _A : str=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = num_patches + 1 def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : int ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : int , _A : Dict ): _UpperCamelCase = TFViTModel(config=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _UpperCamelCase = self.image_size // 2 _UpperCamelCase = pixel_values[:, :, :image_size, :image_size] _UpperCamelCase = model(_A , interpolate_pos_encoding=_A , training=_A ) _UpperCamelCase = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : int , _A : Any , _A : Union[str, Any] , _A : List[str] ): _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = TFViTForImageClassification(_A ) _UpperCamelCase = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _UpperCamelCase = self.image_size // 2 _UpperCamelCase = pixel_values[:, :, :image_size, :image_size] _UpperCamelCase = model(_A , interpolate_pos_encoding=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = TFViTForImageClassification(_A ) _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCAmelCase = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Any ): _UpperCamelCase = TFViTModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(_A ) def _snake_case ( ): _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : List[Any] ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Any ): _UpperCamelCase = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=_A , return_tensors='''tf''' ) # forward pass _UpperCamelCase = model(**_A ) # verify the logits _UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) _UpperCamelCase = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1e-4 )
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): # Load configuration defined in the metadata file with open(__snake_case ) as metadata_file: _UpperCamelCase = json.load(__snake_case ) _UpperCamelCase = LukeConfig(use_entity_aware_attention=__snake_case , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCamelCase = torch.load(__snake_case , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCamelCase = load_original_entity_vocab(__snake_case ) # add an entry for [MASK2] _UpperCamelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase = AddedToken('''<ent>''' , lstrip=__snake_case , rstrip=__snake_case ) _UpperCamelCase = AddedToken('''<ent2>''' , lstrip=__snake_case , rstrip=__snake_case ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCamelCase = json.load(__snake_case ) _UpperCamelCase = '''MLukeTokenizer''' with open(os.path.join(__snake_case , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(__snake_case , __snake_case ) _UpperCamelCase = MLukeTokenizer.from_pretrained(__snake_case ) # Initialize the embeddings of the special tokens _UpperCamelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCamelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCamelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCamelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase = state_dict[bias_name] _UpperCamelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase = f"""encoder.layer.{layer_index}.attention.self.""" _UpperCamelCase = state_dict[prefix + matrix_name] _UpperCamelCase = state_dict[prefix + matrix_name] _UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCamelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCamelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase = state_dict['''entity_predictions.bias'''] _UpperCamelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCamelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase = LukeForMaskedLM(config=__snake_case ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCamelCase = state_dict[key] else: _UpperCamelCase = state_dict[key] _UpperCamelCase , _UpperCamelCase = model.load_state_dict(__snake_case , strict=__snake_case ) if set(__snake_case ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__snake_case ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase = MLukeTokenizer.from_pretrained(__snake_case , task='''entity_classification''' ) _UpperCamelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCamelCase = (0, 9) _UpperCamelCase = tokenizer(__snake_case , entity_spans=[span] , return_tensors='''pt''' ) _UpperCamelCase = model(**__snake_case ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase = torch.Size((1, 33, 768) ) _UpperCamelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase = torch.Size((1, 1, 768) ) _UpperCamelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __snake_case , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase = MLukeTokenizer.from_pretrained(__snake_case ) _UpperCamelCase = '''Tokyo is the capital of <mask>.''' _UpperCamelCase = (24, 30) _UpperCamelCase = tokenizer(__snake_case , entity_spans=[span] , return_tensors='''pt''' ) _UpperCamelCase = model(**__snake_case ) _UpperCamelCase = encoding['''input_ids'''][0].tolist() _UpperCamelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCamelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__snake_case ) _UpperCamelCase = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__snake_case ) ) model.save_pretrained(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCamelCase = [json.loads(__snake_case ) for line in open(__snake_case )] _UpperCamelCase = {} for entry in data: _UpperCamelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase = entity_id break _UpperCamelCase = f"""{language}:{entity_name}""" _UpperCamelCase = entity_id return new_mapping if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _lowerCAmelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
def _snake_case ( __snake_case , __snake_case ): return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
class lowerCAmelCase_ : def __init__( self : Optional[Any] , _A : list ): _UpperCamelCase = set_counts _UpperCamelCase = max(_A ) _UpperCamelCase = len(_A ) _UpperCamelCase = [1] * num_sets _UpperCamelCase = list(range(_A ) ) def UpperCamelCase_ ( self : int , _A : int , _A : int ): _UpperCamelCase = self.get_parent(_A ) _UpperCamelCase = self.get_parent(_A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _UpperCamelCase = 0 _UpperCamelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _UpperCamelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _UpperCamelCase = 0 _UpperCamelCase = src_parent _UpperCamelCase = self.set_counts[src_parent] _UpperCamelCase = max(self.max_set , _A ) return True def UpperCamelCase_ ( self : Optional[int] , _A : int ): if self.parents[disj_set] == disj_set: return disj_set _UpperCamelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
import os def _snake_case ( __snake_case = "input.txt" ): with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as input_file: _UpperCamelCase = [ [int(__snake_case ) for element in line.split(''',''' )] for line in input_file.readlines() ] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(matrix[0] ) _UpperCamelCase = [[-1 for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): _UpperCamelCase = matrix[i][0] for j in range(1 , __snake_case ): for i in range(__snake_case ): _UpperCamelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __snake_case ): _UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] ): # test for the above condition self.test() def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = 0 _UpperCamelCase = False while not completed: if counter == 1: self.reset() _UpperCamelCase = self.advance() if not self.does_advance(_A ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.update(_A ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def UpperCamelCase_ ( self : Union[str, Any] ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : Any , _A : int ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : Optional[Any] , _A : int ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : Optional[Any] ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : str ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : Optional[int] , _A : str=False ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowerCAmelCase_ ( __lowercase ): def __init__( self : Tuple , _A : List[int] ): super(_A , self ).__init__() if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_A , _A ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _UpperCamelCase = token_ids _UpperCamelCase = len(self.token_ids ) _UpperCamelCase = -1 # the index of the currently fulfilled step _UpperCamelCase = False def UpperCamelCase_ ( self : Optional[int] ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self : int , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_A )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self : Optional[Any] , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_A )}""" ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False if self.does_advance(_A ): self.fulfilled_idx += 1 _UpperCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): _UpperCamelCase = True _UpperCamelCase = completed else: # failed to make progress. _UpperCamelCase = True self.reset() return stepped, completed, reset def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = False _UpperCamelCase = 0 def UpperCamelCase_ ( self : str ): return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase_ ( self : Any , _A : Optional[int]=False ): _UpperCamelCase = PhrasalConstraint(self.token_ids ) if stateful: _UpperCamelCase = self.seqlen _UpperCamelCase = self.fulfilled_idx _UpperCamelCase = self.completed return new_constraint class lowerCAmelCase_ : def __init__( self : Any , _A : List[List[int]] , _A : Optional[int]=True ): _UpperCamelCase = max([len(_A ) for one in nested_token_ids] ) _UpperCamelCase = {} for token_ids in nested_token_ids: _UpperCamelCase = root for tidx, token_id in enumerate(_A ): if token_id not in level: _UpperCamelCase = {} _UpperCamelCase = level[token_id] if no_subsets and self.has_subsets(_A , _A ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) _UpperCamelCase = root def UpperCamelCase_ ( self : str , _A : Union[str, Any] ): _UpperCamelCase = self.trie for current_token in current_seq: _UpperCamelCase = start[current_token] _UpperCamelCase = list(start.keys() ) return next_tokens def UpperCamelCase_ ( self : Any , _A : Optional[Any] ): _UpperCamelCase = self.next_tokens(_A ) return len(_A ) == 0 def UpperCamelCase_ ( self : int , _A : List[str] ): _UpperCamelCase = list(root.values() ) if len(_A ) == 0: return 1 else: return sum([self.count_leaves(_A ) for nn in next_nodes] ) def UpperCamelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : Any ): _UpperCamelCase = self.count_leaves(_A ) return len(_A ) != leaf_count class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[Any] , _A : List[List[int]] ): super(_A , self ).__init__() if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_A , _A ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_A , _A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _UpperCamelCase = DisjunctiveTrie(_A ) _UpperCamelCase = nested_token_ids _UpperCamelCase = self.trie.max_height _UpperCamelCase = [] _UpperCamelCase = False def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = self.trie.next_tokens(self.current_seq ) if len(_A ) == 0: return None else: return token_list def UpperCamelCase_ ( self : Optional[int] , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_A )}""" ) _UpperCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase_ ( self : Union[str, Any] , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_A )}""" ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False if self.does_advance(_A ): self.current_seq.append(_A ) _UpperCamelCase = True else: _UpperCamelCase = True self.reset() _UpperCamelCase = self.trie.reached_leaf(self.current_seq ) _UpperCamelCase = completed return stepped, completed, reset def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = False _UpperCamelCase = [] def UpperCamelCase_ ( self : int ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase_ ( self : List[str] , _A : int=False ): _UpperCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: _UpperCamelCase = self.seqlen _UpperCamelCase = self.current_seq _UpperCamelCase = self.completed return new_constraint class lowerCAmelCase_ : def __init__( self : Tuple , _A : List[Constraint] ): _UpperCamelCase = constraints # max # of steps required to fulfill a given constraint _UpperCamelCase = max([c.seqlen for c in constraints] ) _UpperCamelCase = len(_A ) _UpperCamelCase = False self.init_state() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = [] _UpperCamelCase = None _UpperCamelCase = [constraint.copy(stateful=_A ) for constraint in self.constraints] def UpperCamelCase_ ( self : int ): _UpperCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _UpperCamelCase = constraint.advance() if isinstance(_A , _A ): token_list.append(_A ) elif isinstance(_A , _A ): token_list.extend(_A ) else: _UpperCamelCase = self.inprogress_constraint.advance() if isinstance(_A , _A ): token_list.append(_A ) elif isinstance(_A , _A ): token_list.extend(_A ) if len(_A ) == 0: return None else: return token_list def UpperCamelCase_ ( self : Optional[int] , _A : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _UpperCamelCase , _UpperCamelCase = self.add(_A ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase_ ( self : Union[str, Any] , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) _UpperCamelCase , _UpperCamelCase = False, False if self.completed: _UpperCamelCase = True _UpperCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.inprogress_constraint.update(_A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_A ) ) _UpperCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _UpperCamelCase = None if len(self.pending_constraints ) == 0: # we're done! _UpperCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_A ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = pending_constraint.update(_A ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_A ) _UpperCamelCase = None if not complete and stepped: _UpperCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _UpperCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _UpperCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase_ ( self : str , _A : Optional[Any]=True ): _UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _UpperCamelCase = [ constraint.copy(stateful=_A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _UpperCamelCase = self.inprogress_constraint.copy(stateful=_A ) _UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
def _snake_case ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__snake_case , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = CpmAntTokenizer UpperCAmelCase = False def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) _UpperCamelCase = '''今天天气真好!''' _UpperCamelCase = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = '''今天天气真好!''' _UpperCamelCase = [tokenizer.bos_token] + tokens _UpperCamelCase = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) _UpperCamelCase = tokenizer.decode(_A ) self.assertEqual(_A , _A )
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCAmelCase = (720, 1_280) # Height, Width _lowerCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCAmelCase = 1 / 100 _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = 250 def _snake_case ( ): _UpperCamelCase , _UpperCamelCase = get_dataset(__snake_case , __snake_case ) for index in range(__snake_case ): _UpperCamelCase = random.sample(range(len(__snake_case ) ) , 4 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = update_image_and_anno( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , filter_scale=__snake_case , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCamelCase = random_chars(32 ) _UpperCamelCase = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] _UpperCamelCase = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , __snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _UpperCamelCase = [] for anno in new_annos: _UpperCamelCase = anno[3] - anno[1] _UpperCamelCase = anno[4] - anno[2] _UpperCamelCase = anno[1] + width / 2 _UpperCamelCase = anno[2] + height / 2 _UpperCamelCase = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(__snake_case ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] _UpperCamelCase = [] for label_file in glob.glob(os.path.join(__snake_case , '''*.txt''' ) ): _UpperCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__snake_case ) as in_file: _UpperCamelCase = in_file.readlines() _UpperCamelCase = os.path.join(__snake_case , f"""{label_name}.jpg""" ) _UpperCamelCase = [] for obj_list in obj_lists: _UpperCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) _UpperCamelCase = float(obj[1] ) - float(obj[3] ) / 2 _UpperCamelCase = float(obj[2] ) - float(obj[4] ) / 2 _UpperCamelCase = float(obj[1] ) + float(obj[3] ) / 2 _UpperCamelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__snake_case ) labels.append(__snake_case ) return img_paths, labels def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = 0.0 , ): _UpperCamelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCamelCase = int(scale_x * output_size[1] ) _UpperCamelCase = int(scale_y * output_size[0] ) _UpperCamelCase = [] _UpperCamelCase = [] for i, index in enumerate(__snake_case ): _UpperCamelCase = all_img_list[index] path_list.append(__snake_case ) _UpperCamelCase = all_annos[index] _UpperCamelCase = cva.imread(__snake_case ) if i == 0: # top-left _UpperCamelCase = cva.resize(__snake_case , (divid_point_x, divid_point_y) ) _UpperCamelCase = img for bbox in img_annos: _UpperCamelCase = bbox[1] * scale_x _UpperCamelCase = bbox[2] * scale_y _UpperCamelCase = bbox[3] * scale_x _UpperCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _UpperCamelCase = cva.resize(__snake_case , (output_size[1] - divid_point_x, divid_point_y) ) _UpperCamelCase = img for bbox in img_annos: _UpperCamelCase = scale_x + bbox[1] * (1 - scale_x) _UpperCamelCase = bbox[2] * scale_y _UpperCamelCase = scale_x + bbox[3] * (1 - scale_x) _UpperCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _UpperCamelCase = cva.resize(__snake_case , (divid_point_x, output_size[0] - divid_point_y) ) _UpperCamelCase = img for bbox in img_annos: _UpperCamelCase = bbox[1] * scale_x _UpperCamelCase = scale_y + bbox[2] * (1 - scale_y) _UpperCamelCase = bbox[3] * scale_x _UpperCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _UpperCamelCase = cva.resize( __snake_case , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _UpperCamelCase = img for bbox in img_annos: _UpperCamelCase = scale_x + bbox[1] * (1 - scale_x) _UpperCamelCase = scale_y + bbox[2] * (1 - scale_y) _UpperCamelCase = scale_x + bbox[3] * (1 - scale_x) _UpperCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _UpperCamelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _snake_case ( __snake_case ): assert number_char > 1, "The number of character should greater than 1" _UpperCamelCase = ascii_lowercase + digits return "".join(random.choice(__snake_case ) for _ in range(__snake_case ) ) if __name__ == "__main__": main() print("DONE ✅")
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
import os from math import logaa def _snake_case ( __snake_case = "base_exp.txt" ): _UpperCamelCase = 0 _UpperCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) ): _UpperCamelCase , _UpperCamelCase = list(map(__snake_case , line.split(''',''' ) ) ) if x * logaa(__snake_case ) > largest: _UpperCamelCase = x * logaa(__snake_case ) _UpperCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case ( __snake_case , __snake_case=0.999 , __snake_case="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__snake_case ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__snake_case ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _UpperCamelCase = [] for i in range(__snake_case ): _UpperCamelCase = i / num_diffusion_timesteps _UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class lowerCAmelCase_ ( __lowercase, __lowercase ): UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase = 2 @register_to_config def __init__( self : Optional[Any] , _A : int = 1000 , _A : float = 0.0_0085 , _A : float = 0.012 , _A : str = "linear" , _A : Optional[Union[np.ndarray, List[float]]] = None , _A : str = "epsilon" , _A : str = "linspace" , _A : int = 0 , ): if trained_betas is not None: _UpperCamelCase = torch.tensor(_A , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCamelCase = torch.linspace(_A , _A , _A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCamelCase = betas_for_alpha_bar(_A ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _UpperCamelCase = 1.0 - self.betas _UpperCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_A , _A , _A ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : List[str]=None ): if schedule_timesteps is None: _UpperCamelCase = self.timesteps _UpperCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _UpperCamelCase = 1 if len(_A ) > 1 else 0 else: _UpperCamelCase = timestep.cpu().item() if torch.is_tensor(_A ) else timestep _UpperCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase_ ( self : str ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase_ ( self : str , _A : torch.FloatTensor , _A : Union[float, torch.FloatTensor] , ): _UpperCamelCase = self.index_for_timestep(_A ) if self.state_in_first_order: _UpperCamelCase = self.sigmas[step_index] else: _UpperCamelCase = self.sigmas_interpol[step_index] _UpperCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase_ ( self : Optional[Any] , _A : int , _A : Union[str, torch.device] = None , _A : Optional[int] = None , ): _UpperCamelCase = num_inference_steps _UpperCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCamelCase = np.linspace(0 , num_train_timesteps - 1 , _A , dtype=_A )[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCamelCase = (np.arange(0 , _A ) * step_ratio).round()[::-1].copy().astype(_A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCamelCase = (np.arange(_A , 0 , -step_ratio )).round().copy().astype(_A ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _UpperCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _UpperCamelCase = torch.from_numpy(np.log(_A ) ).to(_A ) _UpperCamelCase = np.interp(_A , np.arange(0 , len(_A ) ) , _A ) _UpperCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _UpperCamelCase = torch.from_numpy(_A ).to(device=_A ) # interpolate sigmas _UpperCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _UpperCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _UpperCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_A ).startswith('''mps''' ): # mps does not support float64 _UpperCamelCase = torch.from_numpy(_A ).to(_A , dtype=torch.floataa ) else: _UpperCamelCase = torch.from_numpy(_A ).to(_A ) # interpolate timesteps _UpperCamelCase = self.sigma_to_t(_A ).to(_A , dtype=timesteps.dtype ) _UpperCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _UpperCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) _UpperCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCamelCase = defaultdict(_A ) def UpperCamelCase_ ( self : Any , _A : List[Any] ): # get log sigma _UpperCamelCase = sigma.log() # get distribution _UpperCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range _UpperCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _UpperCamelCase = low_idx + 1 _UpperCamelCase = self.log_sigmas[low_idx] _UpperCamelCase = self.log_sigmas[high_idx] # interpolate sigmas _UpperCamelCase = (low - log_sigma) / (low - high) _UpperCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range _UpperCamelCase = (1 - w) * low_idx + w * high_idx _UpperCamelCase = t.view(sigma.shape ) return t @property def UpperCamelCase_ ( self : Optional[Any] ): return self.sample is None def UpperCamelCase_ ( self : Optional[int] , _A : Union[torch.FloatTensor, np.ndarray] , _A : Union[float, torch.FloatTensor] , _A : Union[torch.FloatTensor, np.ndarray] , _A : bool = True , ): _UpperCamelCase = self.index_for_timestep(_A ) # advance index counter by 1 _UpperCamelCase = timestep.cpu().item() if torch.is_tensor(_A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCamelCase = self.sigmas[step_index] _UpperCamelCase = self.sigmas_interpol[step_index + 1] _UpperCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _UpperCamelCase = self.sigmas[step_index - 1] _UpperCamelCase = self.sigmas_interpol[step_index] _UpperCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCamelCase = 0 _UpperCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCamelCase = sigma_interpol - sigma_hat # store for 2nd order step _UpperCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _UpperCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _UpperCamelCase = sigma_next - sigma_hat _UpperCamelCase = self.sample _UpperCamelCase = None _UpperCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_A ) def UpperCamelCase_ ( self : List[Any] , _A : torch.FloatTensor , _A : torch.FloatTensor , _A : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples _UpperCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_A ): # mps does not support float64 _UpperCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _UpperCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _UpperCamelCase = self.timesteps.to(original_samples.device ) _UpperCamelCase = timesteps.to(original_samples.device ) _UpperCamelCase = [self.index_for_timestep(_A , _A ) for t in timesteps] _UpperCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _UpperCamelCase = sigma.unsqueeze(-1 ) _UpperCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self : List[str] ): return self.config.num_train_timesteps
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "codegen" UpperCAmelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , _A : Optional[Any]=5_0400 , _A : str=2048 , _A : Tuple=2048 , _A : List[Any]=4096 , _A : Optional[Any]=28 , _A : Union[str, Any]=16 , _A : List[str]=64 , _A : Union[str, Any]=None , _A : Any="gelu_new" , _A : List[str]=0.0 , _A : str=0.0 , _A : Any=0.0 , _A : Tuple=1e-5 , _A : Dict=0.02 , _A : int=True , _A : List[str]=5_0256 , _A : Optional[int]=5_0256 , _A : Dict=False , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = n_ctx _UpperCamelCase = n_positions _UpperCamelCase = n_embd _UpperCamelCase = n_layer _UpperCamelCase = n_head _UpperCamelCase = n_inner _UpperCamelCase = rotary_dim _UpperCamelCase = activation_function _UpperCamelCase = resid_pdrop _UpperCamelCase = embd_pdrop _UpperCamelCase = attn_pdrop _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_range _UpperCamelCase = use_cache _UpperCamelCase = bos_token_id _UpperCamelCase = eos_token_id super().__init__( bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A ) class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[Any] , _A : PretrainedConfig , _A : str = "default" , _A : List[PatchingSpec] = None , _A : bool = False , ): super().__init__(_A , task=_A , patching_specs=_A , use_past=_A ) if not getattr(self._config , '''pad_token_id''' , _A ): # TODO: how to do that better? _UpperCamelCase = 0 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction='''inputs''' ) _UpperCamelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase_ ( self : Tuple ): return self._config.n_layer @property def UpperCamelCase_ ( self : List[Any] ): return self._config.n_head def UpperCamelCase_ ( self : str , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): _UpperCamelCase = super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() _UpperCamelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _UpperCamelCase , _UpperCamelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _UpperCamelCase = seqlen + 2 _UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCamelCase = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] _UpperCamelCase = common_inputs['''attention_mask'''] if self.use_past: _UpperCamelCase = ordered_inputs['''attention_mask'''].dtype _UpperCamelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : int ): return 13
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
_lowerCAmelCase = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } _lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _snake_case ( __snake_case ): _UpperCamelCase = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _snake_case ( __snake_case ): if set(__snake_case ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) _UpperCamelCase = '''''' for word in coded.split(): while len(__snake_case ) != 0: decoded += decode_dict[word[:5]] _UpperCamelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
from __future__ import annotations import math _lowerCAmelCase = "2020.9.26" _lowerCAmelCase = "xcodz-dot, cclaus, dhruvmanila" def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if not all(isinstance(__snake_case , (float, int) ) for val in locals().values() ): _UpperCamelCase = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(__snake_case ) _UpperCamelCase = ((x * distance) / (z + distance)) * scale _UpperCamelCase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if not isinstance(__snake_case , __snake_case ): raise TypeError('''Axis must be a str''' ) _UpperCamelCase = locals() del input_variables["axis"] if not all(isinstance(__snake_case , (float, int) ) for val in input_variables.values() ): _UpperCamelCase = ( '''Input values except axis must either be float or int: ''' f"""{list(input_variables.values() )}""" ) raise TypeError(__snake_case ) _UpperCamelCase = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCamelCase = x * math.cos(__snake_case ) - y * math.sin(__snake_case ) _UpperCamelCase = y * math.cos(__snake_case ) + x * math.sin(__snake_case ) _UpperCamelCase = z elif axis == "x": _UpperCamelCase = y * math.cos(__snake_case ) - z * math.sin(__snake_case ) _UpperCamelCase = z * math.cos(__snake_case ) + y * math.sin(__snake_case ) _UpperCamelCase = x elif axis == "y": _UpperCamelCase = x * math.cos(__snake_case ) - z * math.sin(__snake_case ) _UpperCamelCase = z * math.cos(__snake_case ) + x * math.sin(__snake_case ) _UpperCamelCase = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(f'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "imagegpt" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , _A : Any=512 + 1 , _A : Tuple=32 * 32 , _A : Union[str, Any]=512 , _A : Union[str, Any]=24 , _A : Dict=8 , _A : List[str]=None , _A : List[Any]="quick_gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : int=0.1 , _A : int=1e-5 , _A : List[str]=0.02 , _A : Optional[Any]=True , _A : List[str]=True , _A : Any=False , _A : Optional[Any]=False , _A : List[str]=False , **_A : Any , ): _UpperCamelCase = vocab_size _UpperCamelCase = n_positions _UpperCamelCase = n_embd _UpperCamelCase = n_layer _UpperCamelCase = n_head _UpperCamelCase = n_inner _UpperCamelCase = activation_function _UpperCamelCase = resid_pdrop _UpperCamelCase = embd_pdrop _UpperCamelCase = attn_pdrop _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_range _UpperCamelCase = scale_attn_weights _UpperCamelCase = use_cache _UpperCamelCase = scale_attn_by_inverse_layer_idx _UpperCamelCase = reorder_and_upcast_attn _UpperCamelCase = tie_word_embeddings super().__init__(tie_word_embeddings=_A , **_A ) class lowerCAmelCase_ ( __lowercase ): @property def UpperCamelCase_ ( self : List[str] ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def UpperCamelCase_ ( self : Any , _A : "FeatureExtractionMixin" , _A : int = 1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , _A : int = 3 , _A : int = 32 , _A : int = 32 , ): _UpperCamelCase = self._generate_dummy_images(_A , _A , _A , _A ) _UpperCamelCase = dict(preprocessor(images=_A , return_tensors=_A ) ) return inputs
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
def _snake_case ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _lowerCAmelCase = generate_large_matrix() _lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _snake_case ( __snake_case ): assert all(row == sorted(__snake_case , reverse=__snake_case ) for row in grid ) assert all(list(__snake_case ) == sorted(__snake_case , reverse=__snake_case ) for col in zip(*__snake_case ) ) def _snake_case ( __snake_case ): _UpperCamelCase = 0 _UpperCamelCase = len(__snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCamelCase = (left + right) // 2 _UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCamelCase = mid + 1 else: _UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase = 0 _UpperCamelCase = len(grid[0] ) for i in range(len(__snake_case ) ): _UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(__snake_case ) * len(grid[0] )) - total def _snake_case ( __snake_case ): return len([number for row in grid for number in row if number < 0] ) def _snake_case ( __snake_case ): _UpperCamelCase = 0 for row in grid: for i, number in enumerate(__snake_case ): if number < 0: total += len(__snake_case ) - i break return total def _snake_case ( ): from timeit import timeit print('''Running benchmarks''' ) _UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCamelCase = timeit(f"""{func}(grid=grid)""" , setup=__snake_case , number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
from string import ascii_lowercase, ascii_uppercase def _snake_case ( __snake_case ): if not sentence: return "" _UpperCamelCase = dict(zip(__snake_case , __snake_case ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = (PNDMScheduler,) UpperCAmelCase = (("num_inference_steps", 50),) def UpperCamelCase_ ( self : str , **_A : Dict ): _UpperCamelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_A ) return config def UpperCamelCase_ ( self : int , _A : Tuple=0 , **_A : Optional[int] ): _UpperCamelCase = dict(self.forward_default_kwargs ) _UpperCamelCase = kwargs.pop('''num_inference_steps''' , _A ) _UpperCamelCase = self.dummy_sample _UpperCamelCase = 0.1 * sample _UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCamelCase = self.get_scheduler_config(**_A ) _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _UpperCamelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _UpperCamelCase = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _UpperCamelCase = dummy_past_residuals[:] _UpperCamelCase = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample _UpperCamelCase = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCamelCase = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample _UpperCamelCase = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : List[str] , _A : str=0 , **_A : str ): _UpperCamelCase = dict(self.forward_default_kwargs ) _UpperCamelCase = kwargs.pop('''num_inference_steps''' , _A ) _UpperCamelCase = self.dummy_sample _UpperCamelCase = 0.1 * sample _UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _UpperCamelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _UpperCamelCase = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _UpperCamelCase = dummy_past_residuals[:] _UpperCamelCase = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample _UpperCamelCase = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCamelCase = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample _UpperCamelCase = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str , **_A : Any ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(**_A ) _UpperCamelCase = scheduler_class(**_A ) _UpperCamelCase = 10 _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.prk_timesteps ): _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step_prk(_A , _A , _A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step_plms(_A , _A , _A ).prev_sample return sample def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = dict(self.forward_default_kwargs ) _UpperCamelCase = kwargs.pop('''num_inference_steps''' , _A ) for scheduler_class in self.scheduler_classes: _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) _UpperCamelCase = self.dummy_sample _UpperCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_A , '''set_timesteps''' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , '''set_timesteps''' ): _UpperCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _UpperCamelCase = dummy_past_residuals[:] _UpperCamelCase = scheduler.step_prk(_A , 0 , _A , **_A ).prev_sample _UpperCamelCase = scheduler.step_prk(_A , 1 , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _UpperCamelCase = scheduler.step_plms(_A , 0 , _A , **_A ).prev_sample _UpperCamelCase = scheduler.step_plms(_A , 1 , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : Any ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ ( self : Tuple ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(steps_offset=1 ) _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase_ ( self : List[str] ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCamelCase_ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def UpperCamelCase_ ( self : Dict ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for t in [1, 5, 10]: self.check_over_forward(time_step=_A ) def UpperCamelCase_ ( self : Tuple ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_A ) def UpperCamelCase_ ( self : Dict ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _UpperCamelCase = 27 for scheduler_class in self.scheduler_classes: _UpperCamelCase = self.dummy_sample _UpperCamelCase = 0.1 * sample _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _UpperCamelCase = scheduler.step_prk(_A , _A , _A ).prev_sample def UpperCamelCase_ ( self : Union[str, Any] ): with self.assertRaises(_A ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.full_loop() _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = self.full_loop(prediction_type='''v_prediction''' ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def UpperCamelCase_ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _UpperCamelCase = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def UpperCamelCase_ ( self : Any ): # We specify different beta, so that the first alpha is 0.99 _UpperCamelCase = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
from typing import TYPE_CHECKING from ..utils import _LazyModule _lowerCAmelCase = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
def _snake_case ( __snake_case , __snake_case ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCamelCase = str(bin(__snake_case ) )[2:] # remove the leading "0b" _UpperCamelCase = str(bin(__snake_case ) )[2:] _UpperCamelCase = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self : Tuple , _A : str , _A : List[str]=13 , _A : Optional[int]=7 , _A : List[Any]=True , _A : int=True , _A : int=True , _A : Tuple=True , _A : Tuple=99 , _A : Tuple=32 , _A : List[str]=5 , _A : Any=4 , _A : Any=37 , _A : Tuple="gelu" , _A : Optional[int]=0.1 , _A : List[str]=0.1 , _A : int=512 , _A : List[str]=16 , _A : str=2 , _A : Dict=0.02 , _A : str=4 , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def UpperCamelCase_ ( self : str ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = True UpperCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = FlaxRobertaModelTester(self ) @slow def UpperCamelCase_ ( self : Optional[Any] ): for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=_A ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A )
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = len(__snake_case ) print('''The following activities are selected:''' ) # The first activity is always selected _UpperCamelCase = 0 print(__snake_case , end=''',''' ) # Consider rest of the activities for j in range(__snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__snake_case , end=''',''' ) _UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = [1, 3, 0, 5, 8, 5] _lowerCAmelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase_ ( unittest.TestCase, __lowercase ): def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = load_tool('''text-classification''' ) self.tool.setup() _UpperCamelCase = load_tool('''text-classification''' , remote=_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(_A , '''positive''' ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(_A , '''positive''' ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(_A , '''positive''' ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(_A , '''positive''' )
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "ibert" def __init__( self : str , _A : Any=3_0522 , _A : List[Any]=768 , _A : Any=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Optional[int]="gelu" , _A : int=0.1 , _A : Tuple=0.1 , _A : int=512 , _A : int=2 , _A : Union[str, Any]=0.02 , _A : Dict=1e-12 , _A : Tuple=1 , _A : str=0 , _A : Dict=2 , _A : Union[str, Any]="absolute" , _A : Optional[int]=False , _A : List[Any]="none" , **_A : Dict , ): super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = quant_mode _UpperCamelCase = force_dequant class lowerCAmelCase_ ( __lowercase ): @property def UpperCamelCase_ ( self : Tuple ): if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
# flake8: noqa # Lint as: python3 _lowerCAmelCase = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = 0 def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' _UpperCamelCase = Path(_A ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' _UpperCamelCase = Path(_A ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' _UpperCamelCase = Path(_A ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ).to_dict() config_dict.pop('''image_processor_type''' ) _UpperCamelCase = CLIPImageProcessor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) # make sure private variable is not incorrectly saved _UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _A , '''clip-base is not a local folder and is not a valid model identifier''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''clip-base''' ) def UpperCamelCase_ ( self : Dict ): with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained(_A , revision='''aaaaaa''' ) def UpperCamelCase_ ( self : Union[str, Any] ): with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCamelCase_ ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def UpperCamelCase_ ( self : List[Any] ): try: AutoConfig.register('''custom''' , _A ) AutoImageProcessor.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoImageProcessor.register(_A , _A ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' _UpperCamelCase = Path(_A ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) _UpperCamelCase = CustomImageProcessor.from_pretrained(_A ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : Optional[Any] ): class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = True try: AutoConfig.register('''custom''' , _A ) AutoImageProcessor.register(_A , _A ) # If remote code is not set, the default is to use local _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_A , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
from __future__ import annotations from typing import TypedDict class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = 42 UpperCAmelCase = 42 def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(__snake_case ) )] def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) _UpperCamelCase = all_rotations(__snake_case ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCamelCase = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__snake_case ), } return response def _snake_case ( __snake_case , __snake_case ): if not isinstance(__snake_case , __snake_case ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: _UpperCamelCase = int(__snake_case ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(__snake_case ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) _UpperCamelCase = [''''''] * len(__snake_case ) for _ in range(len(__snake_case ) ): for i in range(len(__snake_case ) ): _UpperCamelCase = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _lowerCAmelCase = "Provide a string that I will generate its BWT transform: " _lowerCAmelCase = input(entry_msg).strip() _lowerCAmelCase = bwt_transform(s) print( f'Burrows Wheeler transform for string \'{s}\' results ' f'in \'{result["bwt_string"]}\'' ) _lowerCAmelCase = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' f'we get original string \'{original_string}\'' )
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None def _snake_case ( ): _UpperCamelCase = Node(1 ) _UpperCamelCase = Node(2 ) _UpperCamelCase = Node(3 ) _UpperCamelCase = Node(4 ) _UpperCamelCase = Node(5 ) return tree def _snake_case ( __snake_case ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _snake_case ( __snake_case ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _snake_case ( __snake_case ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _snake_case ( __snake_case ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _snake_case ( __snake_case ): _UpperCamelCase = [] if root is None: return output _UpperCamelCase = deque([root] ) while process_queue: _UpperCamelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] def populate_output(__snake_case , __snake_case ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__snake_case , __snake_case ) return output def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] def populate_output(__snake_case , __snake_case ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__snake_case , __snake_case ) return output def _snake_case ( __snake_case ): if root is None: return [] _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = height(__snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__snake_case , __snake_case ) ) _UpperCamelCase = 1 else: output.append(get_nodes_from_right_to_left(__snake_case , __snake_case ) ) _UpperCamelCase = 0 return output def _snake_case ( ): # Main function for testing. _UpperCamelCase = make_tree() print(f"""In-order Traversal: {inorder(__snake_case )}""" ) print(f"""Pre-order Traversal: {preorder(__snake_case )}""" ) print(f"""Post-order Traversal: {postorder(__snake_case )}""" , '''\n''' ) print(f"""Height of Tree: {height(__snake_case )}""" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(__snake_case ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(__snake_case ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(__snake_case , level=__snake_case ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCAmelCase = False class lowerCAmelCase_ ( unittest.TestCase ): pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : str ): _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_A ) _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained(_A , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = generator.manual_seed(0 ) _UpperCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = '''cyberpunk 2077''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe.dual_guided( prompt=_A , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images _UpperCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _UpperCamelCase = '''A painting of a squirrel eating a burger ''' _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe.text_to_image( prompt=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images _UpperCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _UpperCamelCase = pipe.image_variation(_A , generator=_A , output_type='''numpy''' ).images _UpperCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
from functools import lru_cache def _snake_case ( __snake_case ): _UpperCamelCase = 2 _UpperCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__snake_case ) if n > 1: factors.add(__snake_case ) return factors @lru_cache def _snake_case ( __snake_case ): return len(unique_prime_factors(__snake_case ) ) def _snake_case ( __snake_case ): return len(set(__snake_case ) ) in (0, 1) def _snake_case ( __snake_case ): _UpperCamelCase = 2 while True: # Increment each value of a generated range _UpperCamelCase = [base + i for i in range(__snake_case )] # Run elements through out unique_prime_factors function # Append our target number to the end. _UpperCamelCase = [upf_len(__snake_case ) for x in group] checker.append(__snake_case ) # If all numbers in the list are equal, return the group variable. if equality(__snake_case ): return group # Increment our base variable by 1 base += 1 def _snake_case ( __snake_case = 4 ): _UpperCamelCase = run(__snake_case ) return results[0] if len(__snake_case ) else None if __name__ == "__main__": print(solution())
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
def _snake_case ( __snake_case ): return str(__snake_case ) == str(__snake_case )[::-1] def _snake_case ( __snake_case ): return int(__snake_case ) + int(str(__snake_case )[::-1] ) def _snake_case ( __snake_case = 10000 ): _UpperCamelCase = [] for num in range(1 , __snake_case ): _UpperCamelCase = 0 _UpperCamelCase = num while iterations < 50: _UpperCamelCase = sum_reverse(__snake_case ) iterations += 1 if is_palindrome(__snake_case ): break else: lychrel_nums.append(__snake_case ) return len(__snake_case ) if __name__ == "__main__": print(f'{solution() = }')
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
_lowerCAmelCase = "Input must be a string of 8 numbers plus letter" _lowerCAmelCase = "TRWAGMYFPDXBNJZSQVHLCKE" def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): _UpperCamelCase = f"""Expected string as input, found {type(__snake_case ).__name__}""" raise TypeError(__snake_case ) _UpperCamelCase = spanish_id.replace('''-''' , '''''' ).upper() if len(__snake_case ) != 9: raise ValueError(__snake_case ) try: _UpperCamelCase = int(spanish_id_clean[0:8] ) _UpperCamelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(__snake_case ) from ex if letter.isdigit(): raise ValueError(__snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
import os def _snake_case ( __snake_case = "matrix.txt" ): with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as in_file: _UpperCamelCase = in_file.read() _UpperCamelCase = [[int(__snake_case ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] _UpperCamelCase = [[0 for cell in row] for row in grid] _UpperCamelCase = len(grid[0] ) _UpperCamelCase = [[0 for i in range(__snake_case )] for j in range(__snake_case )] _UpperCamelCase = grid[0][0] for i in range(1 , __snake_case ): _UpperCamelCase = grid[0][i] + dp[0][i - 1] for i in range(1 , __snake_case ): _UpperCamelCase = grid[i][0] + dp[i - 1][0] for i in range(1 , __snake_case ): for j in range(1 , __snake_case ): _UpperCamelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'{solution() = }')
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
from collections.abc import Iterable from typing import Generic, TypeVar _lowerCAmelCase = TypeVar("_T") class lowerCAmelCase_ ( Generic[_T] ): def __init__( self : str , _A : Iterable[_T] | None = None ): _UpperCamelCase = list(iterable or [] ) _UpperCamelCase = [] def __len__( self : Optional[Any] ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] ): return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def UpperCamelCase_ ( self : int , _A : _T ): self._stacka.append(_A ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self._stacka.pop _UpperCamelCase = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
def _snake_case ( __snake_case , __snake_case ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _UpperCamelCase = (boundary[1] - boundary[0]) / steps _UpperCamelCase = boundary[0] _UpperCamelCase = boundary[1] _UpperCamelCase = make_points(__snake_case , __snake_case , __snake_case ) _UpperCamelCase = 0.0 y += (h / 2.0) * f(__snake_case ) for i in x_i: # print(i) y += h * f(__snake_case ) y += (h / 2.0) * f(__snake_case ) return y def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = a + h while x < (b - h): yield x _UpperCamelCase = x + h def _snake_case ( __snake_case ): # enter your function here _UpperCamelCase = (x - 0) * (x - 0) return y def _snake_case ( ): _UpperCamelCase = 0.0 # Lower bound of integration _UpperCamelCase = 1.0 # Upper bound of integration _UpperCamelCase = 10.0 # define number of steps or resolution _UpperCamelCase = [a, b] # define boundary of integration _UpperCamelCase = method_a(__snake_case , __snake_case ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( __snake_case ): for param in module.parameters(): _UpperCamelCase = False def _snake_case ( ): _UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCamelCase = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _snake_case ( __snake_case ): _UpperCamelCase = plt.imshow(__snake_case ) fig.axes.get_xaxis().set_visible(__snake_case ) fig.axes.get_yaxis().set_visible(__snake_case ) plt.show() def _snake_case ( ): _UpperCamelCase = datetime.now() _UpperCamelCase = current_time.strftime('''%H:%M:%S''' ) return timestamp
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
from __future__ import annotations def _snake_case ( __snake_case ): if len(__snake_case ) == 0: return array _UpperCamelCase , _UpperCamelCase = min(__snake_case ), max(__snake_case ) # Compute the variables _UpperCamelCase = _max - _min + 1 _UpperCamelCase , _UpperCamelCase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _UpperCamelCase = i - _min _UpperCamelCase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _UpperCamelCase = 0 for i in range(__snake_case ): while holes_repeat[i] > 0: _UpperCamelCase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input("Enter numbers separated by comma:\n") _lowerCAmelCase = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case , __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case , __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__snake_case , __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case , add_adapter=__snake_case , adapter_stride=__snake_case , adapter_kernel_size=__snake_case , use_auth_token=__snake_case , output_hidden_size=__snake_case , ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case , use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder , __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__snake_case ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 250004 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") _lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def _snake_case ( __snake_case ): _UpperCamelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f"""{test_file} instead.""" ) _UpperCamelCase = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) _UpperCamelCase = components[:-1] + [test_fn.replace('''.py''' , '''''' )] _UpperCamelCase = '''.'''.join(__snake_case ) return test_module_path def _snake_case ( __snake_case ): _UpperCamelCase = get_module_path(__snake_case ) _UpperCamelCase = importlib.import_module(__snake_case ) return test_module def _snake_case ( __snake_case ): _UpperCamelCase = [] _UpperCamelCase = get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def _snake_case ( __snake_case ): _UpperCamelCase = [] _UpperCamelCase = get_test_module(__snake_case ) for attr in dir(__snake_case ): _UpperCamelCase = getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase = getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def _snake_case ( __snake_case ): _UpperCamelCase = get_test_classes(__snake_case ) _UpperCamelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def _snake_case ( __snake_case ): _UpperCamelCase = test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() _UpperCamelCase = None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase = test.model_tester.__class__ return model_tester def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = get_test_classes(__snake_case ) _UpperCamelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = get_test_classes_for_model(__snake_case , __snake_case ) _UpperCamelCase = [] for test_class in test_classes: _UpperCamelCase = get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def _snake_case ( __snake_case ): _UpperCamelCase = get_test_classes(__snake_case ) _UpperCamelCase = {test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def _snake_case ( __snake_case ): _UpperCamelCase = get_model_classes(__snake_case ) _UpperCamelCase = { model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def _snake_case ( __snake_case ): _UpperCamelCase = get_model_classes(__snake_case ) _UpperCamelCase = { model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def _snake_case ( __snake_case ): if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = (UnCLIPScheduler,) def UpperCamelCase_ ( self : Any , **_A : int ): _UpperCamelCase = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_A ) return config def UpperCamelCase_ ( self : Tuple ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ ( self : int ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_A ) def UpperCamelCase_ ( self : Tuple ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def UpperCamelCase_ ( self : Optional[Any] ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ ( self : str ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_A , prev_timestep=_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(variance_type='''fixed_small_log''' ) _UpperCamelCase = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(variance_type='''learned_range''' ) _UpperCamelCase = scheduler_class(**_A ) _UpperCamelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_A ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_A ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_A ) - -0.001_0011 < 1e-5 def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) _UpperCamelCase = scheduler.timesteps _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual _UpperCamelCase = model(_A , _A ) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(_A , _A , _A , generator=_A ).prev_sample _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(25 ) _UpperCamelCase = scheduler.timesteps _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual _UpperCamelCase = model(_A , _A ) if i + 1 == timesteps.shape[0]: _UpperCamelCase = None else: _UpperCamelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step( _A , _A , _A , prev_timestep=_A , generator=_A ).prev_sample _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Dict ): pass
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _lowerCAmelCase = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _lowerCAmelCase = { "ctrl": 256, } _lowerCAmelCase = { "Pregnancy": 168_629, "Christianity": 7_675, "Explain": 106_423, "Fitness": 63_440, "Saving": 63_163, "Ask": 27_171, "Ass": 95_985, "Joke": 163_509, "Questions": 45_622, "Thoughts": 49_605, "Retail": 52_342, "Feminism": 164_338, "Writing": 11_992, "Atheism": 192_263, "Netflix": 48_616, "Computing": 39_639, "Opinion": 43_213, "Alone": 44_967, "Funny": 58_917, "Gaming": 40_358, "Human": 4_088, "India": 1_331, "Joker": 77_138, "Diet": 36_206, "Legal": 11_859, "Norman": 4_939, "Tip": 72_689, "Weight": 52_343, "Movies": 46_273, "Running": 23_425, "Science": 2_090, "Horror": 37_793, "Confession": 60_572, "Finance": 12_250, "Politics": 16_360, "Scary": 191_985, "Support": 12_654, "Technologies": 32_516, "Teenage": 66_160, "Event": 32_769, "Learned": 67_460, "Notion": 182_770, "Wikipedia": 37_583, "Books": 6_665, "Extract": 76_050, "Confessions": 102_701, "Conspiracy": 75_932, "Links": 63_674, "Narcissus": 150_425, "Relationship": 54_766, "Relationships": 134_796, "Reviews": 41_671, "News": 4_256, "Translation": 26_820, "multilingual": 128_406, } def _snake_case ( __snake_case ): _UpperCamelCase = set() _UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase = char _UpperCamelCase = set(__snake_case ) return pairs class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = CONTROL_CODES def __init__( self : Optional[int] , _A : Dict , _A : str , _A : Union[str, Any]="<unk>" , **_A : List[str] ): super().__init__(unk_token=_A , **_A ) with open(_A , encoding='''utf-8''' ) as vocab_handle: _UpperCamelCase = json.load(_A ) _UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(_A , encoding='''utf-8''' ) as merges_handle: _UpperCamelCase = merges_handle.read().split('''\n''' )[1:-1] _UpperCamelCase = [tuple(merge.split() ) for merge in merges] _UpperCamelCase = dict(zip(_A , range(len(_A ) ) ) ) _UpperCamelCase = {} @property def UpperCamelCase_ ( self : Dict ): return len(self.encoder ) def UpperCamelCase_ ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] ): if token in self.cache: return self.cache[token] _UpperCamelCase = tuple(_A ) _UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _UpperCamelCase = get_pairs(_A ) if not pairs: return token while True: _UpperCamelCase = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase = bigram _UpperCamelCase = [] _UpperCamelCase = 0 while i < len(_A ): try: _UpperCamelCase = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase = tuple(_A ) _UpperCamelCase = new_word if len(_A ) == 1: break else: _UpperCamelCase = get_pairs(_A ) _UpperCamelCase = '''@@ '''.join(_A ) _UpperCamelCase = word[:-4] _UpperCamelCase = word return word def UpperCamelCase_ ( self : Tuple , _A : int ): _UpperCamelCase = [] _UpperCamelCase = re.findall(R'''\S+\n?''' , _A ) for token in words: split_tokens.extend(list(self.bpe(_A ).split(''' ''' ) ) ) return split_tokens def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] ): return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self : int , _A : int ): return self.decoder.get(_A , self.unk_token ) def UpperCamelCase_ ( self : str , _A : Optional[int] ): _UpperCamelCase = ''' '''.join(_A ).replace('''@@ ''' , '''''' ).strip() return out_string def UpperCamelCase_ ( self : Union[str, Any] , _A : str , _A : Optional[str] = None ): if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) _UpperCamelCase = 0 with open(_A , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _UpperCamelCase = token_index writer.write(''' '''.join(_A ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__lowercase )}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The input training data file (a text file)."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "An optional input train ref data file for whole word mask in Chinese."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether ot not to use whole word mask."} ) UpperCAmelCase = field( default=0.1_5, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) UpperCAmelCase = field( default=1 / 6, metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) }, ) UpperCAmelCase = field( default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) UpperCAmelCase = field( default=-1, metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( __snake_case , __snake_case , __snake_case = False , __snake_case = None , ): def _dataset(__snake_case , __snake_case=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=__snake_case , file_path=__snake_case , block_size=args.block_size , ref_path=__snake_case , ) return LineByLineTextDataset(tokenizer=__snake_case , file_path=__snake_case , block_size=args.block_size ) else: return TextDataset( tokenizer=__snake_case , file_path=__snake_case , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__snake_case , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__snake_case ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCamelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _UpperCamelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: _UpperCamelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: _UpperCamelCase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) _UpperCamelCase = AutoModelWithLMHead.from_config(__snake_case ) model.resize_token_embeddings(len(__snake_case ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: _UpperCamelCase = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCamelCase = min(data_args.block_size , tokenizer.max_len ) # Get datasets _UpperCamelCase = ( get_dataset(__snake_case , tokenizer=__snake_case , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCamelCase = ( get_dataset(__snake_case , tokenizer=__snake_case , evaluate=__snake_case , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCamelCase = DataCollatorForPermutationLanguageModeling( tokenizer=__snake_case , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _UpperCamelCase = DataCollatorForWholeWordMask( tokenizer=__snake_case , mlm_probability=data_args.mlm_probability ) else: _UpperCamelCase = DataCollatorForLanguageModeling( tokenizer=__snake_case , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , data_collator=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , prediction_loss_only=__snake_case , ) # Training if training_args.do_train: _UpperCamelCase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__snake_case ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = math.exp(eval_output['''eval_loss'''] ) _UpperCamelCase = {'''perplexity''': perplexity} _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , __snake_case , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = 42 class lowerCAmelCase_ ( __lowercase, __lowercase ): @register_to_config def __init__( self : int , _A : int = 32 , _A : int = 64 , _A : int = 20 , _A : int = 768 , _A : Union[str, Any]=77 , _A : Optional[Any]=4 , _A : float = 0.0 , _A : str = "silu" , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional[str] = "linear" , _A : Optional[str] = "prd" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[int] = None , ): super().__init__() _UpperCamelCase = num_attention_heads _UpperCamelCase = attention_head_dim _UpperCamelCase = num_attention_heads * attention_head_dim _UpperCamelCase = additional_embeddings _UpperCamelCase = time_embed_dim or inner_dim _UpperCamelCase = embedding_proj_dim or embedding_dim _UpperCamelCase = clip_embed_dim or embedding_dim _UpperCamelCase = Timesteps(_A , _A , 0 ) _UpperCamelCase = TimestepEmbedding(_A , _A , out_dim=_A , act_fn=_A ) _UpperCamelCase = nn.Linear(_A , _A ) if embedding_proj_norm_type is None: _UpperCamelCase = None elif embedding_proj_norm_type == "layer": _UpperCamelCase = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _UpperCamelCase = nn.Linear(_A , _A ) if encoder_hid_proj_type is None: _UpperCamelCase = None elif encoder_hid_proj_type == "linear": _UpperCamelCase = nn.Linear(_A , _A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _UpperCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _A ) ) if added_emb_type == "prd": _UpperCamelCase = nn.Parameter(torch.zeros(1 , 1 , _A ) ) elif added_emb_type is None: _UpperCamelCase = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _UpperCamelCase = nn.ModuleList( [ BasicTransformerBlock( _A , _A , _A , dropout=_A , activation_fn='''gelu''' , attention_bias=_A , ) for d in range(_A ) ] ) if norm_in_type == "layer": _UpperCamelCase = nn.LayerNorm(_A ) elif norm_in_type is None: _UpperCamelCase = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _UpperCamelCase = nn.LayerNorm(_A ) _UpperCamelCase = nn.Linear(_A , _A ) _UpperCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) _UpperCamelCase = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , _A , persistent=_A ) _UpperCamelCase = nn.Parameter(torch.zeros(1 , _A ) ) _UpperCamelCase = nn.Parameter(torch.zeros(1 , _A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = {} def fn_recursive_add_processors(_A : str , _A : torch.nn.Module , _A : Dict[str, AttentionProcessor] ): if hasattr(_A , '''set_processor''' ): _UpperCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , _A , _A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A , _A , _A ) return processors def UpperCamelCase_ ( self : Optional[Any] , _A : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): _UpperCamelCase = len(self.attn_processors.keys() ) if isinstance(_A , _A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A : str , _A : torch.nn.Module , _A : List[str] ): if hasattr(_A , '''set_processor''' ): if not isinstance(_A , _A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , _A , _A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A , _A , _A ) def UpperCamelCase_ ( self : Union[str, Any] ): self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : Union[torch.Tensor, float, int] , _A : torch.FloatTensor , _A : Optional[torch.FloatTensor] = None , _A : Optional[torch.BoolTensor] = None , _A : bool = True , ): _UpperCamelCase = hidden_states.shape[0] _UpperCamelCase = timestep if not torch.is_tensor(_A ): _UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _UpperCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCamelCase = timesteps * torch.ones(_A , dtype=timesteps.dtype , device=timesteps.device ) _UpperCamelCase = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _UpperCamelCase = timesteps_projected.to(dtype=self.dtype ) _UpperCamelCase = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _UpperCamelCase = self.embedding_proj_norm(_A ) _UpperCamelCase = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _UpperCamelCase = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) _UpperCamelCase = self.proj_in(_A ) _UpperCamelCase = self.positional_embedding.to(hidden_states.dtype ) _UpperCamelCase = [] _UpperCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _UpperCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _UpperCamelCase = hidden_states[:, None, :] _UpperCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _UpperCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(_A , -1 , -1 ) additional_embeds.append(_A ) _UpperCamelCase = torch.cat( _A , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _UpperCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _UpperCamelCase = F.pad( _A , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _UpperCamelCase = hidden_states + positional_embeddings if attention_mask is not None: _UpperCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 _UpperCamelCase = F.pad(_A , (0, self.additional_embeddings) , value=0.0 ) _UpperCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _UpperCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _UpperCamelCase = self.norm_in(_A ) for block in self.transformer_blocks: _UpperCamelCase = block(_A , attention_mask=_A ) _UpperCamelCase = self.norm_out(_A ) if self.prd_embedding is not None: _UpperCamelCase = hidden_states[:, -1] else: _UpperCamelCase = hidden_states[:, additional_embeddings_len:] _UpperCamelCase = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def UpperCamelCase_ ( self : List[Any] , _A : Dict ): _UpperCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowerCAmelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." }, ) def UpperCamelCase_ ( self : str ): _UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(_A , _A ): _UpperCamelCase = v.to_dict() return d
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if index == number_of_items: return 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = knapsack(__snake_case , __snake_case , __snake_case , __snake_case , index + 1 ) if weights[index] <= max_weight: _UpperCamelCase = values[index] + knapsack( __snake_case , __snake_case , __snake_case , max_weight - weights[index] , index + 1 ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
def _snake_case ( __snake_case ): _UpperCamelCase = len(__snake_case ) _UpperCamelCase = sum(__snake_case ) _UpperCamelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCamelCase = True for i in range(1 , s + 1 ): _UpperCamelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCamelCase = dp[i][j - 1] if arr[i - 1] <= j: _UpperCamelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCamelCase = s - 2 * j break return diff
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def UpperCamelCase_ ( self : Tuple ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.dummy_uncond_unet _UpperCamelCase = DDIMScheduler() _UpperCamelCase = self.dummy_vq_model _UpperCamelCase = LDMPipeline(unet=_A , vqvae=_A , scheduler=_A ) ldm.to(_A ) ldm.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = ldm(generator=_A , num_inference_steps=2 , output_type='''numpy''' ).images _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = ldm(generator=_A , num_inference_steps=2 , output_type='''numpy''' , return_dict=_A )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) _UpperCamelCase = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): _UpperCamelCase = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(_A ) ldm.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = ldm(generator=_A , num_inference_steps=5 , output_type='''numpy''' ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCamelCase = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) _UpperCamelCase = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger("transformers.models.speecht5") def _snake_case ( __snake_case , __snake_case , __snake_case ): hf_model.apply_weight_norm() _UpperCamelCase = checkpoint['''input_conv.weight_g'''] _UpperCamelCase = checkpoint['''input_conv.weight_v'''] _UpperCamelCase = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): _UpperCamelCase = checkpoint[f"""upsamples.{i}.1.weight_g"""] _UpperCamelCase = checkpoint[f"""upsamples.{i}.1.weight_v"""] _UpperCamelCase = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _UpperCamelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] _UpperCamelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] _UpperCamelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] _UpperCamelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] _UpperCamelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] _UpperCamelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] _UpperCamelCase = checkpoint['''output_conv.1.weight_g'''] _UpperCamelCase = checkpoint['''output_conv.1.weight_v'''] _UpperCamelCase = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , ): if config_path is not None: _UpperCamelCase = SpeechTaHifiGanConfig.from_pretrained(__snake_case ) else: _UpperCamelCase = SpeechTaHifiGanConfig() _UpperCamelCase = SpeechTaHifiGan(__snake_case ) _UpperCamelCase = torch.load(__snake_case ) load_weights(orig_checkpoint['''model''']['''generator'''] , __snake_case , __snake_case ) _UpperCamelCase = np.load(__snake_case ) _UpperCamelCase = stats[0].reshape(-1 ) _UpperCamelCase = stats[1].reshape(-1 ) _UpperCamelCase = torch.from_numpy(__snake_case ).float() _UpperCamelCase = torch.from_numpy(__snake_case ).float() model.save_pretrained(__snake_case ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _lowerCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
from collections.abc import Callable class lowerCAmelCase_ : def __init__( self : Tuple , _A : Callable | None = None ): # Stores actual heap items. _UpperCamelCase = [] # Stores indexes of each item for supporting updates and deletion. _UpperCamelCase = {} # Stores current size of heap. _UpperCamelCase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _UpperCamelCase = key or (lambda _A : x) def UpperCamelCase_ ( self : List[Any] , _A : int ): return int((i - 1) / 2 ) if i > 0 else None def UpperCamelCase_ ( self : str , _A : int ): _UpperCamelCase = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCamelCase_ ( self : Dict , _A : int ): _UpperCamelCase = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCamelCase_ ( self : List[Any] , _A : int , _A : int ): _UpperCamelCase , _UpperCamelCase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _UpperCamelCase , _UpperCamelCase = self.arr[j], self.arr[i] def UpperCamelCase_ ( self : Union[str, Any] , _A : int , _A : int ): return self.arr[i][1] < self.arr[j][1] def UpperCamelCase_ ( self : List[str] , _A : int ): _UpperCamelCase = self._left(_A ) _UpperCamelCase = self._right(_A ) _UpperCamelCase = i if left is not None and not self._cmp(_A , _A ): _UpperCamelCase = left if right is not None and not self._cmp(_A , _A ): _UpperCamelCase = right return valid_parent def UpperCamelCase_ ( self : Optional[int] , _A : int ): _UpperCamelCase = self._parent(_A ) while parent is not None and not self._cmp(_A , _A ): self._swap(_A , _A ) _UpperCamelCase , _UpperCamelCase = parent, self._parent(_A ) def UpperCamelCase_ ( self : Union[str, Any] , _A : int ): _UpperCamelCase = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A , _A ) _UpperCamelCase , _UpperCamelCase = valid_parent, self._get_valid_parent(_A ) def UpperCamelCase_ ( self : Tuple , _A : int , _A : int ): if item not in self.pos_map: return _UpperCamelCase = self.pos_map[item] _UpperCamelCase = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def UpperCamelCase_ ( self : Dict , _A : int ): if item not in self.pos_map: return _UpperCamelCase = self.pos_map[item] del self.pos_map[item] _UpperCamelCase = self.arr[self.size - 1] _UpperCamelCase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def UpperCamelCase_ ( self : Union[str, Any] , _A : int , _A : int ): _UpperCamelCase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _UpperCamelCase = [item, self.key(_A )] _UpperCamelCase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCamelCase_ ( self : List[Any] ): return self.arr[0] if self.size else None def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _snake_case ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
def _snake_case ( ): _UpperCamelCase = 0 for i in range(1 , 1001 ): total += i**i return str(__snake_case )[-10:] if __name__ == "__main__": print(solution())
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
def _snake_case ( __snake_case ): _UpperCamelCase = int(__snake_case ) if decimal in (0, 1): # Exit cases for the recursion return str(__snake_case ) _UpperCamelCase , _UpperCamelCase = divmod(__snake_case , 2 ) return binary_recursive(__snake_case ) + str(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase = str(__snake_case ).strip() if not number: raise ValueError('''No input value was provided''' ) _UpperCamelCase = '''-''' if number.startswith('''-''' ) else '''''' _UpperCamelCase = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f"""{negative}0b{binary_recursive(int(__snake_case ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
from __future__ import annotations _lowerCAmelCase = [] def _snake_case ( __snake_case , __snake_case , __snake_case ): for i in range(len(__snake_case ) ): if board[row][i] == 1: return False for i in range(len(__snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ): if board[i][j] == 1: return False return True def _snake_case ( __snake_case , __snake_case ): if row >= len(__snake_case ): solution.append(__snake_case ) printboard(__snake_case ) print() return True for i in range(len(__snake_case ) ): if is_safe(__snake_case , __snake_case , __snake_case ): _UpperCamelCase = 1 solve(__snake_case , row + 1 ) _UpperCamelCase = 0 return False def _snake_case ( __snake_case ): for i in range(len(__snake_case ) ): for j in range(len(__snake_case ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) _lowerCAmelCase = 8 _lowerCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
from __future__ import annotations def _snake_case ( __snake_case , __snake_case = None ): _UpperCamelCase = word_bank or [] # create a table _UpperCamelCase = len(__snake_case ) + 1 _UpperCamelCase = [] for _ in range(__snake_case ): table.append([] ) # seed value _UpperCamelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(__snake_case ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__snake_case )] == word: _UpperCamelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__snake_case )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__snake_case )]: combination.reverse() return table[len(__snake_case )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
def _snake_case ( __snake_case , __snake_case ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) _UpperCamelCase = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__snake_case ) ) return round(__snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS _lowerCAmelCase = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "retribert" def __init__( self : int , _A : int=3_0522 , _A : Dict=768 , _A : Tuple=8 , _A : int=12 , _A : Optional[Any]=3072 , _A : int="gelu" , _A : str=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : str=2 , _A : str=0.02 , _A : Optional[int]=1e-12 , _A : List[Any]=True , _A : Optional[int]=128 , _A : List[str]=0 , **_A : str , ): super().__init__(pad_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = share_encoders _UpperCamelCase = projection_dim
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
from __future__ import annotations def _snake_case ( __snake_case ): return [ord(__snake_case ) - 96 for elem in plain] def _snake_case ( __snake_case ): return "".join(chr(elem + 96 ) for elem in encoded ) def _snake_case ( ): _UpperCamelCase = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __snake_case ) print('''Decoded:''' , decode(__snake_case ) ) if __name__ == "__main__": main()
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1