code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _lowerCAmelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _lowerCAmelCase = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def _snake_case ( ): _UpperCamelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _UpperCamelCase = bs[:] _UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 _UpperCamelCase = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def _snake_case ( __snake_case ): _UpperCamelCase = set() _UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase = char return pairs class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self : Dict , _A : Optional[int] , _A : List[Any] , _A : List[str]="replace" , _A : Optional[int]="<s>" , _A : Optional[int]="</s>" , _A : str="</s>" , _A : Any="<s>" , _A : Tuple="<unk>" , _A : Dict="<pad>" , _A : List[Any]="<mask>" , _A : List[Any]=False , **_A : Tuple , ): _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding='''utf-8''' ) as vocab_handle: _UpperCamelCase = json.load(_A ) _UpperCamelCase = {v: k for k, v in self.encoder.items()} _UpperCamelCase = errors # how to handle errors in decoding _UpperCamelCase = bytes_to_unicode() _UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding='''utf-8''' ) as merges_handle: _UpperCamelCase = merges_handle.read().split('''\n''' )[1:-1] _UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] _UpperCamelCase = dict(zip(_A , range(len(_A ) ) ) ) _UpperCamelCase = {} _UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def UpperCamelCase_ ( self : Optional[Any] ): return len(self.encoder ) def UpperCamelCase_ ( self : List[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase_ ( self : Tuple , _A : Dict ): if token in self.cache: return self.cache[token] _UpperCamelCase = tuple(_A ) _UpperCamelCase = get_pairs(_A ) if not pairs: return token while True: _UpperCamelCase = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase = bigram _UpperCamelCase = [] _UpperCamelCase = 0 while i < len(_A ): try: _UpperCamelCase = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase = tuple(_A ) _UpperCamelCase = new_word if len(_A ) == 1: break else: _UpperCamelCase = get_pairs(_A ) _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = word return word def UpperCamelCase_ ( self : Optional[int] , _A : Tuple ): _UpperCamelCase = [] for token in re.findall(self.pat , _A ): _UpperCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(''' ''' ) ) return bpe_tokens def UpperCamelCase_ ( self : Any , _A : List[str] ): return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self : int , _A : Tuple ): return self.decoder.get(_A ) def UpperCamelCase_ ( self : Dict , _A : List[Any] ): _UpperCamelCase = ''''''.join(_A ) _UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCamelCase_ ( self : Optional[Any] , _A : str , _A : Optional[str] = None ): if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) _UpperCamelCase = 0 with open(_A , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _UpperCamelCase = token_index writer.write(''' '''.join(_A ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def UpperCamelCase_ ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Dict , _A : int , _A : List[Any]=False , **_A : List[Any] ): _UpperCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): _UpperCamelCase = ''' ''' + text return (text, kwargs)
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
import os def _snake_case ( ): _UpperCamelCase = os.path.join(os.path.dirname(__snake_case ) , '''num.txt''' ) with open(__snake_case ) as file_hand: return str(sum(int(__snake_case ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
import heapq as hq import math from collections.abc import Iterator class lowerCAmelCase_ : def __init__( self : Union[str, Any] , _A : Optional[int] ): _UpperCamelCase = str(id_ ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = [] _UpperCamelCase = {} # {vertex:distance} def __lt__( self : Optional[Any] , _A : Optional[Any] ): return self.key < other.key def __repr__( self : Optional[int] ): return self.id def UpperCamelCase_ ( self : int , _A : List[str] ): self.neighbors.append(_A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : int ): _UpperCamelCase = weight def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] for u in graph: _UpperCamelCase = math.inf _UpperCamelCase = None _UpperCamelCase = 0 _UpperCamelCase = graph[:] while q: _UpperCamelCase = min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _UpperCamelCase = u _UpperCamelCase = u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _snake_case ( __snake_case , __snake_case ): for u in graph: _UpperCamelCase = math.inf _UpperCamelCase = None _UpperCamelCase = 0 _UpperCamelCase = list(__snake_case ) hq.heapify(__snake_case ) while h: _UpperCamelCase = hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _UpperCamelCase = u _UpperCamelCase = u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _snake_case ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase = "__DUMMY_TRANSFORMERS_USER__" _lowerCAmelCase = "Dummy User" _lowerCAmelCase = "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" _lowerCAmelCase = "https://hub-ci.huggingface.co" _lowerCAmelCase = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" _lowerCAmelCase = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" _lowerCAmelCase = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def _snake_case ( __snake_case ): monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , __snake_case ) @pytest.fixture def _snake_case ( __snake_case ): monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , __snake_case ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , __snake_case ) @pytest.fixture def _snake_case ( __snake_case ): monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , __snake_case ) @pytest.fixture def _snake_case ( __snake_case , __snake_case ): HfFolder.save_token(__snake_case ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def _snake_case ( ): return HfApi(endpoint=__snake_case ) @pytest.fixture(scope='''session''' ) def _snake_case ( __snake_case ): _UpperCamelCase = HfFolder.get_token() HfFolder.save_token(__snake_case ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__snake_case ) @pytest.fixture def _snake_case ( __snake_case ): def _cleanup_repo(__snake_case ): hf_api.delete_repo(__snake_case , token=__snake_case , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def _snake_case ( __snake_case ): @contextmanager def _temporary_repo(__snake_case ): try: yield repo_id finally: cleanup_repo(__snake_case ) return _temporary_repo @pytest.fixture(scope='''session''' ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = f"""repo_txt_data-{int(time.time() * 10E3 )}""" _UpperCamelCase = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__snake_case , token=__snake_case , repo_type='''dataset''' , private=__snake_case ) hf_api.upload_file( token=__snake_case , path_or_fileobj=str(__snake_case ) , path_in_repo='''data/text_data.txt''' , repo_id=__snake_case , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(__snake_case , token=__snake_case , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case ( __snake_case , __snake_case , __snake_case ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = f"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" _UpperCamelCase = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__snake_case , token=__snake_case , repo_type='''dataset''' , private=__snake_case ) hf_api.upload_file( token=__snake_case , path_or_fileobj=str(__snake_case ) , path_in_repo='''data.zip''' , repo_id=__snake_case , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(__snake_case , token=__snake_case , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case ( __snake_case , __snake_case , __snake_case ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = f"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" _UpperCamelCase = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__snake_case , token=__snake_case , repo_type='''dataset''' , private=__snake_case ) hf_api.upload_file( token=__snake_case , path_or_fileobj=str(__snake_case ) , path_in_repo='''data.zip''' , repo_id=__snake_case , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(__snake_case , token=__snake_case , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case ( __snake_case , __snake_case , __snake_case ): return hf_private_dataset_repo_zipped_img_data_
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
def _snake_case ( __snake_case , __snake_case ): return number | (1 << position) def _snake_case ( __snake_case , __snake_case ): return number & ~(1 << position) def _snake_case ( __snake_case , __snake_case ): return number ^ (1 << position) def _snake_case ( __snake_case , __snake_case ): return ((number >> position) & 1) == 1 def _snake_case ( __snake_case , __snake_case ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self : Any , _A : List[str]=None , **_A : Optional[int] ): super().__init__(features=_A ) _UpperCamelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCamelCase_ ( self : List[Any] , _A : int ): import torch if isinstance(_A , _A ) and column: if all( isinstance(_A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_A ) return column def UpperCamelCase_ ( self : Optional[int] , _A : str ): import torch if isinstance(_A , (str, bytes, type(_A )) ): return value elif isinstance(_A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _UpperCamelCase = {} if isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _UpperCamelCase = {'''dtype''': torch.intaa} elif isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _UpperCamelCase = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A , PIL.Image.Image ): _UpperCamelCase = np.asarray(_A ) return torch.tensor(_A , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCamelCase_ ( self : List[Any] , _A : List[str] ): import torch # support for torch, tf, jax etc. if hasattr(_A , '''__array__''' ) and not isinstance(_A , torch.Tensor ): _UpperCamelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def UpperCamelCase_ ( self : Optional[int] , _A : dict ): return map_nested(self._recursive_tensorize , _A , map_list=_A ) def UpperCamelCase_ ( self : Optional[int] , _A : pa.Table ): _UpperCamelCase = self.numpy_arrow_extractor().extract_row(_A ) _UpperCamelCase = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def UpperCamelCase_ ( self : str , _A : pa.Table ): _UpperCamelCase = self.numpy_arrow_extractor().extract_column(_A ) _UpperCamelCase = self.python_features_decoder.decode_column(_A , pa_table.column_names[0] ) _UpperCamelCase = self.recursive_tensorize(_A ) _UpperCamelCase = self._consolidate(_A ) return column def UpperCamelCase_ ( self : Optional[int] , _A : pa.Table ): _UpperCamelCase = self.numpy_arrow_extractor().extract_batch(_A ) _UpperCamelCase = self.python_features_decoder.decode_batch(_A ) _UpperCamelCase = self.recursive_tensorize(_A ) for column_name in batch: _UpperCamelCase = self._consolidate(batch[column_name] ) return batch
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case="attention" ): _UpperCamelCase = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] _UpperCamelCase = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] _UpperCamelCase = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] _UpperCamelCase = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case=False ): if split_mlp_wi: _UpperCamelCase = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] _UpperCamelCase = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] _UpperCamelCase = (wi_a, wi_a) else: _UpperCamelCase = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] _UpperCamelCase = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def _snake_case ( __snake_case , *, __snake_case , __snake_case ): _UpperCamelCase = traverse_util.flatten_dict(variables['''target'''] ) _UpperCamelCase = {'''/'''.join(__snake_case ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _UpperCamelCase = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , __snake_case ) _UpperCamelCase = collections.OrderedDict() # Shared embeddings. _UpperCamelCase = old['''token_embedder/embedding'''] # Encoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). _UpperCamelCase = tax_layer_norm_lookup(__snake_case , __snake_case , '''encoder''' , '''pre_attention_layer_norm''' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = tax_attention_lookup(__snake_case , __snake_case , '''encoder''' , '''attention''' ) _UpperCamelCase = layer_norm _UpperCamelCase = k.T _UpperCamelCase = o.T _UpperCamelCase = q.T _UpperCamelCase = v.T # Block i, layer 1 (MLP). _UpperCamelCase = tax_layer_norm_lookup(__snake_case , __snake_case , '''encoder''' , '''pre_mlp_layer_norm''' ) _UpperCamelCase , _UpperCamelCase = tax_mlp_lookup(__snake_case , __snake_case , '''encoder''' , __snake_case ) _UpperCamelCase = layer_norm if split_mlp_wi: _UpperCamelCase = wi[0].T _UpperCamelCase = wi[1].T else: _UpperCamelCase = wi.T _UpperCamelCase = wo.T _UpperCamelCase = old[ '''encoder/relpos_bias/rel_embedding''' ].T _UpperCamelCase = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). _UpperCamelCase = tax_layer_norm_lookup(__snake_case , __snake_case , '''decoder''' , '''pre_self_attention_layer_norm''' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = tax_attention_lookup(__snake_case , __snake_case , '''decoder''' , '''self_attention''' ) _UpperCamelCase = layer_norm _UpperCamelCase = k.T _UpperCamelCase = o.T _UpperCamelCase = q.T _UpperCamelCase = v.T # Block i, layer 1 (Cross Attention). _UpperCamelCase = tax_layer_norm_lookup(__snake_case , __snake_case , '''decoder''' , '''pre_cross_attention_layer_norm''' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = tax_attention_lookup(__snake_case , __snake_case , '''decoder''' , '''encoder_decoder_attention''' ) _UpperCamelCase = layer_norm _UpperCamelCase = k.T _UpperCamelCase = o.T _UpperCamelCase = q.T _UpperCamelCase = v.T # Block i, layer 2 (MLP). _UpperCamelCase = tax_layer_norm_lookup(__snake_case , __snake_case , '''decoder''' , '''pre_mlp_layer_norm''' ) _UpperCamelCase , _UpperCamelCase = tax_mlp_lookup(__snake_case , __snake_case , '''decoder''' , __snake_case ) _UpperCamelCase = layer_norm if split_mlp_wi: _UpperCamelCase = wi[0].T _UpperCamelCase = wi[1].T else: _UpperCamelCase = wi.T _UpperCamelCase = wo.T _UpperCamelCase = old['''decoder/decoder_norm/scale'''] _UpperCamelCase = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _UpperCamelCase = old['''decoder/logits_dense/kernel'''].T return new def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _UpperCamelCase = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _UpperCamelCase = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _UpperCamelCase = state_dict['''shared.weight'''] return state_dict def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = checkpoints.load_tax_checkpoint(__snake_case ) _UpperCamelCase = convert_tax_to_pytorch(__snake_case , num_layers=config.num_layers , is_encoder_only=__snake_case ) _UpperCamelCase = make_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case , strict=__snake_case ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = False ): _UpperCamelCase = TaConfig.from_json_file(__snake_case ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _UpperCamelCase = TaEncoderModel(__snake_case ) else: _UpperCamelCase = TaForConditionalGeneration(__snake_case ) # Load weights from tf checkpoint load_tax_weights_in_ta(__snake_case , __snake_case , __snake_case , __snake_case ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__snake_case ) # Verify that we can load the checkpoint. model.from_pretrained(__snake_case ) print('''Done''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) _lowerCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
import math class lowerCAmelCase_ : def UpperCamelCase_ ( self : Dict , _A : list[list[float]] , _A : list[int] ): _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(_A ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase_ ( self : Optional[Any] , _A : list[list[int | float]] , _A : list[int] , _A : int , _A : float ): for i in range(len(_A ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _snake_case ( ): # Training Examples ( m, n ) _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(__snake_case ): for j in range(len(__snake_case ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(__snake_case , __snake_case ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(__snake_case , __snake_case , __snake_case , __snake_case ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(__snake_case , __snake_case ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @require_torch def UpperCamelCase_ ( self : Any ): _UpperCamelCase = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) _UpperCamelCase = load_dataset('''ashraq/esc50''' ) _UpperCamelCase = dataset['''train''']['''audio'''][-1]['''array'''] _UpperCamelCase = audio_classifier(_A , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_A ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def UpperCamelCase_ ( self : Tuple ): pass @slow @require_torch def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog _UpperCamelCase = load_dataset('''ashraq/esc50''' ) _UpperCamelCase = dataset['''train''']['''audio'''][-1]['''array'''] _UpperCamelCase = audio_classifier(_A , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_A ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) _UpperCamelCase = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) _UpperCamelCase = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def UpperCamelCase_ ( self : List[str] ): pass
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "sew" def __init__( self : List[str] , _A : Union[str, Any]=32 , _A : str=768 , _A : List[str]=12 , _A : List[str]=12 , _A : Optional[int]=3072 , _A : Optional[int]=2 , _A : str="gelu" , _A : Dict=0.1 , _A : List[Any]=0.1 , _A : Any=0.1 , _A : Dict=0.0 , _A : str=0.1 , _A : Optional[int]=0.1 , _A : Dict=0.02 , _A : Optional[int]=1e-5 , _A : Dict="group" , _A : Optional[Any]="gelu" , _A : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _A : Union[str, Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _A : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _A : Optional[int]=False , _A : str=128 , _A : Any=16 , _A : List[Any]=True , _A : Optional[int]=0.05 , _A : Tuple=10 , _A : List[str]=2 , _A : List[str]=0.0 , _A : Optional[int]=10 , _A : int=0 , _A : Optional[int]="mean" , _A : Dict=False , _A : List[Any]=False , _A : List[Any]=256 , _A : List[Any]=0 , _A : List[str]=1 , _A : List[str]=2 , **_A : int , ): super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = conv_bias _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim ) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = squeeze_factor _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length _UpperCamelCase = mask_feature_min_masks # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # sequence classification _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size @property def UpperCamelCase_ ( self : Union[str, Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): _UpperCamelCase = torch.nn.Linear(10 , 10 ) _UpperCamelCase = torch.optim.SGD(model.parameters() , 0.1 ) _UpperCamelCase = Accelerator() _UpperCamelCase = accelerator.prepare(_A ) try: pickle.loads(pickle.dumps(_A ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase = { "Salesforce/codegen-350M-mono": 2_048, } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] UpperCAmelCase = CodeGenTokenizer def __init__( self : Optional[Any] , _A : List[Any]=None , _A : str=None , _A : str=None , _A : List[str]="<|endoftext|>" , _A : Any="<|endoftext|>" , _A : Optional[Any]="<|endoftext|>" , _A : List[Any]=False , **_A : Optional[int] , ): super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) if kwargs.pop('''add_bos_token''' , _A ): _UpperCamelCase = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) _UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _A ) != add_prefix_space: _UpperCamelCase = getattr(_A , pre_tok_state.pop('''type''' ) ) _UpperCamelCase = add_prefix_space _UpperCamelCase = pre_tok_class(**_A ) _UpperCamelCase = add_prefix_space def UpperCamelCase_ ( self : int , *_A : int , **_A : Any ): _UpperCamelCase = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , *_A : Dict , **_A : int ): _UpperCamelCase = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def UpperCamelCase_ ( self : Any , _A : str , _A : Optional[str] = None ): _UpperCamelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def UpperCamelCase_ ( self : Tuple , _A : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _A : bool = False , _A : bool = None , _A : Optional[List[str]] = None , **_A : Optional[int] , ): _UpperCamelCase = super().decode( token_ids=_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , **_A , ) if truncate_before_pattern is not None and len(_A ) > 0: _UpperCamelCase = self.truncate(_A , _A ) return decoded_text def UpperCamelCase_ ( self : Optional[int] , _A : str , _A : Dict ): def find_re(_A : Optional[Any] , _A : Optional[int] , _A : Tuple ): _UpperCamelCase = pattern.search(_A , _A ) return m.start() if m else -1 _UpperCamelCase = [re.compile(_A , re.MULTILINE ) for pattern in truncate_before_pattern] _UpperCamelCase = list(re.finditer('''^print''' , _A , re.MULTILINE ) ) if len(_A ) > 1: _UpperCamelCase = completion[: prints[1].start()] _UpperCamelCase = list(re.finditer('''^def''' , _A , re.MULTILINE ) ) if len(_A ) > 1: _UpperCamelCase = completion[: defs[1].start()] _UpperCamelCase = 0 _UpperCamelCase = [ pos for pos in [find_re(_A , _A , _A ) for terminal in terminals] if pos != -1 ] if len(_A ) > 0: return completion[: min(_A )] else: return completion
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : def __init__( self : Union[str, Any] , _A : List[Any] , _A : List[Any]=2 , _A : Tuple=True , _A : Any=False , _A : Dict=10 , _A : Optional[int]=3 , _A : Union[str, Any]=32 * 8 , _A : Optional[Any]=32 * 8 , _A : List[str]=4 , _A : Dict=64 , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = is_training _UpperCamelCase = use_auxiliary_loss _UpperCamelCase = num_queries _UpperCamelCase = num_channels _UpperCamelCase = min_size _UpperCamelCase = max_size _UpperCamelCase = num_labels _UpperCamelCase = hidden_dim _UpperCamelCase = hidden_dim def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _A ) _UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_A ) _UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_A ) > 0.5 ).float() _UpperCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=_A ) > 0.5).long() _UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase_ ( self : int ): _UpperCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _UpperCamelCase = self.num_queries _UpperCamelCase = self.num_labels _UpperCamelCase = [1, 1, 1, 1] _UpperCamelCase = self.num_channels _UpperCamelCase = 64 _UpperCamelCase = 128 _UpperCamelCase = self.hidden_dim _UpperCamelCase = self.hidden_dim _UpperCamelCase = self.hidden_dim return config def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = output.encoder_hidden_states _UpperCamelCase = output.pixel_decoder_hidden_states _UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , config.decoder_layers ) def UpperCamelCase_ ( self : Union[str, Any] , _A : List[Any] , _A : Dict , _A : int , _A : List[Any]=False ): with torch.no_grad(): _UpperCamelCase = MaskaFormerModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(pixel_values=_A , pixel_mask=_A ) _UpperCamelCase = model(_A , output_hidden_states=_A ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_A , _A ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : Any , _A : Any , _A : Any , _A : Tuple ): _UpperCamelCase = MaskaFormerForUniversalSegmentation(config=_A ) model.to(_A ) model.eval() def comm_check_on_output(_A : List[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCamelCase = model(pixel_values=_A , pixel_mask=_A ) _UpperCamelCase = model(_A ) comm_check_on_output(_A ) _UpperCamelCase = model( pixel_values=_A , pixel_mask=_A , mask_labels=_A , class_labels=_A ) comm_check_on_output(_A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCAmelCase = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = MaskaFormerModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , has_text_modality=_A ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_A , **_A , output_hidden_states=_A ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_A ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def UpperCamelCase_ ( self : str ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def UpperCamelCase_ ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) @slow def UpperCamelCase_ ( self : int ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _UpperCamelCase = MaskaFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = (self.model_tester.min_size,) * 2 _UpperCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=_A ), '''mask_labels''': torch.randn((2, 10, *size) , device=_A ), '''class_labels''': torch.zeros(2 , 10 , device=_A ).long(), } _UpperCamelCase = self.model_tester.get_config() _UpperCamelCase = MaskaFormerForUniversalSegmentation(_A ).to(_A ) _UpperCamelCase = model(**_A ) self.assertTrue(outputs.loss is not None ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_A , **_A , output_hidden_states=_A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ).to(_A ) _UpperCamelCase = model(**_A , output_attentions=_A ) self.assertTrue(outputs.attentions is not None ) def UpperCamelCase_ ( self : Optional[Any] ): if not self.model_tester.is_training: return _UpperCamelCase = self.all_model_classes[1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = model_class(_A ) model.to(_A ) model.train() _UpperCamelCase = model(_A , mask_labels=_A , class_labels=_A ).loss loss.backward() def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.all_model_classes[1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(_A ).to(_A ) model.train() _UpperCamelCase = model(_A , mask_labels=_A , class_labels=_A ) _UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCAmelCase = 1E-4 def _snake_case ( ): _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Any ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_A ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(_A , return_tensors='''pt''' ).to(_A ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 384, 384) ) with torch.no_grad(): _UpperCamelCase = model(**_A ) _UpperCamelCase = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) _UpperCamelCase = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) _UpperCamelCase = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _A , atol=_A ) ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_A ).eval() _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(_A , return_tensors='''pt''' ).to(_A ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 384, 384) ) with torch.no_grad(): _UpperCamelCase = model(**_A ) # masks_queries_logits _UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _UpperCamelCase = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _UpperCamelCase = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _A , atol=_A ) ) # class_queries_logits _UpperCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _UpperCamelCase = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=_A ) ) def UpperCamelCase_ ( self : str ): _UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_A ).eval() _UpperCamelCase = self.default_image_processor _UpperCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _UpperCamelCase = inputs['''pixel_values'''].to(_A ) _UpperCamelCase = [el.to(_A ) for el in inputs['''mask_labels''']] _UpperCamelCase = [el.to(_A ) for el in inputs['''class_labels''']] with torch.no_grad(): _UpperCamelCase = model(**_A ) self.assertTrue(outputs.loss is not None )
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ): _UpperCamelCase = HfArgumentParser(__snake_case ) _UpperCamelCase = parser.parse_args_into_dataclasses()[0] _UpperCamelCase = TensorFlowBenchmark(args=__snake_case ) try: _UpperCamelCase = parser.parse_args_into_dataclasses()[0] except ValueError as e: _UpperCamelCase = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' _UpperCamelCase = ''' '''.join(str(__snake_case ).split(''' ''' )[:-1] ) _UpperCamelCase = '''''' _UpperCamelCase = eval(str(__snake_case ).split(''' ''' )[-1] ) _UpperCamelCase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__snake_case ) if len(__snake_case ) > 0: _UpperCamelCase = full_error_msg + begin_error_msg + str(__snake_case ) raise ValueError(__snake_case ) benchmark.run() if __name__ == "__main__": main()
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _snake_case ( ): _UpperCamelCase = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } _UpperCamelCase = Dataset.from_dict(__snake_case ) return dataset class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = get_dataset() _UpperCamelCase = make_duplicate_clusters(_A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : str ): _UpperCamelCase = get_dataset() _UpperCamelCase , _UpperCamelCase = deduplicate_dataset(_A ) self.assertEqual(len(_A ) , 2 ) print(_A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , _A )
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "cvt" def __init__( self : Optional[int] , _A : List[Any]=3 , _A : Any=[7, 3, 3] , _A : Optional[int]=[4, 2, 2] , _A : Union[str, Any]=[2, 1, 1] , _A : str=[64, 192, 384] , _A : Tuple=[1, 3, 6] , _A : Optional[Any]=[1, 2, 10] , _A : Optional[int]=[4.0, 4.0, 4.0] , _A : Optional[Any]=[0.0, 0.0, 0.0] , _A : Optional[int]=[0.0, 0.0, 0.0] , _A : int=[0.0, 0.0, 0.1] , _A : Tuple=[True, True, True] , _A : Any=[False, False, True] , _A : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , _A : Union[str, Any]=[3, 3, 3] , _A : List[str]=[1, 1, 1] , _A : str=[2, 2, 2] , _A : Union[str, Any]=[1, 1, 1] , _A : Dict=[1, 1, 1] , _A : List[str]=0.02 , _A : int=1e-12 , **_A : Any , ): super().__init__(**_A ) _UpperCamelCase = num_channels _UpperCamelCase = patch_sizes _UpperCamelCase = patch_stride _UpperCamelCase = patch_padding _UpperCamelCase = embed_dim _UpperCamelCase = num_heads _UpperCamelCase = depth _UpperCamelCase = mlp_ratio _UpperCamelCase = attention_drop_rate _UpperCamelCase = drop_rate _UpperCamelCase = drop_path_rate _UpperCamelCase = qkv_bias _UpperCamelCase = cls_token _UpperCamelCase = qkv_projection_method _UpperCamelCase = kernel_qkv _UpperCamelCase = padding_kv _UpperCamelCase = stride_kv _UpperCamelCase = padding_q _UpperCamelCase = stride_q _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _snake_case ( __snake_case ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__snake_case ) def _snake_case ( __snake_case ): from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__snake_case , id=__snake_case )
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCAmelCase_ ( __lowercase, __lowercase ): @register_to_config def __init__( self : Any , _A : int = 768 , ): super().__init__() _UpperCamelCase = nn.Parameter(torch.zeros(1 , _A ) ) _UpperCamelCase = nn.Parameter(torch.ones(1 , _A ) ) def UpperCamelCase_ ( self : List[str] , _A : Optional[Union[str, torch.device]] = None , _A : Optional[torch.dtype] = None , ): _UpperCamelCase = nn.Parameter(self.mean.to(_A ).to(_A ) ) _UpperCamelCase = nn.Parameter(self.std.to(_A ).to(_A ) ) return self def UpperCamelCase_ ( self : Optional[int] , _A : List[Any] ): _UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase_ ( self : str , _A : List[str] ): _UpperCamelCase = (embeds * self.std) + self.mean return embeds
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , *__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :Any = eval_examples __magic_name__ :str = post_process_function __magic_name__ :int = quant_trainer_args __magic_name__ :List[str] = 1_2_8 # default number of calibration samples def A ( self , __lowerCAmelCase=None ): """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) __magic_name__ :Optional[Any] = calib_dataset if calib_dataset is not None else self.calib_dataset __magic_name__ :Optional[int] = self._remove_unused_columns(__lowerCAmelCase , description='''Calibration''' ) return DataLoader( __lowerCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowerCAmelCase , ) def A ( self , __lowerCAmelCase=None ): """simple docstring""" __magic_name__ :Dict = self.train_dataset if calib_dataset is None else calib_dataset __magic_name__ :Any = self.get_calib_dataloader(__lowerCAmelCase ) __magic_name__ :List[str] = self.model quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args , calib=__lowerCAmelCase ) model.eval() quant_trainer.enable_calibration(__lowerCAmelCase ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__lowerCAmelCase ): # Prediction step __magic_name__ , __magic_name__ , __magic_name__ :str = self.prediction_step(__lowerCAmelCase , __lowerCAmelCase , prediction_loss_only=__lowerCAmelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__lowerCAmelCase , self.quant_trainer_args ) __magic_name__ :Any = model def A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = "eval" ): """simple docstring""" __magic_name__ :Tuple = self.eval_dataset if eval_dataset is None else eval_dataset __magic_name__ :Optional[Any] = self.get_eval_dataloader(__lowerCAmelCase ) __magic_name__ :str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ :Any = self.compute_metrics __magic_name__ :List[Any] = None __magic_name__ :List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __magic_name__ :Optional[Any] = eval_loop( __lowerCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , ) finally: __magic_name__ :Union[str, Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __magic_name__ :Union[str, Any] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions ) __magic_name__ :int = self.compute_metrics(__lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __magic_name__ :Dict = metrics.pop(__lowerCAmelCase ) self.log(__lowerCAmelCase ) else: __magic_name__ :List[str] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __magic_name__ :Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase ) return metrics def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase = "test" ): """simple docstring""" __magic_name__ :int = self.get_test_dataloader(__lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ :Dict = self.compute_metrics __magic_name__ :str = None __magic_name__ :Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __magic_name__ :int = eval_loop( __lowerCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , ) finally: __magic_name__ :List[Any] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __magic_name__ :Optional[Any] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions , '''predict''' ) __magic_name__ :Dict = self.compute_metrics(__lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __magic_name__ :List[str] = metrics.pop(__lowerCAmelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase ) def A ( self , __lowerCAmelCase="./" ): """simple docstring""" __magic_name__ :List[Any] = self.eval_dataset __magic_name__ :Any = self.get_eval_dataloader(__lowerCAmelCase ) __magic_name__ :int = next(iter(__lowerCAmelCase ) ) # saving device - to make it consistent __magic_name__ :str = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple __magic_name__ :int = tuple(v.to(__lowerCAmelCase ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer __magic_name__ :Any = True __magic_name__ :Optional[int] = self.model.to(__lowerCAmelCase ) model.eval() model.float() __magic_name__ :Any = model.module if hasattr(__lowerCAmelCase , '''module''' ) else model quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args ) __magic_name__ :int = os.path.join(__lowerCAmelCase , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) __magic_name__ :Dict = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , export_params=__lowerCAmelCase , opset_version=1_3 , do_constant_folding=__lowerCAmelCase , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__lowerCAmelCase , ) logger.info('''onnx export finished''' )
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import baseaa def _A ( _lowercase ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode('utf-8' ) ) def _A ( _lowercase ) -> str: """simple docstring""" return baseaa.aaadecode(_lowercase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( _snake_case :str = "AAPL" ) -> str: _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) _A = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
2
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase : Dict = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def A_( A : str , A : Tuple=None , A : int=None , A : Union[str, Any]=None): UpperCamelCase = True while ask_again: UpperCamelCase = input(A) try: if default is not None and len(A) == 0: return default return convert_value(A) if convert_value is not None else result except Exception: if error_message is not None: print(A) def A_( A : Any , A : Union[str, Any]=[] , A : Dict=None , A : List[str]=0): UpperCamelCase = BulletMenu(A , A) UpperCamelCase = menu.run(default_choice=A) return convert_value(A) if convert_value is not None else result def A_( A : Tuple): UpperCamelCase = int(A) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value]) def A_( A : List[str]): UpperCamelCase = int(A) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value]) def A_( A : str): UpperCamelCase = int(A) return DynamoBackend(DYNAMO_BACKENDS[value]).value def A_( A : Any): UpperCamelCase = int(A) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value]) def A_( A : Optional[Any]): UpperCamelCase = int(A) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value]) def A_( A : int): return {"yes": True, "no": False}[value.lower()] class SCREAMING_SNAKE_CASE__ ( argparse.RawDescriptionHelpFormatter): def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> int: '''simple docstring''' UpperCamelCase = super()._format_usage(A_ , A_ , A_ , A_ ) UpperCamelCase = usage.replace('<command> [<args>] ' , '' ) return usage
3
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
"""simple docstring""" import qiskit def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) lowerCAmelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCAmelCase = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
4
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
from __future__ import annotations from random import random from typing import Generic, TypeVar _lowerCamelCase = TypeVar('KT') _lowerCamelCase = TypeVar('VT') class UpperCamelCase_ ( Generic[KT, VT] ): def __init__( self :List[str] , __A :KT | str = "root" , __A :VT | None = None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = key SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = [] def __repr__( self :Optional[Any] ) -> str: """simple docstring""" return f'''Node({self.key}: {self.value})''' @property def _snake_case ( self :str ) -> int: """simple docstring""" return len(self.forward ) class UpperCamelCase_ ( Generic[KT, VT] ): def __init__( self :Union[str, Any] , __A :float = 0.5 , __A :int = 16 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = Node[KT, VT]() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = p SCREAMING_SNAKE_CASE__ = max_level def __str__( self :Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = list(self ) if len(__A ) == 0: return f'''SkipList(level={self.level})''' SCREAMING_SNAKE_CASE__ = max((len(str(__A ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE__ = max(__A , 4 ) + 4 SCREAMING_SNAKE_CASE__ = self.head SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(__A , """-""" ) + """* """ * len(__A ) ) lines.append(""" """ * label_size + """| """ * len(__A ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(__A , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(__A ) ) SCREAMING_SNAKE_CASE__ = node.forward lines.append("""None""".ljust(__A ) + """* """ * len(__A ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(__A ) def __iter__( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE__ = node.forward[0] def _snake_case ( self :str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 1 while random() < self.p and level < self.max_level: level += 1 return level def _snake_case ( self :Dict , __A :Optional[int] ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE__ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__A ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _snake_case ( self :Optional[int] , __A :KT ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(__A ) if node is not None: for i, update_node in enumerate(__A ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE__ = node.forward[i] else: SCREAMING_SNAKE_CASE__ = update_node.forward[:i] def _snake_case ( self :List[Any] , __A :KT , __A :VT ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(__A ) if node is not None: SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __A ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE__ = level SCREAMING_SNAKE_CASE__ = Node(__A , __A ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__A ) else: SCREAMING_SNAKE_CASE__ = new_node def _snake_case ( self :Optional[Any] , __A :VT ) -> VT | None: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(__A ) if node is not None: return node.value return None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) SCREAMING_SNAKE_CASE__ = skip_list.head SCREAMING_SNAKE_CASE__ = {} while node.level != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] SCREAMING_SNAKE_CASE__ = node.value assert len(UpperCamelCase__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) SCREAMING_SNAKE_CASE__ = skip_list.head SCREAMING_SNAKE_CASE__ = {} while node.level != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] SCREAMING_SNAKE_CASE__ = node.value if len(UpperCamelCase__ ) != 4: print() assert len(UpperCamelCase__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() assert skip_list.find("""Some key""" ) is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(UpperCamelCase__: List[Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(UpperCamelCase__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def SCREAMING_SNAKE_CASE__ ( ): def is_sorted(UpperCamelCase__: str ): return all(next_item >= item for item, next_item in zip(UpperCamelCase__ , lst[1:] ) ) SCREAMING_SNAKE_CASE__ = SkipList() for i in range(10 ): skip_list.insert(UpperCamelCase__ , UpperCamelCase__ ) assert is_sorted(list(UpperCamelCase__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(UpperCamelCase__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
6
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
0
"""simple docstring""" def _snake_case ( _snake_case : str , _snake_case : str ) -> int: '''simple docstring''' if len(_snake_case ) != len(_snake_case ): raise ValueError('String lengths must match!' ) _A = 0 for chara, chara in zip(_snake_case , _snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
7
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
0
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = Rectangle(height=0.5 , width=0.5) __A : Tuple = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) __A : Dict = Rectangle(height=0.25 , width=0.25) __A : str = [mem.copy() for i in range(6)] __A : Union[str, Any] = [mem.copy() for i in range(6)] __A : int = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Dict = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : List[str] = VGroup(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Any = Text('CPU' , font_size=24) __A : Any = Group(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase) cpu.move_to([-2.5, -0.5, 0]) self.add(_UpperCAmelCase) __A : Any = [mem.copy() for i in range(4)] __A : Optional[Any] = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Any = Text('GPU' , font_size=24) __A : int = Group(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase) gpu.move_to([-1, -1, 0]) self.add(_UpperCAmelCase) __A : Optional[Any] = [mem.copy() for i in range(6)] __A : List[Any] = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Dict = Text('Model' , font_size=24) __A : int = Group(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase) model.move_to([3, -1.0, 0]) self.add(_UpperCAmelCase) __A : int = [] __A : Union[str, Any] = [] for i, rect in enumerate(_UpperCAmelCase): __A : List[str] = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8) target.move_to(_UpperCAmelCase) model_arr.append(_UpperCAmelCase) __A : Dict = Rectangle(height=0.46 , width=0.46).set_stroke(width=0.0).set_fill(_UpperCAmelCase , opacity=0.8) cpu_target.move_to(cpu_left_col_base[i]) model_cpu_arr.append(_UpperCAmelCase) self.add(*_UpperCAmelCase , *_UpperCAmelCase) __A : str = [meta_mem.copy() for i in range(6)] __A : Optional[Any] = [meta_mem.copy() for i in range(6)] __A : Optional[int] = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Any = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : List[Any] = VGroup(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : List[Any] = Text('Disk' , font_size=24) __A : int = Group(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase) disk.move_to([-4, -1.25, 0]) self.add(_UpperCAmelCase , _UpperCAmelCase) __A : List[Any] = Square(side_length=2.2) key.move_to([-5, 2, 0]) __A : Dict = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(_UpperCAmelCase) __A : Union[str, Any] = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_UpperCAmelCase)) __A : Dict = Square(0.3) input.set_fill(_UpperCAmelCase , opacity=1.0) input.set_stroke(width=0.0) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5) self.play(Write(_UpperCAmelCase)) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02) self.play(MoveToTarget(_UpperCAmelCase)) self.play(FadeOut(_UpperCAmelCase)) __A : Dict = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0]) __A : List[str] = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_UpperCAmelCase , run_time=3)) __A : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , ) self.play(MoveToTarget(model_cpu_arr[0])) __A : List[Any] = a.copy() for i in range(6): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02) __A : List[Any] = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5) , MoveToTarget(_UpperCAmelCase , run_time=0.5) , FadeIn(_UpperCAmelCase , run_time=0.5) , lag_ratio=0.2) self.play(_UpperCAmelCase) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i]) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0]) if i >= 1: __A : Union[str, Any] = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i]) , MoveToTarget(model_cpu_arr[i + 1]) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1]) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , ) self.play(MoveToTarget(model_cpu_arr[i])) __A : str = a_c __A : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5) self.play( FadeOut(_UpperCAmelCase) , FadeOut(_UpperCAmelCase , run_time=0.5) , ) __A : Optional[Any] = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(_UpperCAmelCase , run_time=3) , MoveToTarget(_UpperCAmelCase)) self.wait()
8
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
0
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __A ( A ): '''simple docstring''' __lowerCamelCase : str = None __lowerCamelCase : Optional[Any] = None @property def a__ (self ) -> List[Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A , '''feature_size''' ) ) self.assertTrue(hasattr(A , '''sampling_rate''' ) ) self.assertTrue(hasattr(A , '''padding_value''' ) ) def a__ (self ) -> str: """simple docstring""" _a = self.feat_extract_tester.prepare_inputs_for_common() _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(A ) == len(A ) for x, y in zip(A , processed_features[input_name] ) ) ) _a = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) _a = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) _a = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def a__ (self ) -> Dict: """simple docstring""" _a = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) _a = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def a__ (self ) -> str: """simple docstring""" _a = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) _a = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def a__ (self , A=False ) -> Any: """simple docstring""" def _inputs_have_equal_length(A ): _a = len(input[0] ) for input_slice in input[1:]: if len(A ) != length: return False return True def _inputs_are_equal(A , A ): if len(A ) != len(A ): return False for input_slice_a, input_slice_a in zip(A , A ): if not np.allclose(np.asarray(A ) , np.asarray(A ) , atol=1E-3 ): return False return True _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = self.feat_extract_tester.prepare_inputs_for_common(numpify=A ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = self.feat_extract_tester.seq_length_diff _a = self.feat_extract_tester.max_seq_length + pad_diff _a = self.feat_extract_tester.min_seq_length _a = self.feat_extract_tester.batch_size _a = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _a = feat_extract.pad(A , padding=A ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''longest''' ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''np''' ) _a = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(A ): feat_extract.pad(A , padding='''max_length''' )[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=A , return_tensors='''np''' ) _a = input_a[input_name] self.assertFalse(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_are_equal(A , A ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _a = feat_extract.pad(A , pad_to_multiple_of=10 ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''longest''' , pad_to_multiple_of=10 ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=A ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=A , return_tensors='''np''' , ) _a = input_a[input_name] self.assertTrue(all(len(A ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(A , A ) ) _a = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(A ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _a = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def a__ (self , A=False ) -> List[Any]: """simple docstring""" def _inputs_have_equal_length(A ): _a = len(input[0] ) for input_slice in input[1:]: if len(A ) != length: return False return True def _inputs_are_equal(A , A ): if len(A ) != len(A ): return False for input_slice_a, input_slice_a in zip(A , A ): if not np.allclose(np.asarray(A ) , np.asarray(A ) , atol=1E-3 ): return False return True _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = self.feat_extract_tester.prepare_inputs_for_common(numpify=A ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=A ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) _a = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A ) ) self.assertFalse(_inputs_have_equal_length(A ) ) # truncate to smallest with np _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=A , ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) _a = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A ) ) # truncate to middle _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=A , return_tensors='''np''' , ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=A ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) _a = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_are_equal(A , A ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , truncation=A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , padding='''longest''' , truncation=A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , padding='''longest''' , truncation=A )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(A ): feat_extract.pad(A , padding='''max_length''' , truncation=A )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _a = 12 _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A , truncation=A , ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A , ) _a = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _a = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _a = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertFalse(_inputs_have_equal_length(A ) ) def a__ (self ) -> List[Any]: """simple docstring""" self._check_padding(numpify=A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self._check_truncation(numpify=A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._check_truncation(numpify=A ) @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = self.feat_extract_tester.prepare_inputs_for_common() _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''np''' )[input_name] _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def a__ (self ) -> Any: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = self.feat_extract_tester.prepare_inputs_for_common() _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''np''' )[input_name] _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def a__ (self ) -> Dict: """simple docstring""" _a = self.feat_extract_dict _a = True _a = self.feature_extraction_class(**A ) _a = self.feat_extract_tester.prepare_inputs_for_common() _a = [len(A ) for x in speech_inputs] _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , A ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.feat_extract_dict _a = True _a = self.feature_extraction_class(**A ) _a = self.feat_extract_tester.prepare_inputs_for_common() _a = [len(A ) for x in speech_inputs] _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = min(A ) _a = feat_extract.pad( A , padding='''max_length''' , max_length=A , truncation=A , return_tensors='''np''' ) self.assertIn('''attention_mask''' , A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
11
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""") lowercase__ : Optional[int] = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_)["""last_hidden_state"""] lowercase__ : Tuple = tf.TensorShape((1, 10, 7_68)) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_) # compare the actual values for a slice. lowercase__ : Optional[Any] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
12
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ = TypeVar('''T''') def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (position - 1) // 2 def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (2 * position) + 1 def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (2 * position) + 2 class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: _a : list[tuple[T, int]] = [] _a : dict[T, int] = {} _a : int = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def __lowercase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __lowercase ( self , _a , _a ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _a : Union[str, Any] = self.elements self.elements += 1 self._bubble_up(_a ) def __lowercase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _a , _a : str = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _a , _a : List[Any] = self.heap[0] self._bubble_down(_a ) return elem def __lowercase ( self , _a , _a ) -> None: # Update the weight of the given key _a : Optional[int] = self.position_map[elem] _a : Any = (elem, weight) if position > 0: _a : Any = get_parent_position(_a ) _a , _a : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_a ) else: self._bubble_down(_a ) else: self._bubble_down(_a ) def __lowercase ( self , _a ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _a : Union[str, Any] = self.position_map[elem] if curr_pos == 0: return None _a : str = get_parent_position(_a ) _a , _a : List[str] = self.heap[curr_pos] _a , _a : List[str] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_a , _a ) return self._bubble_up(_a ) return None def __lowercase ( self , _a ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _a : Union[str, Any] = self.position_map[elem] _a , _a : List[str] = self.heap[curr_pos] _a : int = get_child_left_position(_a ) _a : Optional[int] = get_child_right_position(_a ) if child_left_position < self.elements and child_right_position < self.elements: _a , _a : Union[str, Any] = self.heap[child_left_position] _a , _a : Tuple = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) if child_left_position < self.elements: _a , _a : List[str] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) else: return None if child_right_position < self.elements: _a , _a : Optional[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) return None def __lowercase ( self , _a , _a ) -> None: # Swap the nodes at the given positions _a : str = self.heap[nodea_pos][0] _a : str = self.heap[nodea_pos][0] _a , _a : Optional[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _a : List[str] = nodea_pos _a : List[str] = nodea_pos class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: _a : dict[T, dict[T, int]] = {} _a : int = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def __lowercase ( self , _a ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _a : Optional[Any] = {} self.nodes += 1 def __lowercase ( self , _a , _a , _a ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_a ) self.add_node(_a ) _a : int = weight _a : int = weight def __UpperCAmelCase ( __a : GraphUndirectedWeighted[T] ,) -> tuple[dict[T, int], dict[T, T | None]]: """simple docstring""" _a : dict[T, int] = {node: maxsize for node in graph.connections} _a : dict[T, T | None] = {node: None for node in graph.connections} _a : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__a ,__a ) if priority_queue.is_empty(): return dist, parent # initialization _a : List[str] = priority_queue.extract_min() _a : int = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__a ,dist[neighbour] ) _a : List[Any] = node # running prim's algorithm while not priority_queue.is_empty(): _a : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a : Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__a ,dist[neighbour] ) _a : Optional[Any] = node return dist, parent
14
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : Tuple=13 , __lowerCamelCase : Tuple=30 , __lowerCamelCase : Any=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Union[str, Any]=10 , __lowerCamelCase : int=0.02 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = FlaxViTModel(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(__lowerCamelCase ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Dict ): self.config_tester.run_common_tests() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase : str , **__lowerCamelCase : Union[str, Any] ): return model(pixel_values=__lowerCamelCase , **__lowerCamelCase ) with self.subTest("JIT Enabled" ): SCREAMING_SNAKE_CASE = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self : Dict ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("google/vit-base-patch16-224" ) SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__lowerCamelCase )
16
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
from math import factorial def __SCREAMING_SNAKE_CASE ( a__ : int = 100 ) -> int: return sum(map(a__ ,str(factorial(a__ ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
17
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
0
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } _a = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = EfficientNetConfig() _UpperCamelCase = CONFIG_MAP[model_name]['''hidden_dim'''] _UpperCamelCase = CONFIG_MAP[model_name]['''width_coef'''] _UpperCamelCase = CONFIG_MAP[model_name]['''depth_coef'''] _UpperCamelCase = CONFIG_MAP[model_name]['''image_size'''] _UpperCamelCase = CONFIG_MAP[model_name]['''dropout_rate'''] _UpperCamelCase = CONFIG_MAP[model_name]['''dw_padding'''] _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = 10_00 _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = CONFIG_MAP[model_name]['''image_size'''] _UpperCamelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size}, image_mean=[0.485, 0.456, 0.406], image_std=[0.47853944, 0.4732864, 0.47434163], do_center_crop=__snake_case, ) return preprocessor def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] _UpperCamelCase = sorted(set(__snake_case ) ) _UpperCamelCase = len(__snake_case ) _UpperCamelCase = {b: str(__snake_case ) for b, i in zip(__snake_case, range(__snake_case ) )} _UpperCamelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: _UpperCamelCase = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) _UpperCamelCase = {} for item in rename_keys: if item[0] in original_param_names: _UpperCamelCase = '''efficientnet.''' + item[1] _UpperCamelCase = '''classifier.weight''' _UpperCamelCase = '''classifier.bias''' return key_mapping def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _UpperCamelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCamelCase = torch.from_numpy(__snake_case ).permute(3, 2, 0, 1 ) elif "depthwise_kernel" in key: _UpperCamelCase = torch.from_numpy(__snake_case ).permute(2, 3, 0, 1 ) elif "kernel" in key: _UpperCamelCase = torch.from_numpy(np.transpose(__snake_case ) ) else: _UpperCamelCase = torch.from_numpy(__snake_case ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__snake_case ) @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = model_classes[model_name]( include_top=__snake_case, weights='''imagenet''', input_tensor=__snake_case, input_shape=__snake_case, pooling=__snake_case, classes=10_00, classifier_activation='''softmax''', ) _UpperCamelCase = original_model.trainable_variables _UpperCamelCase = original_model.non_trainable_variables _UpperCamelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCamelCase = param.numpy() _UpperCamelCase = list(tf_params.keys() ) # Load HuggingFace model _UpperCamelCase = get_efficientnet_config(__snake_case ) _UpperCamelCase = EfficientNetForImageClassification(__snake_case ).eval() _UpperCamelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) _UpperCamelCase = rename_keys(__snake_case ) replace_params(__snake_case, __snake_case, __snake_case ) # Initialize preprocessor and preprocess input image _UpperCamelCase = convert_image_processor(__snake_case ) _UpperCamelCase = preprocessor(images=prepare_img(), return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCamelCase = hf_model(**__snake_case ) _UpperCamelCase = outputs.logits.detach().numpy() # Original model inference _UpperCamelCase = False _UpperCamelCase = CONFIG_MAP[model_name]['''image_size'''] _UpperCamelCase = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST ) _UpperCamelCase = image.img_to_array(__snake_case ) _UpperCamelCase = np.expand_dims(__snake_case, axis=0 ) _UpperCamelCase = original_model.predict(__snake_case ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__snake_case, __snake_case, atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__snake_case ): os.mkdir(__snake_case ) # Save converted model and image processor hf_model.save_pretrained(__snake_case ) preprocessor.save_pretrained(__snake_case ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _UpperCamelCase = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(__snake_case ) hf_model.push_to_hub(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") _a = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
19
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _lowercase( __a : List[Any] ): if "cls_token" in name: a__ =name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: a__ =name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: a__ =name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: a__ =name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: a__ =name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a__ =name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: a__ =name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: a__ =name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: a__ =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a__ =name.replace('attn' , 'attention.self' ) if "norm1" in name: a__ =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a__ =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a__ =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a__ =name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: a__ =name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: a__ =name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: a__ =name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: a__ =name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: a__ =name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def _lowercase( __a : Any , __a : Any ): for key in orig_state_dict.copy().keys(): a__ =orig_state_dict.pop(__a ) if "qkv" in key: a__ =key.split('.' ) a__ =int(key_split[1] ) if "decoder_blocks" in key: a__ =config.decoder_hidden_size a__ ='decoder.decoder_layers.' if "weight" in key: a__ =val[:dim, :] a__ =val[dim : dim * 2, :] a__ =val[-dim:, :] elif "bias" in key: a__ =val[:dim] a__ =val[dim : dim * 2] a__ =val[-dim:] else: a__ =config.hidden_size a__ ='vit.encoder.layer.' if "weight" in key: a__ =val[:dim, :] a__ =val[dim : dim * 2, :] a__ =val[-dim:, :] elif "bias" in key: a__ =val[:dim] a__ =val[dim : dim * 2] a__ =val[-dim:] else: a__ =val return orig_state_dict def _lowercase( __a : Any , __a : Optional[Any] ): a__ =ViTMAEConfig() if "large" in checkpoint_url: a__ =1024 a__ =4096 a__ =24 a__ =16 elif "huge" in checkpoint_url: a__ =14 a__ =1280 a__ =5120 a__ =32 a__ =16 a__ =ViTMAEForPreTraining(__a ) a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' )['model'] a__ =ViTMAEImageProcessor(size=config.image_size ) a__ =convert_state_dict(__a , __a ) model.load_state_dict(__a ) model.eval() a__ ='https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) a__ =ViTMAEImageProcessor(size=config.image_size ) a__ =image_processor(images=__a , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) a__ =model(**__a ) a__ =outputs.logits if "large" in checkpoint_url: a__ =torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: a__ =torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: a__ =torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase: str = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Union[str, Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["ConditionalDetrFeatureExtractor"] UpperCAmelCase_ : str = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
0
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class A ( _a ): def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Optional[int] ) -> Dict: """simple docstring""" _a = parent _a = config_class _a = has_text_modality _a = kwargs _a = common_properties def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a = self.config_class(**self.inputs_dict ) _a = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(lowerCAmelCase_ ): try: setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.parent.assertEqual( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , msg=F'`{name} value {idx} expected, but was {getattr(lowerCAmelCase_ , lowerCAmelCase_ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowerCAmelCase_ ): try: _a = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , msg=F'`{name} value {idx} expected, but was {getattr(lowerCAmelCase_ , lowerCAmelCase_ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = self.config_class(**self.inputs_dict ) _a = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(lowerCAmelCase_ , '''config.json''' ) config_first.to_json_file(lowerCAmelCase_ ) _a = self.config_class.from_json_file(lowerCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowerCAmelCase_ ) _a = self.config_class.from_pretrained(lowerCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _a = self.config_class(**self.inputs_dict ) _a = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) config_first.save_pretrained(lowerCAmelCase_ ) _a = self.config_class.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _a = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" if self.config_class.is_composition: return _a = self.config_class() self.parent.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _a = copy.deepcopy(lowerCAmelCase_ ) _a = self.config_class(**lowerCAmelCase_ ) _a = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(lowerCAmelCase_ , lowerCAmelCase_ ) != value: wrong_values.append((key, getattr(lowerCAmelCase_ , lowerCAmelCase_ ), value) ) if len(lowerCAmelCase_ ) > 0: _a = '''\n'''.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def __lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
22
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : Union[str, Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _a : """simple docstring""" A_ = PegasusConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Optional[int]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCamelCase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_pegasus_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_UpperCAmelCase ) UpperCamelCase_ = model.encode(inputs_dict['input_ids'] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , ) UpperCamelCase_ = model.decode(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_UpperCAmelCase ) UpperCamelCase_ = model.encode(inputs_dict['input_ids'] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCamelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) UpperCamelCase_ = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = np.not_equal(__lowercase , config.pad_token_id).astype(np.inta) if decoder_attention_mask is None: UpperCamelCase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id).astype(np.inta), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) A_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () A_ = True A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = FlaxPegasusModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(_UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) with self.subTest('JIT Enabled' ): UpperCamelCase_ = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase_ = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) UpperCamelCase_ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return model.decode( decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , ) with self.subTest('JIT Enabled' ): UpperCamelCase_ = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase_ = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCAmelCase ( self ) -> int: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained('google/pegasus-large' , from_pt=_UpperCAmelCase ) UpperCamelCase_ = np.ones((1, 1) ) UpperCamelCase_ = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) UpperCamelCase_ = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) UpperCamelCase_ = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] UpperCamelCase_ = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] UpperCamelCase_ = tokenizer(_UpperCAmelCase , return_tensors='np' , truncation=_UpperCAmelCase , max_length=512 , padding=_UpperCAmelCase ) UpperCamelCase_ = model.generate(**_UpperCAmelCase , num_beams=2 ).sequences UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) assert tgt_text == decoded
23
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = tempfile.mkdtemp() # fmt: off __snake_case = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __snake_case = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __snake_case = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.get_tokenizer() __snake_case = self.get_image_processor() __snake_case = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) __snake_case = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __snake_case = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) __snake_case = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __snake_case = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = '''lower newer''' __snake_case = processor(text=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = '''lower newer''' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__SCREAMING_SNAKE_CASE ): processor() def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case = processor.batch_decode(__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = '''lower newer''' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
24
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
from collections.abc import Callable import numpy as np def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : List[Any] = int(np.ceil((x_end - xa) / step_size)) SCREAMING_SNAKE_CASE : Tuple = np.zeros((n + 1,)) SCREAMING_SNAKE_CASE : List[Any] = ya SCREAMING_SNAKE_CASE : str = xa for k in range(_a): SCREAMING_SNAKE_CASE : Optional[int] = y[k] + step_size * ode_func(_a , y[k]) SCREAMING_SNAKE_CASE : Union[str, Any] = y[k] + ( (step_size / 2) * (ode_func(_a , y[k]) + ode_func(x + step_size , _a)) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
25
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str=13 , __magic_name__ : Tuple=10 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[Any]=2 , __magic_name__ : str=2 , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]=32 , __magic_name__ : str=5 , __magic_name__ : Tuple=4 , __magic_name__ : Tuple=37 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Tuple=10 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : Optional[Any]=0.9 , __magic_name__ : str=None , ) -> Any: """simple docstring""" __snake_case : List[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = image_size __snake_case : Union[str, Any] = num_channels __snake_case : int = patch_size __snake_case : Dict = tubelet_size __snake_case : Union[str, Any] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : Dict = use_labels __snake_case : Tuple = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[str] = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : List[str] = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = mask_ratio __snake_case : int = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __snake_case : Tuple = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __snake_case : Optional[Any] = int(mask_ratio * self.seq_length ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Tuple ) -> int: """simple docstring""" __snake_case : Tuple = VideoMAEModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Any ) -> int: """simple docstring""" __snake_case : Dict = VideoMAEForPreTraining(__magic_name__ ) model.to(__magic_name__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case : List[str] = torch.ones((self.num_masks,) ) __snake_case : Tuple = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __snake_case : Any = mask.expand(self.batch_size , -1 ).bool() __snake_case : Union[str, Any] = model(__magic_name__ , __magic_name__ ) # model only returns predictions for masked patches __snake_case : List[Any] = mask.sum().item() __snake_case : Any = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : List[str] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Union[str, Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase__: Any = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase__: int = False lowercase__: Optional[Any] = False lowercase__: int = False lowercase__: List[Any] = False def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __snake_case : str = VideoMAEModelTester(self ) __snake_case : str = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str=False ) -> List[str]: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case : str = torch.ones((self.model_tester.num_masks,) ) __snake_case : str = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __snake_case : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() __snake_case : str = bool_masked_pos.to(__magic_name__ ) if return_labels: if model_class in [ *get_values(__magic_name__ ), ]: __snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) @slow def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = VideoMAEModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length - self.model_tester.num_masks __snake_case : Union[str, Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __snake_case : str = True __snake_case : int = False __snake_case : List[str] = True __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : str = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Optional[Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Optional[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __snake_case : Tuple = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Dict = True __snake_case : Optional[int] = True __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Any = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[str] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ): __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.hidden_states __snake_case : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : Any = self.model_tester.seq_length - self.model_tester.num_masks __snake_case : List[str] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Any ) -> str: """simple docstring""" pass def _a ( ) -> int: """simple docstring""" __snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : Union[str, Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : Dict = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( __magic_name__ ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : List[Any] = prepare_video() __snake_case : Union[str, Any] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) # verify the logits __snake_case : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : str = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(__magic_name__ ) __snake_case : List[Any] = self.default_image_processor __snake_case : List[str] = prepare_video() __snake_case : Union[str, Any] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # add boolean mask, indicating which patches to mask __snake_case : str = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __snake_case : Tuple = torch.load(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : str = model(**__magic_name__ ) # verify the logits __snake_case : Tuple = torch.Size([1, 14_08, 15_36] ) __snake_case : Tuple = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__magic_name__ ) self.assertEqual(outputs.logits.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __snake_case : int = torch.tensor([0.5142] , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __snake_case : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=__magic_name__ ).to( __magic_name__ ) with torch.no_grad(): __snake_case : Optional[Any] = model(**__magic_name__ ) __snake_case : int = torch.tensor(torch.tensor([0.6469] ) , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) )
26
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = NystromformerForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = NystromformerForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = NystromformerForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = NystromformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NystromformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = 'the [MASK] of Belgium is Brussels' _A = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _A = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _A = tokenizer(snake_case_ , return_tensors='pt' ) with torch.no_grad(): _A = model(encoding.input_ids ).logits _A = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case_ ) , 'capital' )
27
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class __lowerCamelCase ( lowerCAmelCase ): a__: Dict = 'xmod' def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=("en_XX",) , UpperCAmelCase=None , **UpperCAmelCase , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = classifier_dropout lowerCamelCase_ = pre_norm lowerCamelCase_ = adapter_reduction_factor lowerCamelCase_ = adapter_layer_norm lowerCamelCase_ = adapter_reuse_layer_norm lowerCamelCase_ = ln_before_adapter lowerCamelCase_ = list(UpperCAmelCase ) lowerCamelCase_ = default_language class __lowerCamelCase ( lowerCAmelCase ): @property def UpperCAmelCase__ ( self ): if self.task == "multiple-choice": lowerCamelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
29
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __a = logging.get_logger(__name__) @dataclass class __a: """simple docstring""" lowerCAmelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) lowerCAmelCase = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) lowerCAmelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def a__ ( self ) -> int: UpperCAmelCase_ : int = self.task_name.lower() class __a( _a ): """simple docstring""" lowerCAmelCase = '''train''' lowerCAmelCase = '''dev''' lowerCAmelCase = '''test''' class __a( _a ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = Split.train ,_SCREAMING_SNAKE_CASE = None ,) -> str: warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ,_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[str] = args UpperCAmelCase_ : Optional[Any] = glue_processors[args.task_name]() UpperCAmelCase_ : int = glue_output_modes[args.task_name] if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): try: UpperCAmelCase_ : Any = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file UpperCAmelCase_ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' ,) UpperCAmelCase_ : Any = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_, UpperCAmelCase_ : str = label_list[2], label_list[1] UpperCAmelCase_ : str = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ : Dict = cached_features_file + '''.lock''' with FileLock(_SCREAMING_SNAKE_CASE ): if os.path.exists(_SCREAMING_SNAKE_CASE ) and not args.overwrite_cache: UpperCAmelCase_ : List[Any] = time.time() UpperCAmelCase_ : Dict = torch.load(_SCREAMING_SNAKE_CASE ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' ,time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: UpperCAmelCase_ : List[str] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase_ : Tuple = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase_ : int = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase_ : Optional[int] = examples[:limit_length] UpperCAmelCase_ : int = glue_convert_examples_to_features( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,max_length=args.max_seq_length ,label_list=_SCREAMING_SNAKE_CASE ,output_mode=self.output_mode ,) UpperCAmelCase_ : Union[str, Any] = time.time() torch.save(self.features ,_SCREAMING_SNAKE_CASE ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self ,_SCREAMING_SNAKE_CASE ) -> InputFeatures: return self.features[i] def a__ ( self ) -> Any: return self.label_list
30
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BertJapaneseTokenizer lowercase_ = False lowercase_ = True def lowerCAmelCase_ ( self : int ): super().setUp() SCREAMING_SNAKE_CASE_ = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = 'こんにちは、世界。 \nこんばんは、世界。' SCREAMING_SNAKE_CASE_ = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_input_output_texts(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) return text, ids def lowerCAmelCase_ ( self : str ): pass # TODO add if relevant def lowerCAmelCase_ ( self : Dict ): pass # TODO add if relevant def lowerCAmelCase_ ( self : List[Any] ): pass # TODO add if relevant def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(_lowerCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'こんにちは、世界。\nこんばんは、世界。' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCAmelCase , 'wb' ) as handle: pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , 'rb' ) as handle: SCREAMING_SNAKE_CASE_ = pickle.load(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_new.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowerCAmelCase_ ( self : int ): try: SCREAMING_SNAKE_CASE_ = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowerCAmelCase_ ( self : Any ): try: SCREAMING_SNAKE_CASE_ = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = MecabTokenizer(do_lower_case=_lowerCAmelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowerCAmelCase_ ( self : List[Any] ): try: SCREAMING_SNAKE_CASE_ = MecabTokenizer( do_lower_case=_lowerCAmelCase , normalize_text=_lowerCAmelCase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = MecabTokenizer(normalize_text=_lowerCAmelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'こんにちは、世界。\nこんばんは、世界。' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCAmelCase , 'wb' ) as handle: pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , 'rb' ) as handle: SCREAMING_SNAKE_CASE_ = pickle.load(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_new.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_sudachi def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = SudachiTokenizer(do_lower_case=_lowerCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = SudachiTokenizer(normalize_text=_lowerCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = SudachiTokenizer(trim_whitespace=_lowerCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'こんにちは、世界。\nこんばんは、世界。' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCAmelCase , 'wb' ) as handle: pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , 'rb' ) as handle: SCREAMING_SNAKE_CASE_ = pickle.load(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer_new.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_jumanpp def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = JumanppTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = JumanppTokenizer(normalize_text=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = JumanppTokenizer(trim_whitespace=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) SCREAMING_SNAKE_CASE_ = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE_ = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(_lowerCAmelCase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) SCREAMING_SNAKE_CASE_ = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(_lowerCAmelCase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('ありがとう。' , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('どういたしまして。' , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BertJapaneseTokenizer lowercase_ = False def lowerCAmelCase_ ( self : int ): super().setUp() SCREAMING_SNAKE_CASE_ = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : List[Any] , **_lowerCAmelCase : Union[str, Any] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = 'こんにちは、世界。 \nこんばんは、世界。' SCREAMING_SNAKE_CASE_ = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowerCAmelCase_ ( self : Optional[Any] ): pass # TODO add if relevant def lowerCAmelCase_ ( self : int ): pass # TODO add if relevant def lowerCAmelCase_ ( self : List[Any] ): pass # TODO add if relevant def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( _lowerCAmelCase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = CharacterTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('ありがとう。' , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('どういたしまして。' , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = 'cl-tohoku/bert-base-japanese' SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(_lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) SCREAMING_SNAKE_CASE_ = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(_lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
31
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
0
def A__ ( SCREAMING_SNAKE_CASE_ : int = 10_00 ) -> int: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
32
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : str = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'trajectory_transformer' __lowercase : List[Any] = ['past_key_values'] __lowercase : Dict = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self:List[Any] , _a:Any=1_00 , _a:List[str]=5 , _a:Optional[Any]=1 , _a:List[Any]=1 , _a:Optional[int]=2_49 , _a:Dict=6 , _a:int=17 , _a:Union[str, Any]=25 , _a:Optional[Any]=4 , _a:Union[str, Any]=4 , _a:int=1_28 , _a:Optional[Any]=0.1 , _a:Tuple=0.1 , _a:List[Any]=0.1 , _a:List[str]=0.0006 , _a:List[str]=5_12 , _a:Tuple=0.02 , _a:Optional[Any]=1e-12 , _a:Tuple=1 , _a:Dict=True , _a:str=1 , _a:Union[str, Any]=5_02_56 , _a:List[str]=5_02_56 , **_a:List[str] , ): snake_case__ = vocab_size snake_case__ = action_weight snake_case__ = reward_weight snake_case__ = value_weight snake_case__ = max_position_embeddings snake_case__ = block_size snake_case__ = action_dim snake_case__ = observation_dim snake_case__ = transition_dim snake_case__ = learning_rate snake_case__ = n_layer snake_case__ = n_head snake_case__ = n_embd snake_case__ = embd_pdrop snake_case__ = attn_pdrop snake_case__ = resid_pdrop snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = kaiming_initializer_range snake_case__ = use_cache super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
33
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
0
"""simple docstring""" import sys SCREAMING_SNAKE_CASE_ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = 1 for digit in s: product *= int(_lowercase ) return product def __snake_case ( _lowercase = N ): """simple docstring""" UpperCamelCase = -sys.maxsize - 1 UpperCamelCase = n[:13] UpperCamelCase = 13 while cur_index < len(_lowercase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCamelCase = substr[1:] + n[cur_index] cur_index += 1 else: UpperCamelCase = max(_lowercase ,str_eval(_lowercase ) ) UpperCamelCase = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
34
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ :str = logging.get_logger(__name__) a_ :Any = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = '''roc_bert''' def __init__( self : List[str] , _lowercase : Dict=3_05_22 , _lowercase : Tuple=7_68 , _lowercase : Any=12 , _lowercase : str=12 , _lowercase : Any=30_72 , _lowercase : str="gelu" , _lowercase : Any=0.1 , _lowercase : int=0.1 , _lowercase : Optional[Any]=5_12 , _lowercase : Any=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : Optional[int]=1E-12 , _lowercase : Any=True , _lowercase : Tuple=0 , _lowercase : Dict="absolute" , _lowercase : Optional[int]=None , _lowercase : Union[str, Any]=True , _lowercase : Dict=True , _lowercase : Optional[int]=7_68 , _lowercase : Tuple=9_10 , _lowercase : Optional[int]=5_12 , _lowercase : List[str]=2_48_58 , _lowercase : List[Any]=True , **_lowercase : List[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = vocab_size SCREAMING_SNAKE_CASE__ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = type_vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[Any] = use_cache SCREAMING_SNAKE_CASE__ : List[Any] = enable_pronunciation SCREAMING_SNAKE_CASE__ : Tuple = enable_shape SCREAMING_SNAKE_CASE__ : Dict = pronunciation_embed_dim SCREAMING_SNAKE_CASE__ : int = pronunciation_vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = shape_embed_dim SCREAMING_SNAKE_CASE__ : Optional[int] = shape_vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = concat_input SCREAMING_SNAKE_CASE__ : str = position_embedding_type SCREAMING_SNAKE_CASE__ : str = classifier_dropout super().__init__(pad_token_id=_lowercase , **_lowercase )
35
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowercase : List[Any] = logging.get_logger(__name__) def lowercase ( __A : Any ) -> Dict: '''simple docstring''' snake_case : int = DPTConfig() if "large" in checkpoint_url: snake_case : Optional[Any] = 1024 snake_case : List[str] = 4096 snake_case : Optional[int] = 24 snake_case : Dict = 16 snake_case : Optional[Any] = [5, 11, 17, 23] snake_case : int = [256, 512, 1024, 1024] snake_case : int = (1, 384, 384) if "ade" in checkpoint_url: snake_case : str = True snake_case : Optional[int] = 150 snake_case : List[str] = """huggingface/label-files""" snake_case : Optional[int] = """ade20k-id2label.json""" snake_case : Optional[int] = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type="""dataset""" ) ) , """r""" ) ) snake_case : Tuple = {int(__A ): v for k, v in idalabel.items()} snake_case : Any = idalabel snake_case : Any = {v: k for k, v in idalabel.items()} snake_case : Dict = [1, 150, 480, 480] return config, expected_shape def lowercase ( __A : int ) -> int: '''simple docstring''' snake_case : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__A , __A ) def lowercase ( __A : Tuple ) -> str: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case : List[str] = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: snake_case : int = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: snake_case : Tuple = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: snake_case : List[str] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: snake_case : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: snake_case : int = name.replace("""proj""" , """projection""" ) if "blocks" in name: snake_case : Union[str, Any] = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: snake_case : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: snake_case : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: snake_case : str = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: snake_case : Dict = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: snake_case : Optional[int] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: snake_case : Tuple = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: snake_case : Any = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: snake_case : Optional[Any] = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: snake_case : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case : Tuple = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: snake_case : Tuple = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: snake_case : Optional[Any] = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: snake_case : Optional[Any] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: snake_case : Dict = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: snake_case : List[Any] = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case : List[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case : List[str] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case : List[str] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case : Any = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: snake_case : Tuple = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: snake_case : Optional[int] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: snake_case : Any = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: snake_case : List[Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: snake_case : List[str] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: snake_case : str = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: snake_case : Any = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: snake_case : Optional[Any] = name.replace("""bn""" , """batch_norm""" ) if "head" in name: snake_case : Optional[int] = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: snake_case : Optional[int] = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: snake_case : Union[str, Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def lowercase ( __A : Dict , __A : Tuple ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : Any = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) snake_case : List[str] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[int] = in_proj_weight[: config.hidden_size, :] snake_case : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( ) -> Any: '''simple docstring''' snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowercase ( __A : Tuple , __A : Optional[int] , __A : Optional[Any] , __A : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_dpt_config(__A ) # load original state_dict from URL snake_case : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__A ) # rename keys for key in state_dict.copy().keys(): snake_case : Optional[Any] = state_dict.pop(__A ) snake_case : List[str] = val # read in qkv matrices read_in_q_k_v(__A , __A ) # load HuggingFace model snake_case : int = DPTForSemanticSegmentation(__A ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__A ) model.load_state_dict(__A ) model.eval() # Check outputs on an image snake_case : int = 480 if """ade""" in checkpoint_url else 384 snake_case : Optional[int] = DPTImageProcessor(size=__A ) snake_case : List[Any] = prepare_img() snake_case : Optional[Any] = image_processor(__A , return_tensors="""pt""" ) # forward pass snake_case : Any = model(**__A ).logits if """ade""" in checkpoint_url else model(**__A ).predicted_depth # Assert logits snake_case : int = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: snake_case : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(__A ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __A , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __A ) ) Path(__A ).mkdir(exist_ok=__A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=__A , ) image_processor.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=__A , ) if __name__ == "__main__": __lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) __lowercase : List[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
36
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
0
def UpperCamelCase_ ( __a , __a , __a , __a ) -> str: if height >= 1: move_tower(height - 1 , __a , __a , __a ) move_disk(__a , __a ) move_tower(height - 1 , __a , __a , __a ) def UpperCamelCase_ ( __a , __a ) -> List[Any]: print("moving disk from" , __a , "to" , __a ) def UpperCamelCase_ ( ) -> Optional[Any]: a__ : Any = int(input("Height of hanoi: " ).strip() ) move_tower(__a , "A" , "B" , "C" ) if __name__ == "__main__": main()
37
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = str(id_ ) snake_case__ : Dict = None snake_case__ : List[Any] = None snake_case__ : Optional[int] = [] snake_case__ : Tuple = {} # {vertex:distance} def __lt__( self , __SCREAMING_SNAKE_CASE ): return self.key < other.key def __repr__( self ): return self.id def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): self.neighbors.append(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = weight def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Dict ) -> Union[str, Any]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __magic_name__ ) graph[b - 1].add_edge(graph[a - 1] , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : Vertex ) -> list: '''simple docstring''' snake_case__ : Optional[int] = [] for u in graph: snake_case__ : str = math.inf snake_case__ : List[Any] = None snake_case__ : Dict = 0 snake_case__ : Tuple = graph[:] while q: snake_case__ : Any = min(__magic_name__ ) q.remove(__magic_name__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case__ : Optional[int] = u snake_case__ : Dict = u.edges[v.id] for i in range(1 , len(__magic_name__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : Vertex ) -> Iterator[tuple]: '''simple docstring''' for u in graph: snake_case__ : Tuple = math.inf snake_case__ : Tuple = None snake_case__ : Optional[int] = 0 snake_case__ : str = list(__magic_name__ ) hq.heapify(__magic_name__ ) while h: snake_case__ : str = hq.heappop(__magic_name__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case__ : Union[str, Any] = u snake_case__ : Dict = u.edges[v.id] hq.heapify(__magic_name__ ) for i in range(1 , len(__magic_name__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
38
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : Tuple ) ->Optional[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case__( self : List[str] ) ->List[str]: snake_case_ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self._create_example_records() snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_UpperCamelCase ): self.assertDictEqual(_UpperCamelCase , example_records[i] ) def snake_case__( self : Optional[int] ) ->Any: snake_case_ = self._create_example_records() snake_case_ = Dataset.from_list(_UpperCamelCase ) snake_case_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def snake_case__( self : Dict ) ->Optional[int]: # checks what happens with missing columns snake_case_ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def snake_case__( self : Dict ) ->str: # checks if the type can be inferred from the second record snake_case_ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def snake_case__( self : Dict ) ->int: snake_case_ = Dataset.from_list([] ) self.assertEqual(len(_UpperCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
39
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
0
import math import os import sys def UpperCamelCase ( snake_case__ : str ) -> str: UpperCamelCase : Tuple = '' try: with open(snake_case__ , 'rb' ) as binary_file: UpperCamelCase : Dict = binary_file.read() for dat in data: UpperCamelCase : str = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCamelCase ( snake_case__ : dict[str, str] , snake_case__ : str , snake_case__ : int , snake_case__ : str ) -> None: lexicon.pop(snake_case__ ) UpperCamelCase : Tuple = last_match_id if math.loga(snake_case__ ).is_integer(): for curr_key in lexicon: UpperCamelCase : List[str] = '0' + lexicon[curr_key] UpperCamelCase : List[str] = bin(snake_case__ )[2:] def UpperCamelCase ( snake_case__ : str ) -> str: UpperCamelCase : int = {'0': '0', '1': '1'} UpperCamelCase , UpperCamelCase : Union[str, Any] = '', '' UpperCamelCase : str = len(snake_case__ ) for i in range(len(snake_case__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase : List[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) index += 1 UpperCamelCase : Optional[int] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCamelCase : Tuple = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> str: UpperCamelCase : Optional[Any] = os.path.getsize(snake_case__ ) UpperCamelCase : str = bin(snake_case__ )[2:] UpperCamelCase : int = len(snake_case__ ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> None: UpperCamelCase : List[Any] = 8 try: with open(snake_case__ , 'wb' ) as opened_file: UpperCamelCase : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case__ ) , snake_case__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> None: UpperCamelCase : List[str] = read_file_binary(snake_case__ ) UpperCamelCase : Optional[int] = compress_data(snake_case__ ) UpperCamelCase : str = add_file_length(snake_case__ , snake_case__ ) write_file_binary(snake_case__ , snake_case__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
40
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } lowerCAmelCase__ = '''▁''' class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Union[str, Any] = BigBirdTokenizer SCREAMING_SNAKE_CASE : Optional[Any] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Union[str, Any] ,lowercase__ : str=None ,lowercase__ : List[str]=None ,lowercase__ : Dict="<unk>" ,lowercase__ : Dict="<s>" ,lowercase__ : Tuple="</s>" ,lowercase__ : int="<pad>" ,lowercase__ : Optional[Any]="[SEP]" ,lowercase__ : List[str]="[MASK]" ,lowercase__ : Tuple="[CLS]" ,**lowercase__ : List[str] ,): __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else bos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else eos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else unk_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else pad_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else cls_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else mask_token super().__init__( lowercase__ ,tokenizer_file=lowercase__ ,bos_token=lowercase__ ,eos_token=lowercase__ ,unk_token=lowercase__ ,sep_token=lowercase__ ,pad_token=lowercase__ ,cls_token=lowercase__ ,mask_token=lowercase__ ,**lowercase__ ,) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file ,lowercase__ ) return (out_vocab_file,)
41
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> int: while second != 0: lowerCamelCase_ = first & second first ^= second lowerCamelCase_ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ = int(input("Enter the first number: ").strip()) A_ = int(input("Enter the second number: ").strip()) print(f'''{add(first, second) = }''')
42
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _a ( UpperCamelCase__ ): def __init__( self: Tuple , UpperCamelCase_: UNetaDModel , UpperCamelCase_: UNetaDModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: str , ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] ) -> Dict: """simple docstring""" return x_in * self.stds[key] + self.means[key] def lowerCamelCase_ ( self: int , UpperCamelCase_: Union[str, Any] ) -> Any: """simple docstring""" if type(UpperCamelCase_ ) is dict: return {k: self.to_torch(UpperCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCamelCase_ , device=self.unet.device ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] ) -> Optional[int]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , UpperCamelCase_ , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(UpperCamelCase_ ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , predict_epsilon=UpperCamelCase_ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) lowercase__ = self.to_torch(UpperCamelCase_ ) return x, y def __call__( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int]=64 , UpperCamelCase_: Any=32 , UpperCamelCase_: Any=2 , UpperCamelCase_: Any=0.1 ) -> Optional[Any]: """simple docstring""" lowercase__ = self.normalize(UpperCamelCase_ , '''observations''' ) lowercase__ = obs[None].repeat(UpperCamelCase_ , axis=0 ) lowercase__ = {0: self.to_torch(UpperCamelCase_ )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(UpperCamelCase_ , device=self.unet.device ) lowercase__ = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) lowercase__ = self.to_torch(UpperCamelCase_ ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=UpperCamelCase_ ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(UpperCamelCase_ , key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , UpperCamelCase_ ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
43
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase_ : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCAmelCase__ ( nn.Module ): def __init__( self : List[Any],__A : List[str] ): super().__init__() _lowerCamelCase : Optional[Any] = torchvision.models.resnetaaa(pretrained=__A ) _lowerCamelCase : Optional[Any] = list(model.children() )[:-2] _lowerCamelCase : Optional[Any] = nn.Sequential(*__A ) _lowerCamelCase : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase_ ( self : int,__A : List[str] ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _lowerCamelCase : Optional[Any] = self.pool(self.model(__A ) ) _lowerCamelCase : Optional[Any] = torch.flatten(__A,start_dim=2 ) _lowerCamelCase : Optional[Any] = out.transpose(1,2 ).contiguous() return out # BxNx2048 class UpperCAmelCase__ ( A ): def __init__( self : List[str],__A : Union[str, Any],__A : Tuple,__A : str,__A : str,__A : Optional[int] ): _lowerCamelCase : List[Any] = [json.loads(__A ) for l in open(__A )] _lowerCamelCase : Dict = os.path.dirname(__A ) _lowerCamelCase : Union[str, Any] = tokenizer _lowerCamelCase : str = labels _lowerCamelCase : int = len(__A ) _lowerCamelCase : str = max_seq_length _lowerCamelCase : Tuple = transforms def __len__( self : Union[str, Any] ): return len(self.data ) def __getitem__( self : List[str],__A : Any ): _lowerCamelCase : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"],add_special_tokens=__A ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = sentence[0], sentence[1:-1], sentence[-1] _lowerCamelCase : Tuple = sentence[: self.max_seq_length] _lowerCamelCase : Optional[int] = torch.zeros(self.n_classes ) _lowerCamelCase : List[Any] = 1 _lowerCamelCase : str = Image.open(os.path.join(self.data_dir,self.data[index]["img"] ) ).convert("RGB" ) _lowerCamelCase : Optional[int] = self.transforms(__A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = [len(row["sentence"] ) for row in batch] _lowerCamelCase , _lowerCamelCase : List[Any] = len(_lowerCAmelCase ), max(_lowerCAmelCase ) _lowerCamelCase : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) _lowerCamelCase : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase ) ): _lowerCamelCase : Optional[int] = input_row["sentence"] _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = torch.stack([row["image"] for row in batch] ) _lowerCamelCase : Union[str, Any] = torch.stack([row["label"] for row in batch] ) _lowerCamelCase : int = torch.stack([row["image_start_token"] for row in batch] ) _lowerCamelCase : Optional[Any] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A_ ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A_ ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
44
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCamelCase = TaTokenizerFast UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
45
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self: Optional[int] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: int=2 ,__lowerCAmelCase: Dict=8 ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Any=99 ,__lowerCAmelCase: int=16 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: str=36 ,__lowerCAmelCase: List[str]="gelu" ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Any=512 ,__lowerCAmelCase: Union[str, Any]=16 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: List[str]=4 ,__lowerCAmelCase: Tuple=None ,): '''simple docstring''' _lowerCamelCase : Tuple = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : List[Any] = use_input_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : Tuple = use_labels _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Optional[Any] = type_vocab_size _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : List[Any] = scope def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : str = None if self.use_input_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_token_type_ids: _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCamelCase : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCamelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : str = self.get_config() _lowerCamelCase : Dict = 300 return config def _lowercase ( self: Union[str, Any] ): '''simple docstring''' ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : int = self.prepare_config_and_inputs() _lowerCamelCase : Tuple = True _lowerCamelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = MraModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ,): '''simple docstring''' _lowerCamelCase : List[Any] = True _lowerCamelCase : int = MraModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : int = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,) _lowerCamelCase : str = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,) _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: int ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = MraForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Any = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Dict = MraForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : int = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,start_positions=__lowerCAmelCase ,end_positions=__lowerCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : Any = MraForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowercase ( self: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : int = MraForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.num_choices _lowerCamelCase : Optional[Any] = MraForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : List[Any] = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Any = config_and_inputs _lowerCamelCase : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : str = MraModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Dict = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def _lowercase ( self: Tuple ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = MraModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip(reason="MRA does not output attentions" ) def _lowercase ( self: str ): '''simple docstring''' return @require_torch class A_ ( unittest.TestCase ): @slow def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Dict = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _lowerCamelCase : List[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : List[str] = model(__lowerCAmelCase )[0] _lowerCamelCase : str = torch.Size((1, 256, 768) ) self.assertEqual(output.shape ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-4 ) ) @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _lowerCamelCase : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : Dict = model(__lowerCAmelCase )[0] _lowerCamelCase : Optional[Any] = 50_265 _lowerCamelCase : Dict = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-4 ) ) @slow def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _lowerCamelCase : str = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : Any = model(__lowerCAmelCase )[0] _lowerCamelCase : Any = 50_265 _lowerCamelCase : Dict = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape ,__lowerCAmelCase ) _lowerCamelCase : int = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-4 ) )
46
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance SCREAMING_SNAKE_CASE__ = 6_3_7_8_1_3_7.0 SCREAMING_SNAKE_CASE__ = 6_3_5_6_7_5_2.3_1_4_2_4_5 SCREAMING_SNAKE_CASE__ = 637_8137 def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ): __a : List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __a : Tuple = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) __a : Any = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __a : Optional[int] = haversine_distance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values __a : Tuple = (b_lata + b_lata) / 2 __a : str = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __a : Optional[Any] = (sin(lowerCamelCase_ ) ** 2) * (cos(lowerCamelCase_ ) ** 2) __a : int = cos(sigma / 2 ) ** 2 __a : Any = (sigma - sin(lowerCamelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __a : List[Any] = (cos(lowerCamelCase_ ) ** 2) * (sin(lowerCamelCase_ ) ** 2) __a : int = sin(sigma / 2 ) ** 2 __a : List[Any] = (sigma + sin(lowerCamelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
47
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
'''simple docstring''' UpperCAmelCase__ : Tuple = 6_55_21 def A ( UpperCamelCase_ : str ) -> int: '''simple docstring''' lowerCAmelCase__ = 1 lowerCAmelCase__ = 0 for plain_chr in plain_text: lowerCAmelCase__ = (a + ord(UpperCamelCase_ )) % MOD_ADLER lowerCAmelCase__ = (b + a) % MOD_ADLER return (b << 16) | a
48
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Any = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = "pegasus" a__ : Optional[int] = ["past_key_values"] a__ : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , _lowercase : Tuple=5_02_65 , _lowercase : Dict=10_24 , _lowercase : int=12 , _lowercase : Any=40_96 , _lowercase : Tuple=16 , _lowercase : List[str]=12 , _lowercase : List[Any]=40_96 , _lowercase : List[str]=16 , _lowercase : Any=0.0 , _lowercase : int=0.0 , _lowercase : str=True , _lowercase : Union[str, Any]=True , _lowercase : Tuple="gelu" , _lowercase : Any=10_24 , _lowercase : Optional[int]=0.1 , _lowercase : Tuple=0.0 , _lowercase : Tuple=0.0 , _lowercase : Union[str, Any]=0.02 , _lowercase : Tuple=0 , _lowercase : str=False , _lowercase : Tuple=0 , _lowercase : Any=1 , _lowercase : List[Any]=1 , **_lowercase : Dict , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) @property def a ( self : Any ): return self.encoder_attention_heads @property def a ( self : List[Any] ): return self.d_model
49
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): lowerCamelCase__ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowerCamelCase__ = np.concatenate(__lowerCAmelCase , axis=0 ) lowerCamelCase__ = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 lowerCamelCase__ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase__ = 2.0 * image - 1.0 lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase__ = torch.cat(__lowerCAmelCase , dim=0 ) return image def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any=0.9995 ): if not isinstance(__lowerCAmelCase , np.ndarray ): lowerCamelCase__ = True lowerCamelCase__ = va.device lowerCamelCase__ = va.cpu().numpy() lowerCamelCase__ = va.cpu().numpy() lowerCamelCase__ = np.sum(va * va / (np.linalg.norm(__lowerCAmelCase ) * np.linalg.norm(__lowerCAmelCase )) ) if np.abs(__lowerCAmelCase ) > DOT_THRESHOLD: lowerCamelCase__ = (1 - t) * va + t * va else: lowerCamelCase__ = np.arccos(__lowerCAmelCase ) lowerCamelCase__ = np.sin(__lowerCAmelCase ) lowerCamelCase__ = theta_a * t lowerCamelCase__ = np.sin(__lowerCAmelCase ) lowerCamelCase__ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase__ = sin_theta_t / sin_theta_a lowerCamelCase__ = sa * va + sa * va if inputs_are_torch: lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) return va def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): lowerCamelCase__ = F.normalize(__lowerCAmelCase , dim=-1 ) lowerCamelCase__ = F.normalize(__lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ): for param in model.parameters(): lowerCamelCase__ = value class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,): super().__init__() self.register_modules( vae=_lowerCAmelCase ,text_encoder=_lowerCAmelCase ,clip_model=_lowerCAmelCase ,tokenizer=_lowerCAmelCase ,unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,coca_model=_lowerCAmelCase ,coca_tokenizer=_lowerCAmelCase ,coca_transform=_lowerCAmelCase ,) lowerCamelCase__ = ( feature_extractor.size if isinstance(feature_extractor.size ,_lowerCAmelCase ) else feature_extractor.size["""shortest_edge"""] ) lowerCamelCase__ = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,_lowerCAmelCase ) set_requires_grad(self.clip_model ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.enable_attention_slicing(_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.vae ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.vae ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.unet ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.unet ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # get the original timestep using init_timestep lowerCamelCase__ = min(int(num_inference_steps * strength ) ,_lowerCAmelCase ) lowerCamelCase__ = max(num_inference_steps - init_timestep ,0 ) lowerCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ): if not isinstance(_lowerCAmelCase ,torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(_lowerCAmelCase )}''' ) lowerCamelCase__ = image.to(device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowerCAmelCase ) ] lowerCamelCase__ = torch.cat(_lowerCAmelCase ,dim=0 ) else: lowerCamelCase__ = self.vae.encode(_lowerCAmelCase ).latent_dist.sample(_lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 0.1_8215 * init_latents lowerCamelCase__ = init_latents.repeat_interleave(_lowerCAmelCase ,dim=0 ) lowerCamelCase__ = randn_tensor(init_latents.shape ,generator=_lowerCAmelCase ,device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) # get latents lowerCamelCase__ = self.scheduler.add_noise(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = init_latents return latents def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = self.coca_transform(_lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase__ = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) lowerCamelCase__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" ,"""""" ).rstrip(""" .,""" ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.feature_extractor.preprocess(_lowerCAmelCase ) lowerCamelCase__ = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase__ = self.clip_model.get_image_features(_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip.repeat_interleave(_lowerCAmelCase ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): lowerCamelCase__ = latents.detach().requires_grad_() lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase ) # predict the noise residual lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase__ = self.scheduler.alphas_cumprod[timestep] lowerCamelCase__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase__ = torch.sqrt(_lowerCAmelCase ) lowerCamelCase__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,_lowerCAmelCase ): lowerCamelCase__ = self.scheduler.sigmas[index] lowerCamelCase__ = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 1 / 0.1_8215 * sample lowerCamelCase__ = self.vae.decode(_lowerCAmelCase ).sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = transforms.Resize(self.feature_extractor_size )(_lowerCAmelCase ) lowerCamelCase__ = self.normalize(_lowerCAmelCase ).to(latents.dtype ) lowerCamelCase__ = self.clip_model.get_image_features(_lowerCAmelCase ) lowerCamelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=_lowerCAmelCase ) lowerCamelCase__ = spherical_dist_loss(_lowerCAmelCase ,_lowerCAmelCase ).mean() * clip_guidance_scale lowerCamelCase__ = -torch.autograd.grad(_lowerCAmelCase ,_lowerCAmelCase )[0] if isinstance(self.scheduler ,_lowerCAmelCase ): lowerCamelCase__ = latents.detach() + grads * (sigma**2) lowerCamelCase__ = noise_pred_original else: lowerCamelCase__ = noise_pred_original - torch.sqrt(_lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 0.6 ,_lowerCAmelCase = 50 ,_lowerCAmelCase = 7.5 ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,_lowerCAmelCase = 0.8 ,_lowerCAmelCase = 0.1 ,_lowerCAmelCase = 0.1 ,): if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(_lowerCAmelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(_lowerCAmelCase ,torch.Generator ) and batch_size > 1: lowerCamelCase__ = [generator] + [None] * (batch_size - 1) lowerCamelCase__ = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowerCamelCase__ = [x[0] for x in coca_is_none if x[1]] lowerCamelCase__ = """, """.join(_lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_lowerCAmelCase ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase__ = self.get_image_description(_lowerCAmelCase ) if style_prompt is None: if len(_lowerCAmelCase ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase__ = self.get_image_description(_lowerCAmelCase ) # get prompt text embeddings for content and style lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase__ = slerp(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # duplicate text embeddings for each generation per prompt lowerCamelCase__ = text_embeddings.repeat_interleave(_lowerCAmelCase ,dim=0 ) # set timesteps lowerCamelCase__ = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase__ = {} if accepts_offset: lowerCamelCase__ = 1 self.scheduler.set_timesteps(_lowerCAmelCase ,**_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase__ , lowerCamelCase__ = self.get_timesteps(_lowerCAmelCase ,_lowerCAmelCase ,self.device ) lowerCamelCase__ = timesteps[:1].repeat(_lowerCAmelCase ) # Preprocess image lowerCamelCase__ = preprocess(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.prepare_latents( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,text_embeddings.dtype ,self.device ,_lowerCAmelCase ) lowerCamelCase__ = preprocess(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.prepare_latents( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,text_embeddings.dtype ,self.device ,_lowerCAmelCase ) lowerCamelCase__ = slerp(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if clip_guidance_scale > 0: lowerCamelCase__ = self.get_clip_image_embeddings(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.get_clip_image_embeddings(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = slerp( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ = content_text_input.input_ids.shape[-1] lowerCamelCase__ = self.tokenizer([""""""] ,padding="""max_length""" ,max_length=_lowerCAmelCase ,return_tensors="""pt""" ) lowerCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase__ = uncond_embeddings.repeat_interleave(_lowerCAmelCase ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device="""cpu""" ,dtype=_lowerCAmelCase ).to( self.device ) else: lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase__ = {} if accepts_eta: lowerCamelCase__ = eta # check if the scheduler accepts generator lowerCamelCase__ = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase__ = generator with self.progress_bar(total=_lowerCAmelCase ): for i, t in enumerate(_lowerCAmelCase ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase ) # predict the noise residual lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase__ , lowerCamelCase__ = self.cond_fn( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__ = 1 / 0.1_8215 * latents lowerCamelCase__ = self.vae.decode(_lowerCAmelCase ).sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_lowerCAmelCase ,nsfw_content_detected=_lowerCAmelCase )
50
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' pass class lowerCAmelCase__ : '''simple docstring''' def __init__( self : int , a__ : Any ): UpperCAmelCase = data UpperCAmelCase = None def __iter__( self : List[str] ): UpperCAmelCase = self UpperCAmelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(a__ ) yield node.data UpperCAmelCase = node.next_node @property def __snake_case ( self : Optional[int] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": a__ : List[str] = Node(1) a__ : int = Node(2) a__ : Optional[int] = Node(3) a__ : Optional[Any] = Node(4) print(root_node.has_loop) # False a__ : Any = root_node.next_node print(root_node.has_loop) # True a__ : Any = Node(5) a__ : List[Any] = Node(6) a__ : Optional[int] = Node(5) a__ : List[Any] = Node(6) print(root_node.has_loop) # False a__ : Dict = Node(1) print(root_node.has_loop) # False
51
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (UnCLIPScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : List[Any] = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_UpperCAmelCase ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_UpperCAmelCase , prev_timestep=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : Any = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : List[str] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config(variance_type='''learned_range''' ) __a : Optional[int] = scheduler_class(**_UpperCAmelCase ) __a : int = 0.5 assert scheduler._get_variance(1 , predicted_variance=_UpperCAmelCase ) - -1_0.1_7_1_2_7_9_0 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_UpperCAmelCase ) - -5.7_9_9_8_0_5_2 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_UpperCAmelCase ) - -0.0_0_1_0_0_1_1 < 1e-5 def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : Dict = scheduler.timesteps __a : Optional[int] = self.dummy_model() __a : Any = self.dummy_sample_deter __a : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual __a : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __a : Tuple = pred_prev_sample __a : Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Any = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1e-3 def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : str = self.get_scheduler_config() __a : Union[str, Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(25 ) __a : Tuple = scheduler.timesteps __a : Any = self.dummy_model() __a : Optional[Any] = self.dummy_sample_deter __a : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual __a : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) if i + 1 == timesteps.shape[0]: __a : List[Any] = None else: __a : str = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a : List[str] = scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , prev_timestep=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __a : Tuple = pred_prev_sample __a : Any = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Dict = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1e-3 def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass
52
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
0
import os import re import shutil import sys import tempfile import unittest import black _snake_case : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case : Union[str, Any] = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> Tuple: __lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) __lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase_ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = 'src/transformers' shutil.rmtree(self.transformer_dir ) def lowercase ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int=None ) -> Dict: __lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __lowerCAmelCase = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowerCAmelCase_ , 'w' , newline='\n' ) as f: f.write(lowerCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'r' ) as f: self.assertTrue(f.read() , lowerCAmelCase_ ) def lowercase ( self : int ) -> List[str]: __lowerCAmelCase = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> List[Any]: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCAmelCase_ ) , ) # Copy consistency with a really long name __lowerCAmelCase = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub('Bert' , lowerCAmelCase_ , lowerCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCAmelCase_ , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCAmelCase_ ) , ) def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = check_copies.LOCALIZED_READMES['README_zh-hans.md'] __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme['format_model_list'] ) self.assertFalse(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase_ ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
53
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __lowercase ): _snake_case =42 _snake_case =42 def __init__( self: Tuple , _lowerCAmelCase: UNetaDModel , _lowerCAmelCase: ScoreSdeVeScheduler ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self: int , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 2000 , _lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase: Optional[str] = "pil" , _lowerCAmelCase: bool = True , **_lowerCAmelCase: Tuple , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ =self.unet.config.sample_size UpperCAmelCase_ =(batch_size, 3, img_size, img_size) UpperCAmelCase_ =self.unet UpperCAmelCase_ =randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase_ =sample.to(self.device ) self.scheduler.set_timesteps(_lowerCAmelCase ) self.scheduler.set_sigmas(_lowerCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase_ =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase_ =self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample UpperCAmelCase_ =self.scheduler.step_correct(_lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample # prediction step UpperCAmelCase_ =model(_lowerCAmelCase , _lowerCAmelCase ).sample UpperCAmelCase_ =self.scheduler.step_pred(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =output.prev_sample, output.prev_sample_mean UpperCAmelCase_ =sample_mean.clamp(0 , 1 ) UpperCAmelCase_ =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ =self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowerCAmelCase )
54
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = botoa.client("iam" ) __A = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=a_ , AssumeRolePolicyDocument=json.dumps(a_ , indent=2 ) ) __A = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=a_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(a_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = botoa.client("iam" ) return iam_client.get_role(RoleName=a_ )["Role"]["Arn"] def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , a_ , ) __A = None if credentials_configuration == 0: __A = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) __A = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) __A = _ask_field("AWS Access Key ID: " ) __A = aws_access_key_id __A = _ask_field("AWS Secret Access Key: " ) __A = aws_secret_access_key __A = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) __A = aws_region __A = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , a_ , ) if role_management == 0: __A = _ask_field("Enter your IAM role name: " ) else: __A = "accelerate_sagemaker_execution_role" print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(a_ ) __A = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = None if is_custom_docker_image: __A = _ask_field("Enter your Docker image: " , lambda a_ : str(a_ ).lower() ) __A = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = None if is_sagemaker_inputs_enabled: __A = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda a_ : str(a_ ).lower() , ) __A = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = None if is_sagemaker_metrics_enabled: __A = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda a_ : str(a_ ).lower() , ) __A = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) __A = {} __A = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) if use_dynamo: __A = "dynamo_" __A = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __A = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) if use_custom_options: __A = _ask_options( "Which mode do you want to use?" , a_ , lambda a_ : TORCH_DYNAMO_MODES[int(a_ )] , default="default" , ) __A = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: __A = _ask_options( a_ , a_ , lambda a_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(a_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __A = _ask_field(a_ , lambda a_ : str(a_ ).lower() , default="ml.p3.2xlarge" ) __A = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __A = _ask_field( "How many machines do you want use? [1]: " , a_ , default=1 , ) __A = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=a_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=a_ , use_cpu=a_ , dynamo_config=a_ , eca_instance_type=a_ , profile=a_ , region=a_ , iam_role_name=a_ , mixed_precision=a_ , num_machines=a_ , sagemaker_inputs_file=a_ , sagemaker_metrics_file=a_ , )
55
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : torch.FloatTensor _SCREAMING_SNAKE_CASE : torch.FloatTensor class _lowercase ( __lowercase , __lowercase ): _SCREAMING_SNAKE_CASE : int = 1 @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int = 2000 , SCREAMING_SNAKE_CASE_ : float = 0.1_5 , SCREAMING_SNAKE_CASE_ : float = 0.0_1 , SCREAMING_SNAKE_CASE_ : float = 1_3_4_8.0 , SCREAMING_SNAKE_CASE_ : float = 1e-5 , SCREAMING_SNAKE_CASE_ : int = 1 , ) -> str: # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None self.set_sigmas(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: return sample def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Any: __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case = torch.linspace(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : float = None ) -> str: __snake_case = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case = torch.exp(torch.linspace(math.log(SCREAMING_SNAKE_CASE_ ) , math.log(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) __snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case = timesteps.to(self.discrete_sigmas.device ) __snake_case = self.discrete_sigmas[timesteps].to(sample.device ) __snake_case = self.get_adjacent_sigma(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(sample.device ) __snake_case = torch.zeros_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __snake_case = diffusion.unsqueeze(-1 ) __snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=SCREAMING_SNAKE_CASE_ , device=sample.device , dtype=sample.dtype ) __snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=SCREAMING_SNAKE_CASE_ , prev_sample_mean=SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __snake_case = step_size.unsqueeze(-1 ) __snake_case = sample + step_size * model_output __snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = timesteps.to(original_samples.device ) __snake_case = self.discrete_sigmas.to(original_samples.device )[timesteps] __snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(SCREAMING_SNAKE_CASE_ ) * sigmas[:, None, None, None] ) __snake_case = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ) -> Optional[Any]: return self.config.num_train_timesteps
56
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP A_ : Optional[Any] = False try: A_ : List[str] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase = None , _lowerCamelCase = [] ): UpperCamelCase_: List[Any] = 0 UpperCamelCase_: Optional[Any] = choices UpperCamelCase_: List[str] = prompt if sys.platform == "win32": UpperCamelCase_: Tuple = '*' else: UpperCamelCase_: Any = '➔ ' def _a ( self , _lowerCamelCase , _lowerCamelCase = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , _lowerCamelCase ) else: forceWrite(self.choices[index] , _lowerCamelCase ) def _a ( self , _lowerCamelCase ): if index == self.position: forceWrite(f''' {self.arrow_char} ''' ) self.write_choice(_lowerCamelCase ) else: forceWrite(f''' {self.choices[index]}''' ) reset_cursor() def _a ( self , _lowerCamelCase , _lowerCamelCase = 1 ): UpperCamelCase_: Tuple = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowerCamelCase ) move_cursor(_lowerCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def _a ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def _a ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def _a ( self ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def _a ( self ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowerCamelCase )] for number in range(1_0 )] ) def _a ( self ): UpperCamelCase_: Dict = int(chr(self.current_selection ) ) UpperCamelCase_: Tuple = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowerCamelCase ) else: return else: return def _a ( self , _lowerCamelCase = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) UpperCamelCase_: Tuple = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowerCamelCase ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: UpperCamelCase_: Tuple = int(builtins.input() ) except ValueError: UpperCamelCase_: Any = default_choice else: UpperCamelCase_: Optional[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(_lowerCamelCase , '\n' ) return choice
57
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : Tuple = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } __lowerCAmelCase : Optional[Any] = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } @lru_cache() def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) snake_case_ : Tuple = bs[:] snake_case_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case_ : Dict = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = set() snake_case_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : str = char return pairs class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase , _lowercase , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , **_lowercase , ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token snake_case_ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token snake_case_ : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token snake_case_ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding="""utf-8""" ) as vocab_handle: snake_case_ : Optional[Any] = json.load(_lowercase ) snake_case_ : Any = {v: k for k, v in self.encoder.items()} snake_case_ : Optional[Any] = errors # how to handle errors in decoding snake_case_ : List[Any] = bytes_to_unicode() snake_case_ : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding="""utf-8""" ) as merges_handle: snake_case_ : str = merges_handle.read().split("""\n""" )[1:-1] snake_case_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ : List[Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Dict = {} snake_case_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case_ : Optional[int] = tuple(_lowercase ) snake_case_ : List[Any] = get_pairs(_lowercase ) if not pairs: return token while True: snake_case_ : Optional[int] = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : List[str] = bigram snake_case_ : List[str] = [] snake_case_ : Optional[int] = 0 while i < len(_lowercase ): try: snake_case_ : Any = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : List[str] = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Union[str, Any] = tuple(_lowercase ) snake_case_ : int = new_word if len(_lowercase ) == 1: break else: snake_case_ : Tuple = get_pairs(_lowercase ) snake_case_ : Dict = """ """.join(_lowercase ) snake_case_ : Any = word return word def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : str = [] for token in re.findall(self.pat , _lowercase ): snake_case_ : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' return self.decoder.get(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : str = """""".join(_lowercase ) snake_case_ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : int = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Optional[int] = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + """\n""" ) snake_case_ : Optional[Any] = 0 with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) snake_case_ : Union[str, Any] = token_index writer.write(""" """.join(_lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] snake_case_ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): snake_case_ : Any = """ """ + text return (text, kwargs)
58
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , **UpperCAmelCase_ : List[Any]) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) requires_backends(self , "vision") self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__(self : List[str] , UpperCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , **UpperCAmelCase_ : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] ={} if "candidate_labels" in kwargs: lowerCamelCase__: Tuple =kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCamelCase__: Tuple =kwargs["hypothesis_template"] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[Any]="This is a photo of {}.") ->str: '''simple docstring''' lowerCamelCase__: int =load_image(UpperCAmelCase_) lowerCamelCase__: Any =self.image_processor(images=[image] , return_tensors=self.framework) lowerCamelCase__: Any =candidate_labels lowerCamelCase__: List[str] =[hypothesis_template.format(UpperCAmelCase_) for x in candidate_labels] lowerCamelCase__: int =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_) lowerCamelCase__: str =[text_inputs] return inputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: int =model_inputs.pop("candidate_labels") lowerCamelCase__: List[str] =model_inputs.pop("text_inputs") if isinstance(text_inputs[0] , UpperCAmelCase_): lowerCamelCase__: List[Any] =text_inputs[0] else: # Batching case. lowerCamelCase__: List[Any] =text_inputs[0][0] lowerCamelCase__: List[str] =self.model(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str ={ "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =model_outputs.pop("candidate_labels") lowerCamelCase__: Optional[int] =model_outputs["logits"][0] if self.framework == "pt": lowerCamelCase__: Optional[Any] =logits.softmax(dim=-1).squeeze(-1) lowerCamelCase__: Optional[Any] =probs.tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Optional[int] =[scores] elif self.framework == "tf": lowerCamelCase__: List[str] =stable_softmax(UpperCAmelCase_ , axis=-1) lowerCamelCase__: Optional[int] =probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""") lowerCamelCase__: Optional[int] =[ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_) , key=lambda UpperCAmelCase_: -x[0]) ] return result
59
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
60
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = BlenderbotSmallTokenizer snake_case__ = False def a ( self : List[str] ) -> List[str]: super().setUp() lowerCAmelCase__ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] lowerCAmelCase__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] lowerCAmelCase__ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE__ ) ) def a ( self : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: lowerCAmelCase__ = "adapt act apte" lowerCAmelCase__ = "adapt act apte" return input_text, output_text def a ( self : Dict ) -> Tuple: lowerCAmelCase__ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ = "adapt act apte" lowerCAmelCase__ = ["adapt", "act", "ap@@", "te"] lowerCAmelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCAmelCase__ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] ) -> Tuple: lowerCAmelCase__ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_384] lowerCAmelCase__ = "I am a small frog." lowerCAmelCase__ = tok([src_text] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )["input_ids"] lowerCAmelCase__ = tok.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def a ( self : Optional[Any] ) -> int: lowerCAmelCase__ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) lowerCAmelCase__ = "I am a small frog ." lowerCAmelCase__ = "." lowerCAmelCase__ = tok(SCREAMING_SNAKE_CASE__ )["input_ids"] lowerCAmelCase__ = tok(SCREAMING_SNAKE_CASE__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
61
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig snake_case = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring snake_case = """UperNetConfig""" class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[int, Tuple[int, int]] , UpperCAmelCase_ : Union[int, Tuple[int, int], str] = 0 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Union[int, Tuple[int, int]] = 1 , ): super().__init__() SCREAMING_SNAKE_CASE : str = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , padding=UpperCAmelCase_ , bias=UpperCAmelCase_ , dilation=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.BatchNormad(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = nn.ReLU() def _A ( self : Union[str, Any] , UpperCAmelCase_ : torch.Tensor ): SCREAMING_SNAKE_CASE : Any = self.conv(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.batch_norm(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.activation(UpperCAmelCase_ ) return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): super().__init__() SCREAMING_SNAKE_CASE : str = [ nn.AdaptiveAvgPoolad(UpperCAmelCase_ ), UperNetConvModule(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _A ( self : Any , UpperCAmelCase_ : torch.Tensor ): SCREAMING_SNAKE_CASE : Optional[int] = input for layer in self.layers: SCREAMING_SNAKE_CASE : Optional[Any] = layer(UpperCAmelCase_ ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Tuple[int, ...] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : bool ): super().__init__() SCREAMING_SNAKE_CASE : Dict = pool_scales SCREAMING_SNAKE_CASE : Optional[int] = align_corners SCREAMING_SNAKE_CASE : Union[str, Any] = in_channels SCREAMING_SNAKE_CASE : List[str] = channels SCREAMING_SNAKE_CASE : str = [] for i, pool_scale in enumerate(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , channels=UpperCAmelCase_ ) self.blocks.append(UpperCAmelCase_ ) self.add_module(str(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = [] for ppm in self.blocks: SCREAMING_SNAKE_CASE : Dict = ppm(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = nn.functional.interpolate( UpperCAmelCase_ , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(UpperCAmelCase_ ) return ppm_outs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE : Tuple = config SCREAMING_SNAKE_CASE : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) SCREAMING_SNAKE_CASE : Dict = in_channels SCREAMING_SNAKE_CASE : str = config.hidden_size SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module SCREAMING_SNAKE_CASE : Tuple = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) SCREAMING_SNAKE_CASE : Tuple = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList() SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer SCREAMING_SNAKE_CASE : Optional[Any] = UperNetConvModule(UpperCAmelCase_ , self.channels , kernel_size=1 ) SCREAMING_SNAKE_CASE : Dict = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCAmelCase_ ) self.fpn_convs.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _A ( self : Optional[int] ): self.apply(self._init_weights ) def _A ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ): if isinstance(UpperCAmelCase_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _A ( self : Tuple , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Any = inputs[-1] SCREAMING_SNAKE_CASE : Union[str, Any] = [x] psp_outs.extend(self.psp_modules(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(UpperCAmelCase_ , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.bottleneck(UpperCAmelCase_ ) return output def _A ( self : Dict , UpperCAmelCase_ : torch.Tensor ): # build laterals SCREAMING_SNAKE_CASE : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCAmelCase_ ) ) # build top-down path SCREAMING_SNAKE_CASE : Union[str, Any] = len(UpperCAmelCase_ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = laterals[i - 1].shape[2:] SCREAMING_SNAKE_CASE : List[str] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCAmelCase_ , mode="bilinear" , align_corners=self.align_corners ) # build outputs SCREAMING_SNAKE_CASE : Any = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE : List[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(UpperCAmelCase_ , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = self.fpn_bottleneck(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.classifier(UpperCAmelCase_ ) return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : Union[int, Tuple[int, int]] = 1 ): super().__init__() SCREAMING_SNAKE_CASE : int = config SCREAMING_SNAKE_CASE : Optional[Any] = config.auxiliary_in_channels SCREAMING_SNAKE_CASE : List[str] = config.auxiliary_channels SCREAMING_SNAKE_CASE : List[Any] = config.auxiliary_num_convs SCREAMING_SNAKE_CASE : Tuple = config.auxiliary_concat_input SCREAMING_SNAKE_CASE : Optional[int] = in_index SCREAMING_SNAKE_CASE : List[Any] = (kernel_size // 2) * dilation SCREAMING_SNAKE_CASE : int = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCAmelCase_ , padding=UpperCAmelCase_ , dilation=UpperCAmelCase_ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCAmelCase_ , padding=UpperCAmelCase_ , dilation=UpperCAmelCase_ ) ) if self.num_convs == 0: SCREAMING_SNAKE_CASE : Optional[int] = nn.Identity() else: SCREAMING_SNAKE_CASE : List[str] = nn.Sequential(*UpperCAmelCase_ ) if self.concat_input: SCREAMING_SNAKE_CASE : Dict = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCAmelCase_ , padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _A ( self : Optional[int] ): self.apply(self._init_weights ) def _A ( self : int , UpperCAmelCase_ : Union[str, Any] ): if isinstance(UpperCAmelCase_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _A ( self : Tuple , UpperCAmelCase_ : torch.Tensor ): # just take the relevant feature maps SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_hidden_states[self.in_index] SCREAMING_SNAKE_CASE : Any = self.convs(UpperCAmelCase_ ) if self.concat_input: SCREAMING_SNAKE_CASE : str = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) SCREAMING_SNAKE_CASE : int = self.classifier(UpperCAmelCase_ ) return output class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = UperNetConfig UpperCamelCase_ : List[str] = '''pixel_values''' UpperCamelCase_ : List[str] = True def _A ( self : Tuple , UpperCAmelCase_ : Tuple ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _A ( self : Tuple ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _A ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict=False ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = value snake_case = r""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ snake_case = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , lowerCAmelCase , ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : Any ): super().__init__(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetHead(UpperCAmelCase_ , in_channels=self.backbone.channels ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetFCNHead(UpperCAmelCase_ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = output_attentions if output_attentions is not None else self.config.output_attentions SCREAMING_SNAKE_CASE : Tuple = self.backbone.forward_with_filtered_kwargs( UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , output_attentions=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = outputs.feature_maps SCREAMING_SNAKE_CASE : Optional[Any] = self.decode_head(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = nn.functional.interpolate(UpperCAmelCase_ , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.auxiliary_head is not None: SCREAMING_SNAKE_CASE : Dict = self.auxiliary_head(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = nn.functional.interpolate( UpperCAmelCase_ , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss SCREAMING_SNAKE_CASE : Optional[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) SCREAMING_SNAKE_CASE : Dict = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: SCREAMING_SNAKE_CASE : Any = (logits,) + outputs[1:] else: SCREAMING_SNAKE_CASE : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
62
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : List[Any] = AudioLDMPipeline a : Optional[Any] = TEXT_TO_AUDIO_PARAMS a : Dict = TEXT_TO_AUDIO_BATCH_PARAMS a : Optional[int] = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCAmelCase ( self : Any ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__lowercase , ) __UpperCAmelCase : Optional[int] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) __UpperCAmelCase : Optional[int] = ClapTextModelWithProjection(__lowercase ) __UpperCAmelCase : str = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) __UpperCAmelCase : Dict = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__lowercase , ) __UpperCAmelCase : int = SpeechTaHifiGan(__lowercase ) __UpperCAmelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def UpperCAmelCase ( self : Optional[int] , __lowercase : Any , __lowercase : str=0 ) -> List[str]: if str(__lowercase ).startswith("""mps""" ): __UpperCAmelCase : Dict = torch.manual_seed(__lowercase ) else: __UpperCAmelCase : Tuple = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __UpperCAmelCase : Tuple = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : List[Any] = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Union[str, Any] = audioldm_pipe(**__lowercase ) __UpperCAmelCase : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 256 __UpperCAmelCase : str = audio[:10] __UpperCAmelCase : List[Any] = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Tuple ) -> Optional[int]: __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase ) __UpperCAmelCase : str = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Dict = 3 * [inputs["""prompt"""]] # forward __UpperCAmelCase : Union[str, Any] = audioldm_pipe(**__lowercase ) __UpperCAmelCase : int = output.audios[0] __UpperCAmelCase : List[str] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Any = 3 * [inputs.pop("""prompt""" )] __UpperCAmelCase : Tuple = audioldm_pipe.tokenizer( __lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors="""pt""" , ) __UpperCAmelCase : Optional[Any] = text_inputs["""input_ids"""].to(__lowercase ) __UpperCAmelCase : int = audioldm_pipe.text_encoder( __lowercase , ) __UpperCAmelCase : Dict = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __UpperCAmelCase : Tuple = F.normalize(__lowercase , dim=-1 ) __UpperCAmelCase : Tuple = prompt_embeds # forward __UpperCAmelCase : Dict = audioldm_pipe(**__lowercase ) __UpperCAmelCase : str = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCAmelCase ( self : Union[str, Any] ) -> str: __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase ) __UpperCAmelCase : int = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Optional[Any] = 3 * ["""this is a negative prompt"""] __UpperCAmelCase : Optional[Any] = negative_prompt __UpperCAmelCase : Tuple = 3 * [inputs["""prompt"""]] # forward __UpperCAmelCase : int = audioldm_pipe(**__lowercase ) __UpperCAmelCase : Any = output.audios[0] __UpperCAmelCase : List[Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Tuple = 3 * [inputs.pop("""prompt""" )] __UpperCAmelCase : List[Any] = [] for p in [prompt, negative_prompt]: __UpperCAmelCase : List[str] = audioldm_pipe.tokenizer( __lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = text_inputs["""input_ids"""].to(__lowercase ) __UpperCAmelCase : Optional[Any] = audioldm_pipe.text_encoder( __lowercase , ) __UpperCAmelCase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __UpperCAmelCase : Any = F.normalize(__lowercase , dim=-1 ) embeds.append(__lowercase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = embeds # forward __UpperCAmelCase : str = audioldm_pipe(**__lowercase ) __UpperCAmelCase : str = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCAmelCase ( self : Dict ) -> Tuple: __UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[Any] = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=__lowercase ) __UpperCAmelCase : Tuple = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : str = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Optional[Any] = """egg cracking""" __UpperCAmelCase : Optional[Any] = audioldm_pipe(**__lowercase , negative_prompt=__lowercase ) __UpperCAmelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 256 __UpperCAmelCase : Union[str, Any] = audio[:10] __UpperCAmelCase : int = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : str ) -> Any: __UpperCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[Any] = self.get_dummy_components() __UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=__lowercase ) __UpperCAmelCase : Tuple = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Tuple = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : str = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) __UpperCAmelCase : Union[str, Any] = audioldm_pipe(__lowercase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : int = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __UpperCAmelCase : int = 2 __UpperCAmelCase : str = audioldm_pipe(__lowercase , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __UpperCAmelCase : Any = 2 __UpperCAmelCase : Tuple = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def UpperCAmelCase ( self : List[str] ) -> str: __UpperCAmelCase : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : int = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[str] = audioldm_pipe.vocoder.config.sampling_rate __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowercase ) __UpperCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.016 , **__lowercase ) __UpperCAmelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) / vocoder_sampling_rate == 0.016 __UpperCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **__lowercase ) __UpperCAmelCase : Dict = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) / vocoder_sampling_rate == 0.032 def UpperCAmelCase ( self : Any ) -> List[Any]: __UpperCAmelCase : List[Any] = self.get_dummy_components() __UpperCAmelCase : Any = AudioLDMPipeline(**__lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[str] = ["""hey"""] __UpperCAmelCase : Dict = audioldm_pipe(__lowercase , num_inference_steps=1 ) __UpperCAmelCase : Tuple = output.audios.shape assert audio_shape == (1, 256) __UpperCAmelCase : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __UpperCAmelCase : List[Any] = SpeechTaHifiGan(__lowercase ).to(__lowercase ) __UpperCAmelCase : Dict = audioldm_pipe(__lowercase , num_inference_steps=1 ) __UpperCAmelCase : int = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def UpperCAmelCase ( self : Dict ) -> Optional[int]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase ) def UpperCAmelCase ( self : str ) -> Any: self._test_inference_batch_single_identical(test_mean_pixel_difference=__lowercase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase ) @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : Dict ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[int] , __lowercase : int="cpu" , __lowercase : List[Any]=torch.floataa , __lowercase : Tuple=0 ) -> Dict: __UpperCAmelCase : int = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __UpperCAmelCase : Dict = np.random.RandomState(__lowercase ).standard_normal((1, 8, 128, 16) ) __UpperCAmelCase : Optional[Any] = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __UpperCAmelCase : int = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def UpperCAmelCase ( self : int ) -> List[str]: __UpperCAmelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __UpperCAmelCase : Union[str, Any] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Tuple = self.get_inputs(__lowercase ) __UpperCAmelCase : str = 25 __UpperCAmelCase : Optional[int] = audioldm_pipe(**__lowercase ).audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 81920 __UpperCAmelCase : Dict = audio[77230:77240] __UpperCAmelCase : Optional[Any] = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) __UpperCAmelCase : Optional[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def UpperCAmelCase ( self : str ) -> Tuple: __UpperCAmelCase : Optional[Any] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __UpperCAmelCase : int = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : List[Any] = self.get_inputs(__lowercase ) __UpperCAmelCase : Optional[int] = audioldm_pipe(**__lowercase ).audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 81920 __UpperCAmelCase : int = audio[27780:27790] __UpperCAmelCase : Optional[Any] = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) __UpperCAmelCase : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
63
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
0
from __future__ import annotations from collections.abc import Callable lowercase_ : int = list[list[float | int]] def A__ ( snake_case_ : Matrix , snake_case_ : Matrix ): SCREAMING_SNAKE_CASE__: int= len(snake_case_ ) SCREAMING_SNAKE_CASE__: Matrix= [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: float for row in range(snake_case_ ): for col in range(snake_case_ ): SCREAMING_SNAKE_CASE__: Union[str, Any]= matrix[row][col] SCREAMING_SNAKE_CASE__: int= vector[row][0] SCREAMING_SNAKE_CASE__: int= 0 SCREAMING_SNAKE_CASE__: Union[str, Any]= 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE__: int= max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_ , snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= augmented[pivot_row], augmented[row] for rowa in range(row + 1 , snake_case_ ): SCREAMING_SNAKE_CASE__: Union[str, Any]= augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE__: Optional[int]= 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , snake_case_ ): for row in range(snake_case_ ): SCREAMING_SNAKE_CASE__: List[Any]= augmented[row][col] / augmented[col][col] for cola in range(snake_case_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(snake_case_ ) ] def A__ ( snake_case_ : list[int] ): SCREAMING_SNAKE_CASE__: int= len(snake_case_ ) SCREAMING_SNAKE_CASE__: Matrix= [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] SCREAMING_SNAKE_CASE__: Matrix= [[0] for _ in range(snake_case_ )] SCREAMING_SNAKE_CASE__: Matrix SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): SCREAMING_SNAKE_CASE__: Union[str, Any]= (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE__: List[Any]= y_val SCREAMING_SNAKE_CASE__: int= solve(snake_case_ , snake_case_ ) def interpolated_func(snake_case_ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def A__ ( snake_case_ : int ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( snake_case_ : Callable[[int], int] = question_function , snake_case_ : int = 10 ): SCREAMING_SNAKE_CASE__: list[int]= [func(snake_case_ ) for x_val in range(1 , order + 1 )] SCREAMING_SNAKE_CASE__: list[Callable[[int], int]]= [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] SCREAMING_SNAKE_CASE__: int= 0 SCREAMING_SNAKE_CASE__: Callable[[int], int] SCREAMING_SNAKE_CASE__: int for poly in polynomials: SCREAMING_SNAKE_CASE__: Optional[Any]= 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
64
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
65
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
0
import logging import os import threading import time try: import warnings except ImportError: UpperCamelCase = None try: import msvcrt except ImportError: UpperCamelCase = None try: import fcntl except ImportError: UpperCamelCase = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: UpperCamelCase = OSError # Data # ------------------------------------------------ UpperCamelCase = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] UpperCamelCase = "3.0.12" UpperCamelCase = None def __magic_name__ ( ) -> List[Any]: global _logger _lowercase : Optional[int] = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): _lowercase : List[Any] = lock_file return None def __str__( self ): _lowercase : Tuple = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = lock return None def __enter__( self ): return self.lock def __exit__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.lock.release() return None class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=-1 , _lowerCAmelCase=None ): _lowercase : Tuple = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long _lowercase : Union[str, Any] = self.hash_filename_if_too_long(_lowerCAmelCase , _lowerCAmelCase ) # The path to the lock file. _lowercase : int = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _lowercase : List[Any] = None # The default timeout value. _lowercase : Union[str, Any] = timeout # We use this lock primarily for the lock counter. _lowercase : Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _lowercase : Optional[Any] = 0 return None @property def __a ( self ): return self._lock_file @property def __a ( self ): return self._timeout @timeout.setter def __a ( self , _lowerCAmelCase ): _lowercase : Tuple = float(_lowerCAmelCase ) return None def __a ( self ): raise NotImplementedError() def __a ( self ): raise NotImplementedError() @property def __a ( self ): return self._lock_file_fd is not None def __a ( self , _lowerCAmelCase=None , _lowerCAmelCase=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: _lowercase : Any = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _lowercase : Tuple = id(self ) _lowercase : Union[str, Any] = self._lock_file _lowercase : Tuple = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(_lowerCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _lowercase : Dict = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __a ( self , _lowerCAmelCase=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _lowercase : Tuple = id(self ) _lowercase : Optional[Any] = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() _lowercase : Union[str, Any] = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): self.acquire() return self def __exit__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.release() return None def __del__( self ): self.release(force=_lowerCAmelCase ) return None def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = os.path.basename(_lowerCAmelCase ) if len(_lowerCAmelCase ) > max_length and max_length > 0: _lowercase : Optional[int] = os.path.dirname(_lowerCAmelCase ) _lowercase : int = str(hash(_lowerCAmelCase ) ) _lowercase : Union[str, Any] = filename[: max_length - len(_lowerCAmelCase ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(_lowerCAmelCase , _lowerCAmelCase ) else: return path class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=-1 , _lowerCAmelCase=None ): from .file_utils import relative_to_absolute_path super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) _lowercase : Optional[Any] = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def __a ( self ): _lowercase : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _lowercase : Dict = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: try: msvcrt.locking(_lowerCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_lowerCAmelCase ) else: _lowercase : List[str] = fd return None def __a ( self ): _lowercase : Tuple = self._lock_file_fd _lowercase : Union[str, Any] = None msvcrt.locking(_lowerCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(_lowerCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=-1 , _lowerCAmelCase=None ): _lowercase : List[str] = os.statvfs(os.path.dirname(_lowerCAmelCase ) ).f_namemax super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _lowercase : List[str] = os.open(self._lock_file , _lowerCAmelCase ) try: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_lowerCAmelCase ) else: _lowercase : Optional[Any] = fd return None def __a ( self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _lowercase : Tuple = self._lock_file_fd _lowercase : Optional[Any] = None fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN ) os.close(_lowerCAmelCase ) return None class lowerCAmelCase_ ( __snake_case ): def __a ( self ): _lowercase : str = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _lowercase : int = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: _lowercase : str = fd return None def __a ( self ): os.close(self._lock_file_fd ) _lowercase : Union[str, Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None UpperCamelCase = None if msvcrt: UpperCamelCase = WindowsFileLock elif fcntl: UpperCamelCase = UnixFileLock else: UpperCamelCase = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
66
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case = logging.get_logger(__name__) class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ['''pixel_values'''] def __init__( self : Union[str, Any] ,__A : bool = True ,__A : Dict[str, int] = None ,__A : PILImageResampling = PILImageResampling.BICUBIC ,__A : bool = True ,__A : Dict[str, int] = None ,__A : bool = True ,__A : Union[int, float] = 1 / 255 ,__A : bool = True ,__A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,__A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**__A : Optional[int] ,) -> None: super().__init__(**__A ) _lowercase = size if size is not None else {'shortest_edge': 224} _lowercase = get_size_dict(__A ,default_to_square=__A ) _lowercase = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowercase = get_size_dict(__A ,param_name='crop_size' ) _lowercase = do_resize _lowercase = size _lowercase = resample _lowercase = do_center_crop _lowercase = crop_size _lowercase = do_rescale _lowercase = rescale_factor _lowercase = do_normalize _lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCAmelCase ( self : int ,__A : np.ndarray ,__A : Dict[str, int] ,__A : PILImageResampling = PILImageResampling.BICUBIC ,__A : Optional[Union[str, ChannelDimension]] = None ,**__A : List[str] ,) -> np.ndarray: _lowercase = get_size_dict(__A ,default_to_square=__A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowercase = int((256 / 224) * size['shortest_edge'] ) _lowercase = get_resize_output_image_size(__A ,size=__A ,default_to_square=__A ) _lowercase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( __A ,size=(size_dict['height'], size_dict['width']) ,resample=__A ,data_format=__A ,**__A ) def __UpperCAmelCase ( self : int ,__A : np.ndarray ,__A : Dict[str, int] ,__A : Optional[Union[str, ChannelDimension]] = None ,**__A : Optional[int] ,) -> np.ndarray: _lowercase = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__A ,size=(size['height'], size['width']) ,data_format=__A ,**__A ) def __UpperCAmelCase ( self : Optional[int] ,__A : np.ndarray ,__A : Union[int, float] ,__A : Optional[Union[str, ChannelDimension]] = None ,**__A : List[str] ,) -> np.ndarray: return rescale(__A ,scale=__A ,data_format=__A ,**__A ) def __UpperCAmelCase ( self : str ,__A : np.ndarray ,__A : Union[float, List[float]] ,__A : Union[float, List[float]] ,__A : Optional[Union[str, ChannelDimension]] = None ,**__A : int ,) -> np.ndarray: return normalize(__A ,mean=__A ,std=__A ,data_format=__A ,**__A ) def __UpperCAmelCase ( self : Dict ,__A : ImageInput ,__A : Optional[bool] = None ,__A : Optional[Dict[str, int]] = None ,__A : PILImageResampling = None ,__A : Optional[bool] = None ,__A : Optional[Dict[str, int]] = None ,__A : Optional[bool] = None ,__A : Optional[float] = None ,__A : Optional[bool] = None ,__A : Optional[Union[float, Iterable[float]]] = None ,__A : Optional[Union[float, Iterable[float]]] = None ,__A : Optional[TensorType] = None ,__A : ChannelDimension = ChannelDimension.FIRST ,**__A : Optional[Any] ,) -> BatchFeature: _lowercase = do_resize if do_resize is not None else self.do_resize _lowercase = resample if resample is not None else self.resample _lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase = do_rescale if do_rescale is not None else self.do_rescale _lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase = do_normalize if do_normalize is not None else self.do_normalize _lowercase = image_mean if image_mean is not None else self.image_mean _lowercase = image_std if image_std is not None else self.image_std _lowercase = size if size is not None else self.size _lowercase = get_size_dict(__A ,default_to_square=__A ) _lowercase = crop_size if crop_size is not None else self.crop_size _lowercase = get_size_dict(__A ,param_name='crop_size' ) _lowercase = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowercase = [to_numpy_array(__A ) for image in images] if do_resize: _lowercase = [self.resize(__A ,__A ,__A ) for image in images] if do_center_crop: _lowercase = [self.center_crop(__A ,__A ) for image in images] if do_rescale: _lowercase = [self.rescale(__A ,__A ) for image in images] if do_normalize: _lowercase = [self.normalize(__A ,__A ,__A ) for image in images] _lowercase = [to_channel_dimension_format(__A ,__A ) for image in images] _lowercase = {'pixel_values': images} return BatchFeature(data=__A ,tensor_type=__A )
67
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
def lowercase__ ( A_: str , A_: str ) -> Optional[Any]: """simple docstring""" assert x is not None assert y is not None __UpperCAmelCase =len(A_ ) __UpperCAmelCase =len(A_ ) # declaring the array for storing the dp values __UpperCAmelCase =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __UpperCAmelCase =1 if x[i - 1] == y[j - 1] else 0 __UpperCAmelCase =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __UpperCAmelCase ="""""" __UpperCAmelCase , __UpperCAmelCase =m, n while i > 0 and j > 0: __UpperCAmelCase =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __UpperCAmelCase =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A , __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
68
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
'''simple docstring''' import functools from typing import Any def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : list[str] ) -> bool: # Validation if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not all( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie __snake_case = {} __snake_case = "WORD_KEEPER" for word in words: __snake_case = trie for c in word: if c not in trie_node: __snake_case = {} __snake_case = trie_node[c] __snake_case = True __snake_case = len(_UpperCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(_UpperCAmelCase : int ) -> bool: if index == len_string: return True __snake_case = trie for i in range(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = trie_node.get(string[i] , _UpperCAmelCase ) if trie_node is None: return False if trie_node.get(_UpperCAmelCase , _UpperCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
69
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowerCamelCase : Tuple = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Tuple , lowercase : List[Any] , lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ): '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(lowercase ) , version.parse(lowercase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' lowerCamelCase_ = f"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , lowercase ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = requirement, None, None else: lowerCamelCase_ = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , lowercase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f""" got {requirement}""" ) lowerCamelCase_ , lowerCamelCase_ = match[0] lowerCamelCase_ = want_full.split(',' ) # there could be multiple requirements lowerCamelCase_ = {} for w in want_range: lowerCamelCase_ = re.findall(r'^([\s!=<>]{1,2})(.+)' , lowercase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f""" but got {requirement}""" ) lowerCamelCase_ , lowerCamelCase_ = match[0] lowerCamelCase_ = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": lowerCamelCase_ = '.'.join([str(lowercase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) return # check if any version is installed try: lowerCamelCase_ = importlib.metadata.version(lowercase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(lowercase , lowercase )
70
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") _lowerCamelCase = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
71
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data['''data''']) _UpperCAmelCase : Union[str, Any] = np.array(data['''target''']) _UpperCAmelCase : int = data['''target_names'''] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = train_test_split(X, y) def UpperCamelCase ( lowercase_ : str , lowercase_ : Optional[Any] ) -> int: '''simple docstring''' return np.linalg.norm(np.array(lowercase_ ) - np.array(lowercase_ ) ) def UpperCamelCase ( lowercase_ : Any , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Tuple=5 ) -> List[Any]: '''simple docstring''' lowercase =zip(lowercase_ , lowercase_ ) # List of distances of all points from the point to be classified lowercase =[] for data_point in data: lowercase =euclidean_distance(data_point[0] , lowercase_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowercase =[i[1] for i in sorted(lowercase_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowercase =Counter(lowercase_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
72
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
a_ : Optional[int] = 9.80_665 def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = g): if fluid_density <= 0: raise ValueError('Impossible fluid density') if volume < 0: raise ValueError('Impossible Object volume') if gravity <= 0: raise ValueError('Impossible Gravity') return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
73
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def a__ ( snake_case ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def a__ ( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = '''mock-s3-bucket''' __SCREAMING_SNAKE_CASE : int = F'''s3://{mock_bucket}''' __SCREAMING_SNAKE_CASE : Dict = extract_path_from_uri(snake_case ) assert dataset_path.startswith('''s3://''' ) is False __SCREAMING_SNAKE_CASE : List[str] = '''./local/path''' __SCREAMING_SNAKE_CASE : str = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = is_remote_filesystem(snake_case ) assert is_remote is True __SCREAMING_SNAKE_CASE : int = fsspec.filesystem('''file''' ) __SCREAMING_SNAKE_CASE : str = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , snake_case ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} __SCREAMING_SNAKE_CASE : List[str] = input_paths[compression_fs_class.protocol] if input_path is None: __SCREAMING_SNAKE_CASE : Any = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) __SCREAMING_SNAKE_CASE : str = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.basename(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(snake_case , '''r''' , encoding='''utf-8''' ) as f, open(snake_case , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} __SCREAMING_SNAKE_CASE : Dict = compressed_file_paths[protocol] __SCREAMING_SNAKE_CASE : int = '''dataset.jsonl''' __SCREAMING_SNAKE_CASE : int = F'''{protocol}://{member_file_path}::{compressed_file_path}''' __SCREAMING_SNAKE_CASE, *__SCREAMING_SNAKE_CASE : Dict = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = hf_api.dataset_info(snake_case , token=snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(snake_case ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
74
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCamelCase__ = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize UpperCamelCase__ = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' UpperCamelCase__ = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' UpperCamelCase__ = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase_ ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def lowercase_ ( self : str , _A : Optional[Any] ): '''simple docstring''' import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def lowercase_ ( self : str , _A : Dict , _A : Optional[Any] , _A : Tuple=0.9 , _A : Optional[int]=3 , _A : Tuple=0.5 ): '''simple docstring''' if NLTK_VERSION >= version.Version('''3.6.5''' ): UpperCAmelCase__ : Union[str, Any] = [ meteor_score.single_meteor_score( word_tokenize(_A ) , word_tokenize(_A ) , alpha=_A , beta=_A , gamma=_A ) for ref, pred in zip(_A , _A ) ] else: UpperCAmelCase__ : Tuple = [ meteor_score.single_meteor_score(_A , _A , alpha=_A , beta=_A , gamma=_A ) for ref, pred in zip(_A , _A ) ] return {"meteor": np.mean(_A )}
75
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
0
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration A = """facebook/wmt19-en-de""" A = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model A = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) A = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test A = tokenizer(["""Making tiny model"""], return_tensors="""pt""") A = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save A = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
77
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): UpperCAmelCase_ = 0 def _lowercase (self : Tuple ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(__a , __a ) def _lowercase (self : str ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = Path(__a ) / "preprocessor_config.json" UpperCAmelCase_ = Path(__a ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__a , "w" ) , ) json.dump({"model_type": "clip"} , open(__a , "w" ) ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = Path(__a ) / "preprocessor_config.json" UpperCAmelCase_ = Path(__a ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(__a , "w" ) , ) json.dump({"model_type": "clip"} , open(__a , "w" ) ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCAmelCase_ = Path(__a ) / "preprocessor_config.json" UpperCAmelCase_ = Path(__a ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__a , "w" ) , ) json.dump({"model_type": "clip"} , open(__a , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCAmelCase_ = AutoImageProcessor.from_pretrained(__a ).to_dict() config_dict.pop("image_processor_type" ) UpperCAmelCase_ = CLIPImageProcessor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(__a ) # make sure private variable is not incorrectly saved UpperCAmelCase_ = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def _lowercase (self : int ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = Path(__a ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__a , "w" ) , ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Tuple ): with self.assertRaisesRegex( __a , "clip-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained("clip-base" ) def _lowercase (self : Optional[int] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained(__a , revision="aaaaaa" ) def _lowercase (self : Union[str, Any] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def _lowercase (self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__a ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__a ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__a ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def _lowercase (self : Optional[int] ): try: AutoConfig.register("custom" , __a ) AutoImageProcessor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoImageProcessor.register(__a , __a ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = Path(__a ) / "preprocessor_config.json" UpperCAmelCase_ = Path(__a ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(__a , "w" ) , ) json.dump({"model_type": "clip"} , open(__a , "w" ) ) UpperCAmelCase_ = CustomImageProcessor.from_pretrained(__a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__a ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : Optional[int] ): class __A ( UpperCamelCase__ ): a__ : str = True try: AutoConfig.register("custom" , __a ) AutoImageProcessor.register(__a , __a ) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__a ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__a ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
78
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class UpperCAmelCase_ : __lowerCamelCase = BlenderbotConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=20 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , ): UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Optional[int] = seq_length UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Dict = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = eos_token_id UpperCAmelCase__ : List[Any] = pad_token_id UpperCAmelCase__ : Optional[int] = bos_token_id def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase__ : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase__ : Tuple = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = TFBlenderbotModel(config=_lowerCAmelCase ).get_decoder() UpperCAmelCase__ : Dict = inputs_dict["""input_ids"""] UpperCAmelCase__ : Union[str, Any] = input_ids[:1, :] UpperCAmelCase__ : Dict = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase__ : List[Any] = inputs_dict["""head_mask"""] UpperCAmelCase__ : Optional[Any] = 1 # first forward pass UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase__ : str = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase__ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] UpperCAmelCase__ : Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase__ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase__ : Any = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase__ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-3 ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : Tuple = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase__ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = TFBlenderbotModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_lowerCAmelCase ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase ): __lowerCamelCase = ['My friends are cool but they eat too many carbs.'] __lowerCamelCase = 'facebook/blenderbot-400M-distill' @cached_property def __UpperCAmelCase ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.tokenizer(self.src_text , return_tensors="""tf""" ) UpperCAmelCase__ : Union[str, Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase__ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
79
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[str] = logging.getLogger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return (preds == labels).mean() @dataclass class __UpperCamelCase : __snake_case :str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __snake_case :str = field(metadata={'help': 'Should contain the data files for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) try: __lowercase = processors[data_args.task_name]() __lowercase = processor.get_labels() __lowercase = len(lowerCamelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase ) -> Dict: __lowercase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase , p.label_ids )} # Data collator __lowercase = DataCollatorWithPadding(lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , compute_metrics=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCamelCase , lowerCamelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
80
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
0