code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
_snake_case : str = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _snake_case : Tuple = [{"type": "code", "content": INSTALL_CONTENT}] _snake_case : Dict = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
81
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase__ : '''simple docstring''' def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Dict: '''simple docstring''' return None class lowercase__ : '''simple docstring''' def lowercase__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' return None class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , "tf" , 12 , **_UpperCAmelCase ) @require_torch @slow def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , "pt" , 12 , **_UpperCAmelCase ) @require_torch @slow def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' from transformers import BertModel UpperCAmelCase_ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(_UpperCAmelCase ) ) vocab_file.flush() UpperCAmelCase_ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCAmelCase_ = BertModel(BertConfig(vocab_size=len(_UpperCAmelCase ) ) ) model.save_pretrained(_UpperCAmelCase ) self._test_export(_UpperCAmelCase , "pt" , 12 , _UpperCAmelCase ) @require_tf @slow def lowercase__ ( self : str ) -> Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCAmelCase_ = self._test_export(_UpperCAmelCase , "tf" , 12 , **_UpperCAmelCase ) UpperCAmelCase_ = quantize(Path(_UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCAmelCase_ = self._test_export(_UpperCAmelCase , "pt" , 12 , **_UpperCAmelCase ) UpperCAmelCase_ = quantize(_UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: UpperCAmelCase_ = Path(_UpperCAmelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) return path except Exception as e: self.fail(_UpperCAmelCase ) @require_torch @require_tokenizers @slow def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers import BertModel UpperCAmelCase_ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) UpperCAmelCase_ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , "pt" ) @require_tf @require_tokenizers @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TFBertModel UpperCAmelCase_ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) UpperCAmelCase_ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , "tf" ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = FeatureExtractionPipeline(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = infer_shapes(_UpperCAmelCase , _UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] , _UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = ["input_ids", "attention_mask", "token_type_ids"] UpperCAmelCase_ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} UpperCAmelCase_ , UpperCAmelCase_ = ensure_valid_input(FuncContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_UpperCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_UpperCAmelCase ) , set(_UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_UpperCAmelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCAmelCase_ , UpperCAmelCase_ = ensure_valid_input(FuncNonContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_UpperCAmelCase ) , 1 ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
82
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Optional[Any] = StableDiffusionXLImgaImgPipeline snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} snake_case__ : int = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) _lowerCamelCase : Dict = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) _lowerCamelCase : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _lowerCamelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=3_2 , ) _lowerCamelCase : Dict = CLIPTextModel(__lowerCAmelCase ) _lowerCamelCase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowerCAmelCase ) _lowerCamelCase : List[str] = CLIPTextModelWithProjection(__lowerCAmelCase ) _lowerCamelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowerCAmelCase ) _lowerCamelCase : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=0 ): """simple docstring""" _lowerCamelCase : Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _lowerCamelCase : str = image / 2 + 0.5 if str(__lowerCAmelCase ).startswith('''mps''' ): _lowerCamelCase : Any = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : int = self.get_dummy_components() _lowerCamelCase : Any = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : List[Any] = sd_pipe(**__lowerCAmelCase ).images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : Any = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Dict = self.get_dummy_components() _lowerCamelCase : Dict = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = sd_pipe.to(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # forward without prompt embeds _lowerCamelCase : List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : str = 3 * ['''this is a negative prompt'''] _lowerCamelCase : Dict = negative_prompt _lowerCamelCase : int = 3 * [inputs['''prompt''']] _lowerCamelCase : Dict = sd_pipe(**__lowerCAmelCase ) _lowerCamelCase : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCamelCase : List[str] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : str = 3 * ['''this is a negative prompt'''] _lowerCamelCase : int = 3 * [inputs.pop('''prompt''' )] ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any = sd_pipe.encode_prompt(__lowerCAmelCase , negative_prompt=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = sd_pipe( **__lowerCAmelCase , prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , pooled_prompt_embeds=__lowerCAmelCase , negative_pooled_prompt_embeds=__lowerCAmelCase , ) _lowerCamelCase : str = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple="cpu" , __lowerCAmelCase : Tuple=torch.floataa , __lowerCAmelCase : Dict=0 ): """simple docstring""" _lowerCamelCase : Tuple = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 6_4, 6_4) ) _lowerCamelCase : List[Any] = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.get_inputs(__lowerCAmelCase ) _lowerCamelCase : int = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
83
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict = """new-model""" if is_tf_available(): class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = NewModelConfig @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'bert-base-cased' lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'bert-base-cased' lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModelForPreTraining.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModelForCausalLM.from_pretrained(snake_case ) lowercase , lowercase = TFAutoModelForCausalLM.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModelWithLMHead.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModelForMaskedLM.from_pretrained(snake_case ) lowercase , lowercase = TFAutoModelForMaskedLM.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case ) lowercase , lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModelForSequenceClassification.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModelForQuestionAnswering.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowercase = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained(snake_case ) lowercase , lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained( snake_case , output_loading_info=snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TFAutoModelWithLMHead.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case ) , 1_4410 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TFAutoModelWithLMHead.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case ) , 1_4410 ) def SCREAMING_SNAKE_CASE__ ( self ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel lowercase = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(snake_case , snake_case ) lowercase = copy.deepcopy(model.config ) lowercase = ['FunnelBaseModel'] lowercase = TFAutoModel.from_config(snake_case ) self.assertIsInstance(snake_case , snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case ) lowercase = TFAutoModel.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): try: AutoConfig.register('new-model' , snake_case ) lowercase = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(snake_case ): auto_class.register(snake_case , snake_case ) auto_class.register(snake_case , snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case ): auto_class.register(snake_case , snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase = BertModelTester(self ).get_config() lowercase = NewModelConfig(**tiny_config.to_dict() ) lowercase = auto_class.from_config(snake_case ) self.assertIsInstance(snake_case , snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case ) lowercase = auto_class.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaisesRegex( snake_case , 'bert-base is not a local folder and is not a valid model identifier' ): lowercase = TFAutoModel.from_pretrained('bert-base' ) def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaisesRegex( snake_case , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase = TFAutoModel.from_pretrained(snake_case , revision='aaaaaa' ) def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaisesRegex( snake_case , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowercase = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaisesRegex(snake_case , 'Use `from_pt=True` to load this model' ): lowercase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def SCREAMING_SNAKE_CASE__ ( self ): # Make sure we have cached the model. lowercase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowercase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowercase = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowercase = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
84
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
0
from ....utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) class snake_case ( UpperCamelCase_ ): def __init__( self : Tuple , a_ : str , a_ : str=None , a_ : int=2048 )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = config.__dict__ SCREAMING_SNAKE_CASE__ : List[str] = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE__ : Optional[Any] = num_labels
85
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __snake_case ( __UpperCamelCase : Dict[str, torch.Tensor] ): """simple docstring""" A_ = [] A_ = [] A_ = [] for rt in rc.restypes: A_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ = {name: i for i, name in enumerate(__UpperCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) A_ = torch.tensor( __UpperCamelCase ,dtype=torch.intaa ,device=protein["aatype"].device ,) A_ = torch.tensor( __UpperCamelCase ,dtype=torch.intaa ,device=protein["aatype"].device ,) A_ = torch.tensor( __UpperCamelCase ,dtype=torch.floataa ,device=protein["aatype"].device ,) A_ = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ = restype_atomaa_to_atomaa[protein_aatype] A_ = restype_atomaa_mask[protein_aatype] A_ = residx_atomaa_mask A_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ = restype_atomaa_to_atomaa[protein_aatype] A_ = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ = torch.zeros([21, 37] ,dtype=torch.floataa ,device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ = rc.restype_atoa[restype_letter] A_ = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ = rc.atom_order[atom_name] A_ = 1 A_ = restype_atomaa_mask[protein_aatype] A_ = residx_atomaa_mask return protein def __snake_case ( __UpperCamelCase : Dict[str, torch.Tensor] ): """simple docstring""" A_ = tree_map(lambda __UpperCamelCase : torch.tensor(__UpperCamelCase ,device=batch["aatype"].device ) ,__UpperCamelCase ,np.ndarray ) A_ = tensor_tree_map(lambda __UpperCamelCase : np.array(__UpperCamelCase ) ,make_atomaa_masks(__UpperCamelCase ) ) return out
86
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
0
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowerCamelCase : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : str , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__) requires_backends(self , '''decord''') self.check_model_type(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=None) ->Dict: '''simple docstring''' A__ = {} if frame_sampling_rate is not None: A__ = frame_sampling_rate if num_frames is not None: A__ = num_frames A__ = {} if top_k is not None: A__ = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , UpperCAmelCase__ : Union[str, List[str]] , **UpperCAmelCase__ : Optional[int]) ->Dict: '''simple docstring''' return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=1) ->Any: '''simple docstring''' if num_frames is None: A__ = self.model.config.num_frames if video.startswith('''http://''') or video.startswith('''https://'''): A__ = BytesIO(requests.get(UpperCAmelCase__).content) A__ = VideoReader(UpperCAmelCase__) videoreader.seek(0) A__ = 0 A__ = num_frames * frame_sampling_rate - 1 A__ = np.linspace(UpperCAmelCase__ , UpperCAmelCase__ , num=UpperCAmelCase__ , dtype=np.intaa) A__ = videoreader.get_batch(UpperCAmelCase__).asnumpy() A__ = list(UpperCAmelCase__) A__ = self.image_processor(UpperCAmelCase__ , return_tensors=self.framework) return model_inputs def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Dict) ->int: '''simple docstring''' A__ = self.model(**UpperCAmelCase__) return model_outputs def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=5) ->Optional[int]: '''simple docstring''' if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1)[0] A__ , A__ = probs.topk(UpperCAmelCase__) else: raise ValueError(f"""Unsupported framework: {self.framework}""") A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase__ , UpperCAmelCase__)]
87
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE , ) -> Dict: _lowerCamelCase : int = parent _lowerCamelCase : Union[str, Any] = 13 _lowerCamelCase : List[str] = 7 _lowerCamelCase : Optional[int] = True _lowerCamelCase : Dict = True _lowerCamelCase : Any = False _lowerCamelCase : List[Any] = True _lowerCamelCase : Tuple = 99 _lowerCamelCase : Optional[Any] = 32 _lowerCamelCase : int = 2 _lowerCamelCase : Dict = 4 _lowerCamelCase : List[Any] = 37 _lowerCamelCase : Optional[int] = """gelu""" _lowerCamelCase : str = 0.1 _lowerCamelCase : Optional[Any] = 0.1 _lowerCamelCase : int = 512 _lowerCamelCase : Optional[Any] = 16 _lowerCamelCase : Tuple = 2 _lowerCamelCase : str = 0.02 _lowerCamelCase : int = 3 _lowerCamelCase : Optional[int] = 4 _lowerCamelCase : Union[str, Any] = None def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : List[str] = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : Any = None if self.use_labels: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : Optional[int] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : List[Any] = TFDistilBertModel(config=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = [input_ids, input_mask] _lowerCamelCase : int = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[Any]: _lowerCamelCase : List[str] = TFDistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : str = TFDistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, } _lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Optional[int]: _lowerCamelCase : Optional[Any] = self.num_labels _lowerCamelCase : Any = TFDistilBertForSequenceClassification(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str: _lowerCamelCase : Dict = self.num_choices _lowerCamelCase : int = TFDistilBertForMultipleChoice(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1) , (1, self.num_choices, 1)) _lowerCamelCase : List[str] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1) , (1, self.num_choices, 1)) _lowerCamelCase : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } _lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : str = self.num_labels _lowerCamelCase : int = TFDistilBertForTokenClassification(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : int = self.prepare_config_and_inputs() ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) : List[str] = config_and_inputs _lowerCamelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase__ ( A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : str = TFDistilBertModelTester(self) _lowerCamelCase : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , dim=37) def UpperCamelCase_ ( self) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]): _lowerCamelCase : Tuple = TFDistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) @require_tf class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase : Union[str, Any] = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""") _lowerCamelCase : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE)[0] _lowerCamelCase : str = [1, 6, 768] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ]) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)
88
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: if "cls_token" in name: _lowercase : int = name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: _lowercase : List[str] = name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: _lowercase : int = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _lowercase : int = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _lowercase : List[Any] = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Optional[int] = name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: _lowercase : Optional[Any] = name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _lowercase : Optional[int] = name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: _lowercase : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowercase : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowercase : str = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowercase : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _lowercase : Any = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _lowercase : Dict = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _lowercase : List[Any] = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: _lowercase : str = name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: _lowercase : Tuple = name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): _lowercase : List[Any] = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: _lowercase : Dict = key.split('.' ) _lowercase : Any = int(key_split[1] ) if "decoder_blocks" in key: _lowercase : int = config.decoder_hidden_size _lowercase : Any = 'decoder.decoder_layers.' if "weight" in key: _lowercase : str = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] elif "bias" in key: _lowercase : Optional[int] = val[:dim] _lowercase : Union[str, Any] = val[dim : dim * 2] _lowercase : str = val[-dim:] else: _lowercase : Any = config.hidden_size _lowercase : Union[str, Any] = 'vit.encoder.layer.' if "weight" in key: _lowercase : Tuple = val[:dim, :] _lowercase : Union[str, Any] = val[dim : dim * 2, :] _lowercase : Dict = val[-dim:, :] elif "bias" in key: _lowercase : int = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : Tuple = val[-dim:] else: _lowercase : str = val return orig_state_dict def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : str = ViTMAEConfig() if "large" in checkpoint_url: _lowercase : Dict = 1024 _lowercase : List[str] = 4096 _lowercase : str = 24 _lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: _lowercase : int = 14 _lowercase : Union[str, Any] = 1280 _lowercase : Union[str, Any] = 5120 _lowercase : Tuple = 32 _lowercase : Optional[Any] = 16 _lowercase : Union[str, Any] = ViTMAEForPreTraining(lowerCamelCase_ ) _lowercase : Dict = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['model'] _lowercase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) _lowercase : Optional[Any] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() _lowercase : Optional[Any] = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' _lowercase : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) _lowercase : List[str] = ViTMAEImageProcessor(size=config.image_size ) _lowercase : str = image_processor(images=lowerCamelCase_ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) _lowercase : str = model(**lowerCamelCase_ ) _lowercase : Optional[int] = outputs.logits if "large" in checkpoint_url: _lowercase : Union[str, Any] = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: _lowercase : Any = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: _lowercase : Optional[int] = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
89
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def _snake_case ( ) -> int: lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowerCAmelCase__ = parser.parse_args() return args.f def _snake_case ( A ) -> Tuple: lowerCAmelCase__ = {} lowerCAmelCase__ = os.path.join(A , '''all_results.json''' ) if os.path.exists(A ): with open(A , '''r''' ) as f: lowerCAmelCase__ = json.load(A ) else: raise ValueError(F"""can't find {path}""" ) return results def _snake_case ( ) -> Any: lowerCAmelCase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a__ ( a__ ): '''simple docstring''' @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> Any: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> Tuple: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) self.assertLess(result['''perplexity'''] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowerCAmelCase__ = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase_ ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowerCAmelCase__ = get_results(lowerCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''image_classification_no_trainer''' ) ) )
90
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = '''Hello, World!''' _lowercase = '''en_XX''' def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : bool ): A = Path('data_bin' ) A = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(snake_case__ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(snake_case__ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(snake_case__ ) A = xmod.model.encoder.sentence_encoder A = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: A = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , snake_case__ ) A = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings A = xmod_sent_encoder.embed_tokens.weight A = xmod_sent_encoder.embed_positions.weight A = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. A = xmod_sent_encoder.layernorm_embedding.weight A = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A = model.roberta.encoder.layer[i] A = xmod_sent_encoder.layers[i] # self attention A = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) A = xmod_layer.self_attn.q_proj.weight A = xmod_layer.self_attn.q_proj.bias A = xmod_layer.self_attn.k_proj.weight A = xmod_layer.self_attn.k_proj.bias A = xmod_layer.self_attn.v_proj.weight A = xmod_layer.self_attn.v_proj.bias # self-attention output A = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) A = xmod_layer.self_attn.out_proj.weight A = xmod_layer.self_attn.out_proj.bias A = xmod_layer.self_attn_layer_norm.weight A = xmod_layer.self_attn_layer_norm.bias # intermediate A = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) A = xmod_layer.fca.weight A = xmod_layer.fca.bias # output A = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) A = xmod_layer.fca.weight A = xmod_layer.fca.bias A = xmod_layer.final_layer_norm.weight A = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: A = xmod_layer.adapter_layer_norm.weight A = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): A = bert_output.adapter_modules[lang_code] A = xmod_layer.adapter_modules[lang_code] A = from_adapter.fca.weight A = from_adapter.fca.bias A = from_adapter.fca.weight A = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: A = xmod_sent_encoder.layer_norm.weight A = xmod_sent_encoder.layer_norm.bias if classification_head: A = xmod.model.classification_heads['mnli'].dense.weight A = xmod.model.classification_heads['mnli'].dense.bias A = xmod.model.classification_heads['mnli'].out_proj.weight A = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head A = xmod.model.encoder.lm_head.dense.weight A = xmod.model.encoder.lm_head.dense.bias A = xmod.model.encoder.lm_head.layer_norm.weight A = xmod.model.encoder.lm_head.layer_norm.bias A = xmod.model.encoder.lm_head.weight A = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. A = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) A = model(snake_case__ )[0] if classification_head: A = xmod.model.classification_heads['mnli'](xmod.extract_features(snake_case__ ) ) else: A = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) A = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 A = torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _lowercase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
91
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
'''simple docstring''' import requests from bsa import BeautifulSoup def _lowerCAmelCase ( __magic_name__ : str = "https://www.worldometers.info/coronavirus" ) -> dict: lowercase : List[Any] =BeautifulSoup(requests.get(__magic_name__ ).text , '''html.parser''' ) lowercase : Tuple =soup.findAll('''h1''' ) lowercase : int =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__magic_name__ , __magic_name__ )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
92
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A = {"""UserAgent""": UserAgent().random} def __A (_SCREAMING_SNAKE_CASE ) ->dict: """simple docstring""" lowerCAmelCase__ :Dict = script.contents[0] lowerCAmelCase__ :Optional[Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = F"https://www.instagram.com/{username}/" lowerCAmelCase__ :Dict = self.get_json() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = requests.get(self.url , headers=__UpperCAmelCase ).text lowerCAmelCase__ :Union[str, Any] = BeautifulSoup(__UpperCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"{self.__class__.__name__}('{self.username}')" def __str__( self ): '''simple docstring''' return F"{self.fullname} ({self.username}) is {self.biography}" @property def snake_case ( self ): '''simple docstring''' return self.user_data["username"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["full_name"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["biography"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["business_email"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["external_url"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["is_private"] def __A (_SCREAMING_SNAKE_CASE = "github" ) ->None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowerCAmelCase__ :Dict = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
93
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
0
'''simple docstring''' import os from collections.abc import Iterator def lowercase_ ( __A : str = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(__A ): lowercase : List[Any] =[d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__A )[1] in (".py", ".ipynb"): yield os.path.join(__A , __A ).lstrip('''./''' ) def lowercase_ ( __A : Dict ) -> int: """simple docstring""" return F'{i * " "}*' if i else "\n##" def lowercase_ ( __A : str , __A : str ) -> str: """simple docstring""" lowercase : Any =old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__A ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(__A )} {new_part.replace("_" , " " ).title()}' ) return new_path def lowercase_ ( __A : str = "." ) -> None: """simple docstring""" lowercase : List[str] ='''''' for filepath in sorted(good_file_paths(__A ) ): lowercase , lowercase : List[Any] =os.path.split(__A ) if filepath != old_path: lowercase : List[str] =print_path(__A , __A ) lowercase : List[Any] =(filepath.count(os.sep ) + 1) if filepath else 0 lowercase : str =F'{filepath}/{filename}'.replace(''' ''' , '''%20''' ) lowercase : List[str] =os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F'{md_prefix(__A )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('.')
94
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase_ = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def snake_case ( A__ ,A__ ,A__ ,A__=None ): # Initialise PyTorch model UpperCAmelCase_ : List[Any] = XLNetConfig.from_json_file(A__ ) UpperCAmelCase_ : str = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) UpperCAmelCase_ : List[Any] = finetuning_task UpperCAmelCase_ : Tuple = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_ : List[Any] = XLNetForSequenceClassification(A__ ) elif "squad" in finetuning_task: UpperCAmelCase_ : List[str] = finetuning_task UpperCAmelCase_ : int = XLNetForQuestionAnswering(A__ ) else: UpperCAmelCase_ : Union[str, Any] = XLNetLMHeadModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(A__ ,A__ ,A__ ) # Save pytorch-model UpperCAmelCase_ : Dict = os.path.join(A__ ,A__ ) UpperCAmelCase_ : int = os.path.join(A__ ,A__ ) print(F"""Save PyTorch model to {os.path.abspath(A__ )}""" ) torch.save(model.state_dict() ,A__ ) print(F"""Save configuration file to {os.path.abspath(A__ )}""" ) with open(A__ ,"w" ,encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) lowerCamelCase_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
95
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
0
def a ( snake_case__: str , snake_case__: str = " " ): '''simple docstring''' lowercase_ = [] lowercase_ = 0 for index, char in enumerate(snake_case__ ): if char == separator: split_words.append(string[last_index:index] ) lowercase_ = index + 1 elif index + 1 == len(snake_case__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
97
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowercase__ : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def snake_case__ ( self : Tuple , lowerCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = [label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> List[Any]: '''simple docstring''' if len(lowerCAmelCase__ ) == 0 or len(lowerCAmelCase__ ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(lowerCAmelCase__ ) ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = [sequences] _UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCAmelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : List[Any]=ZeroShotClassificationArgumentHandler() , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = args_parser super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def snake_case__ ( self : Any ) -> str: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Optional[int]=TruncationStrategy.ONLY_FIRST , **lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) _UpperCamelCase = self.tokenizer.eos_token try: _UpperCamelCase = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , ) except Exception as e: if "too short" in str(lowerCAmelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCamelCase = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def snake_case__ ( self : List[Any] , **lowerCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' if kwargs.get('''multi_class''' , lowerCAmelCase__ ) is not None: _UpperCamelCase = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) _UpperCamelCase = {} if "candidate_labels" in kwargs: _UpperCamelCase = self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: _UpperCamelCase = kwargs['''hypothesis_template'''] _UpperCamelCase = {} if "multi_label" in kwargs: _UpperCamelCase = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , lowerCAmelCase__ : Union[str, List[str]] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Dict , ) -> Union[str, Any]: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: pass elif len(lowerCAmelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCamelCase = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[int]="This example is {}." ) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self._args_parser(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ): _UpperCamelCase = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCAmelCase__ ) - 1, **model_input, } def snake_case__ ( self : str , lowerCAmelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = inputs['''candidate_label'''] _UpperCamelCase = inputs['''sequence'''] _UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCamelCase = self.model(**lowerCAmelCase__ ) _UpperCamelCase = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple=False ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [outputs['''candidate_label'''] for outputs in model_outputs] _UpperCamelCase = [outputs['''sequence'''] for outputs in model_outputs] _UpperCamelCase = np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) _UpperCamelCase = logits.shape[0] _UpperCamelCase = len(lowerCAmelCase__ ) _UpperCamelCase = N // n _UpperCamelCase = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCAmelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCamelCase = self.entailment_id _UpperCamelCase = -1 if entailment_id == 0 else 0 _UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCamelCase = np.exp(lowerCAmelCase__ ) / np.exp(lowerCAmelCase__ ).sum(-1 , keepdims=lowerCAmelCase__ ) _UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCamelCase = reshaped_outputs[..., self.entailment_id] _UpperCamelCase = np.exp(lowerCAmelCase__ ) / np.exp(lowerCAmelCase__ ).sum(-1 , keepdims=lowerCAmelCase__ ) _UpperCamelCase = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
98
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : """simple docstring""" @staticmethod def snake_case_ ( *__A , **__A ): pass def a (lowerCAmelCase__ ): __a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def a (lowerCAmelCase__ ): __a = np.array(lowerCAmelCase__ ) __a = npimg.shape return {"hash": hashimage(lowerCAmelCase__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def snake_case_ ( self , __A , __A , __A ): __a = MaskGenerationPipeline(model=__A , image_processor=__A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case_ ( self , __A , __A ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def snake_case_ ( self ): pass @slow @require_torch def snake_case_ ( self ): __a = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __a = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __a = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def snake_case_ ( self ): __a = """facebook/sam-vit-huge""" __a = pipeline("""mask-generation""" , model=__A ) __a = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __a = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
99
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
0
from __future__ import annotations import requests def __snake_case ( lowerCAmelCase_ ) -> dict: SCREAMING_SNAKE_CASE__ = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase_ ).json() def __snake_case ( lowerCAmelCase_ = 1_0 ) -> list[dict]: SCREAMING_SNAKE_CASE__ = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' SCREAMING_SNAKE_CASE__ = requests.get(lowerCAmelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase_ ) for story_id in story_ids] def __snake_case ( lowerCAmelCase_ = 1_0 ) -> str: SCREAMING_SNAKE_CASE__ = hackernews_top_stories(lowerCAmelCase_ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
100
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None def a__ ( ): SCREAMING_SNAKE_CASE_ : Dict = Node(1 ) SCREAMING_SNAKE_CASE_ : Tuple = Node(2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(3 ) SCREAMING_SNAKE_CASE_ : int = Node(4 ) SCREAMING_SNAKE_CASE_ : Dict = Node(5 ) return tree def a__ ( A__ ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a__ ( A__ ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a__ ( A__ ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a__ ( A__ ): return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] if root is None: return output SCREAMING_SNAKE_CASE_ : List[str] = deque([root] ) while process_queue: SCREAMING_SNAKE_CASE_ : int = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] def populate_output(A__, A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(A__, A__ ) return output def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] def populate_output(A__, A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(A__, A__ ) return output def a__ ( A__ ): if root is None: return [] SCREAMING_SNAKE_CASE_ : list[Sequence[Node | None]] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = height(A__ ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A__, A__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 else: output.append(get_nodes_from_right_to_left(A__, A__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = 0 return output def a__ ( ): # Main function for testing. SCREAMING_SNAKE_CASE_ : Optional[int] = make_tree() print(F'''In-order Traversal: {inorder(A__ )}''' ) print(F'''Pre-order Traversal: {preorder(A__ )}''' ) print(F'''Post-order Traversal: {postorder(A__ )}''', '\n' ) print(F'''Height of Tree: {height(A__ )}''', '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A__ ), '\n' ) print('Level-wise order Traversal: ' ) for level in range(1, height(A__ ) + 1 ): print(F'''Level {level}:''', get_nodes_from_left_to_right(A__, level=A__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
101
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
0
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase : Union[str, Any] = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } UpperCamelCase : List[Any] = f"""{src_lang}-{tgt_lang}""" UpperCamelCase : str = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE , """README.md""" ) print(f"""Generating {path}""" ) with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project __magic_name__ : Any = Path(__file__).resolve().parent.parent.parent __magic_name__ : Optional[Any] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = model_name.split("""-""") __magic_name__ : Dict = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
102
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any=1_3 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[str]=9_9 , __lowerCamelCase : Optional[int]=3_2 , __lowerCamelCase : str=5 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : List[str]=3_7 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : int=5_1_2 , __lowerCamelCase : Tuple=1_6 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : Any=3 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Union[str, Any]=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Any ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = NystromformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : int ): """simple docstring""" _snake_case = NystromformerForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): """simple docstring""" _snake_case = NystromformerForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] ): """simple docstring""" _snake_case = self.num_labels _snake_case = NystromformerForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = self.num_labels _snake_case = NystromformerForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = self.num_choices _snake_case = NystromformerForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Tuple = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) A__ : Optional[int] = False A__ : List[Any] = False def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = NystromformerModelTester(self ) _snake_case = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = NystromformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) _snake_case = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _snake_case = model(__lowerCamelCase )[0] _snake_case = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , __lowerCamelCase ) _snake_case = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = '''the [MASK] of Belgium is Brussels''' _snake_case = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) _snake_case = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) _snake_case = tokenizer(__lowerCamelCase , return_tensors='''pt''' ) with torch.no_grad(): _snake_case = model(encoding.input_ids ).logits _snake_case = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__lowerCamelCase ) , '''capital''' )
103
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Union[str, Any] = "gpt_bigcode" A__ : Any = ["past_key_values"] A__ : Dict = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , SCREAMING_SNAKE_CASE__=50257 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="gelu_pytorch_tanh" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=50256 , SCREAMING_SNAKE_CASE__=50256 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> Optional[int]: A__ = vocab_size A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = n_inner A__ = activation_function A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = scale_attn_weights A__ = use_cache A__ = attention_softmax_in_fpaa A__ = scale_attention_softmax_in_fpaa A__ = multi_query A__ = bos_token_id A__ = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
104
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
from math import factorial def __UpperCAmelCase ( lowerCamelCase_ : int = 1_00 ) -> int: """simple docstring""" return sum(int(lowerCamelCase_ ) for x in str(factorial(lowerCamelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
105
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase__ : def __init__( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : int=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : str=True , __UpperCamelCase : Optional[Any]=99 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : int=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : List[str]=512 , __UpperCamelCase : Any=16 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : int=3 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : List[str]=None , ) -> List[Any]: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = embedding_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope def __UpperCamelCase ( self : Dict ) -> Optional[int]: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : List[Any] ) -> List[Any]: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> Optional[int]: A = MegatronBertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) A = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ) -> Union[str, Any]: A = MegatronBertForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ) -> int: A = MegatronBertForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> Any: A = MegatronBertForNextSentencePrediction(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) -> Optional[Any]: A = MegatronBertForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ) -> Union[str, Any]: A = MegatronBertForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> List[str]: A = self.num_labels A = MegatronBertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ) -> Tuple: A = self.num_labels A = MegatronBertForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ) -> List[Any]: A = self.num_choices A = MegatronBertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Dict = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A_ : Optional[Any] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = True # test_resize_embeddings = False A_ : Union[str, Any] = False def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Tuple=False ) -> Any: A = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase ) A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def __UpperCamelCase ( self : str ) -> str: A = MegatronBertModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() def __UpperCamelCase ( self : int ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__UpperCamelCase ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__UpperCamelCase ) def __UpperCamelCase ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__UpperCamelCase ) def __UpperCamelCase ( self : List[str] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__UpperCamelCase ) def __UpperCamelCase ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__UpperCamelCase ) def __UpperCamelCase ( self : Dict ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) __snake_case :Optional[Any] =1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def __UpperCamelCase ( self : Optional[int] ) -> str: A = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: A = os.path.join(os.environ['MYDIR'] , __UpperCamelCase ) A = MegatronBertModel.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) model.half() A = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): A = model(__UpperCamelCase )[0] A = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , __UpperCamelCase ) A = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): A = output[0, ii, jj] A = expected[3 * ii + jj] A = 'ii={} jj={} a={} b={}'.format(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.assertTrue(math.isclose(__UpperCamelCase , __UpperCamelCase , rel_tol=__UpperCamelCase , abs_tol=__UpperCamelCase ) , msg=__UpperCamelCase )
106
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
0
'''simple docstring''' import os import pytest from attr import dataclass _UpperCAmelCase : Optional[Any] = '''us-east-1''' # defaults region @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = "arn:aws:iam::558105141721:role/sagemaker_execution_role" __lowerCAmelCase = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } __lowerCAmelCase = {**hyperparameters, "max_steps": 1_0_0_0} @property def __UpperCAmelCase ( self : List[Any] ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __UpperCAmelCase ( self : List[str] ) -> str: return f'{self.framework}-transfromers-test' @property def __UpperCAmelCase ( self : Any ) -> str: return f'./tests/sagemaker/scripts/{self.framework}' @property def __UpperCAmelCase ( self : Optional[int] ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): _A = SageMakerTestEnvironment(framework=request.cls.framework )
107
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @staticmethod @abstractmethod def lowerCamelCase ( lowerCamelCase : ArgumentParser ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" raise NotImplementedError()
108
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
0
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any]=13 ,lowerCamelCase : List[str]=7 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : List[str]=True ,lowerCamelCase : int=True ,lowerCamelCase : Any=True ,lowerCamelCase : List[str]=99 ,lowerCamelCase : List[str]=32 ,lowerCamelCase : str=5 ,lowerCamelCase : int=4 ,lowerCamelCase : Any=37 ,lowerCamelCase : List[Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : str=0.1 ,lowerCamelCase : str=512 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[str]=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : int=4 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_choices def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Dict = True __UpperCamelCase : List[Any] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxBertModelTester(self ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""bert-base-cased""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase )
109
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) # TODO Update this UpperCamelCase__ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class a ( lowercase ): UpperCamelCase : str = """esm""" def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3_072 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1_026 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , mask_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Union[str, Any] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : List[str] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : Optional[int] = position_embedding_type UpperCAmelCase__ : Union[str, Any] = use_cache UpperCAmelCase__ : str = emb_layer_norm_before UpperCAmelCase__ : List[str] = token_dropout UpperCAmelCase__ : List[Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) UpperCAmelCase__ : str = EsmFoldConfig() elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Dict = EsmFoldConfig(**UpperCamelCase_ ) UpperCAmelCase__ : Any = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) UpperCAmelCase__ : Dict = get_default_vocab_list() else: UpperCAmelCase__ : Optional[int] = vocab_list else: UpperCAmelCase__ : str = None UpperCAmelCase__ : str = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , UpperCamelCase_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase_ ): UpperCAmelCase__ : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class a : UpperCamelCase : str = None UpperCamelCase : bool = True UpperCamelCase : bool = False UpperCamelCase : bool = False UpperCamelCase : bool = False UpperCamelCase : float = 0 UpperCamelCase : bool = True UpperCamelCase : bool = False UpperCamelCase : int = 1_2_8 UpperCamelCase : "TrunkConfig" = None def __snake_case ( self ): if self.trunk is None: UpperCAmelCase__ : Dict = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase_ ): UpperCAmelCase__ : Any = TrunkConfig(**self.trunk ) def __snake_case ( self ): UpperCAmelCase__ : Dict = asdict(self ) UpperCAmelCase__ : Union[str, Any] = self.trunk.to_dict() return output @dataclass class a : UpperCamelCase : int = 4_8 UpperCamelCase : int = 1_0_2_4 UpperCamelCase : int = 1_2_8 UpperCamelCase : int = 3_2 UpperCamelCase : int = 3_2 UpperCamelCase : int = 3_2 UpperCamelCase : float = 0 UpperCamelCase : float = 0 UpperCamelCase : bool = False UpperCamelCase : int = 4 UpperCamelCase : Optional[int] = 1_2_8 UpperCamelCase : "StructureModuleConfig" = None def __snake_case ( self ): if self.structure_module is None: UpperCAmelCase__ : Optional[Any] = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase__ : Optional[int] = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase__ : List[str] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def __snake_case ( self ): UpperCAmelCase__ : str = asdict(self ) UpperCAmelCase__ : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class a : UpperCamelCase : int = 3_8_4 UpperCamelCase : int = 1_2_8 UpperCamelCase : int = 1_6 UpperCamelCase : int = 1_2_8 UpperCamelCase : int = 1_2 UpperCamelCase : int = 4 UpperCamelCase : int = 8 UpperCamelCase : float = 0.1 UpperCamelCase : int = 8 UpperCamelCase : int = 1 UpperCamelCase : int = 2 UpperCamelCase : int = 7 UpperCamelCase : int = 1_0 UpperCamelCase : float = 1E-8 UpperCamelCase : float = 1E5 def __snake_case ( self ): return asdict(self ) def lowerCamelCase ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
110
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowerCamelCase = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: int , UpperCamelCase__: str=None ): # Initialise PyTorch model SCREAMING_SNAKE_CASE__ = XLNetConfig.from_json_file(__snake_case ) SCREAMING_SNAKE_CASE__ = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) SCREAMING_SNAKE_CASE__ = finetuning_task SCREAMING_SNAKE_CASE__ = GLUE_TASKS_NUM_LABELS[finetuning_task] SCREAMING_SNAKE_CASE__ = XLNetForSequenceClassification(__snake_case ) elif "squad" in finetuning_task: SCREAMING_SNAKE_CASE__ = finetuning_task SCREAMING_SNAKE_CASE__ = XLNetForQuestionAnswering(__snake_case ) else: SCREAMING_SNAKE_CASE__ = XLNetLMHeadModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case ) # Save pytorch-model SCREAMING_SNAKE_CASE__ = os.path.join(__snake_case , __snake_case ) SCREAMING_SNAKE_CASE__ = os.path.join(__snake_case , __snake_case ) print(f'''Save PyTorch model to {os.path.abspath(__snake_case )}''' ) torch.save(model.state_dict() , __snake_case ) print(f'''Save configuration file to {os.path.abspath(__snake_case )}''' ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) _lowerCamelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
6
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: def get_masked_lm_array(snake_case__ ): lowerCAmelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" lowerCAmelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: lowerCAmelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_array(snake_case__ ): lowerCAmelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" lowerCAmelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: lowerCAmelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_layer_array(snake_case__ , snake_case__ ): lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" lowerCAmelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: lowerCAmelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_attention_layer_array(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" lowerCAmelCase = tf.train.load_variable(__snake_case , __snake_case ) lowerCAmelCase = array.reshape(__snake_case ) if "kernel" in name: lowerCAmelCase = array.transpose() return torch.from_numpy(__snake_case ) print(f"Loading model based on config from {config_path}..." ) lowerCAmelCase = BertConfig.from_json_file(__snake_case ) lowerCAmelCase = BertForMaskedLM(__snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowerCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention lowerCAmelCase = layer.attention.self lowerCAmelCase = get_encoder_attention_layer_array( __snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) lowerCAmelCase = get_encoder_attention_layer_array( __snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) lowerCAmelCase = get_encoder_attention_layer_array( __snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) lowerCAmelCase = get_encoder_attention_layer_array( __snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) lowerCAmelCase = get_encoder_attention_layer_array( __snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) lowerCAmelCase = get_encoder_attention_layer_array( __snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output lowerCAmelCase = layer.attention.output lowerCAmelCase = get_encoder_attention_layer_array( __snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) lowerCAmelCase = get_encoder_attention_layer_array( __snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/gamma''' ) lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/beta''' ) # Intermediate lowerCAmelCase = layer.intermediate lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/kernel''' ) lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/bias''' ) # Output lowerCAmelCase = layer.output lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_output_dense/kernel''' ) lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_output_dense/bias''' ) lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/gamma''' ) lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/beta''' ) # Embeddings lowerCAmelCase = get_encoder_array('''_position_embedding_layer/embeddings''' ) lowerCAmelCase = get_encoder_array('''_type_embedding_layer/embeddings''' ) lowerCAmelCase = get_encoder_array('''_embedding_norm_layer/gamma''' ) lowerCAmelCase = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head lowerCAmelCase = model.cls.predictions.transform lowerCAmelCase = get_masked_lm_array('''dense/kernel''' ) lowerCAmelCase = get_masked_lm_array('''dense/bias''' ) lowerCAmelCase = get_masked_lm_array('''layer_norm/gamma''' ) lowerCAmelCase = get_masked_lm_array('''layer_norm/beta''' ) lowerCAmelCase = get_masked_lm_array('''embedding_table''' ) # Pooling lowerCAmelCase = BertPooler(config=__snake_case ) lowerCAmelCase = get_encoder_array('''_pooler_layer/kernel''' ) lowerCAmelCase = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__snake_case ) # Integration test - should load without any errors ;) lowerCAmelCase = BertForMaskedLM.from_pretrained(__snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) lowercase__ : List[Any] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
312
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : def __init__( self : Union[str, Any] , A : Optional[int] ): _UpperCAmelCase : int = str(id_ ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : str = {} # {vertex:distance} def __lt__( self : Optional[Any] , A : Optional[Any] ): return self.key < other.key def __repr__( self : Optional[int] ): return self.id def snake_case_ ( self : int , A : List[str] ): self.neighbors.append(_A ) def snake_case_ ( self : List[str] , A : Tuple , A : int ): _UpperCAmelCase : int = weight def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> str: '''simple docstring''' _UpperCAmelCase : str = [] for u in graph: _UpperCAmelCase : Tuple = math.inf _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : List[Any] = graph[:] while q: _UpperCAmelCase : int = min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _UpperCAmelCase : Dict = u _UpperCAmelCase : Union[str, Any] = u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: '''simple docstring''' for u in graph: _UpperCAmelCase : Any = math.inf _UpperCAmelCase : str = None _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Dict = list(__snake_case ) hq.heapify(__snake_case ) while h: _UpperCAmelCase : List[Any] = hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _UpperCAmelCase : str = u _UpperCAmelCase : Optional[Any] = u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __snake_case ( ) -> List[Any]: '''simple docstring''' pass if __name__ == "__main__": import doctest doctest.testmod()
289
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
from collections.abc import Callable class snake_case__ : """simple docstring""" def __init__( self , __lowercase = None ) -> Any: """simple docstring""" a__ : str = [] # Stores indexes of each item for supporting updates and deletion. a__ : int = {} # Stores current size of heap. a__ : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. a__ : int = key or (lambda __lowercase : x) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any: """simple docstring""" a__ : List[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : Tuple = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> List[str]: """simple docstring""" a__ , a__ : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. a__ , a__ : Union[str, Any] = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Tuple: """simple docstring""" return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" a__ : Optional[Any] = self._left(_A ) a__ : List[Any] = self._right(_A ) a__ : int = i if left is not None and not self._cmp(_A , _A ): a__ : Optional[Any] = left if right is not None and not self._cmp(_A , _A ): a__ : Union[str, Any] = right return valid_parent def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" a__ : str = self._parent(_A ) while parent is not None and not self._cmp(_A , _A ): self._swap(_A , _A ) a__ , a__ : List[str] = parent, self._parent(_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any: """simple docstring""" a__ : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A , _A ) a__ , a__ : str = valid_parent, self._get_valid_parent(_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Optional[Any]: """simple docstring""" if item not in self.pos_map: return a__ : Union[str, Any] = self.pos_map[item] a__ : List[Any] = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]: """simple docstring""" if item not in self.pos_map: return a__ : Any = self.pos_map[item] del self.pos_map[item] a__ : Any = self.arr[self.size - 1] a__ : Optional[int] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : str = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: a__ : int = [item, self.key(_A )] a__ : int = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Tuple = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCAmelCase_ ( ) -> Any: """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
136
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase = logging.get_logger(__name__) _lowercase = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class lowercase_ ( __lowercase ): __lowerCamelCase = "instructblip_vision_model" def __init__( self , __A=1_408 , __A=6_144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=1e-6 , __A=0.0 , __A=1e-1_0 , __A=True , **__A , ) -> Optional[int]: super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : int =hidden_size SCREAMING_SNAKE_CASE_ : str =intermediate_size SCREAMING_SNAKE_CASE_ : Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple =num_attention_heads SCREAMING_SNAKE_CASE_ : Dict =patch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] =image_size SCREAMING_SNAKE_CASE_ : Optional[Any] =initializer_range SCREAMING_SNAKE_CASE_ : List[str] =attention_dropout SCREAMING_SNAKE_CASE_ : Tuple =layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple =hidden_act SCREAMING_SNAKE_CASE_ : int =qkv_bias @classmethod def _snake_case ( cls , __A , **__A ) -> int: cls._set_token_in_kwargs(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": SCREAMING_SNAKE_CASE_ : Optional[Any] =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class lowercase_ ( __lowercase ): __lowerCamelCase = "instructblip_qformer" def __init__( self , __A=30_522 , __A=768 , __A=12 , __A=12 , __A=3_072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1e-1_2 , __A=0 , __A="absolute" , __A=2 , __A=1_408 , **__A , ) -> Optional[Any]: super().__init__(pad_token_id=_A , **_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE_ : int =hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] =num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] =hidden_act SCREAMING_SNAKE_CASE_ : str =intermediate_size SCREAMING_SNAKE_CASE_ : Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple =max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] =initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_ : List[str] =position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] =cross_attention_frequency SCREAMING_SNAKE_CASE_ : List[Any] =encoder_hidden_size @classmethod def _snake_case ( cls , __A , **__A ) -> str: cls._set_token_in_kwargs(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": SCREAMING_SNAKE_CASE_ : Dict =config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class lowercase_ ( __lowercase ): __lowerCamelCase = "instructblip" __lowerCamelCase = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> List[Any]: super().__init__(**_A ) if vision_config is None: SCREAMING_SNAKE_CASE_ : Optional[int] ={} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: SCREAMING_SNAKE_CASE_ : str ={} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: SCREAMING_SNAKE_CASE_ : Tuple ={} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) SCREAMING_SNAKE_CASE_ : Any =InstructBlipVisionConfig(**_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =InstructBlipQFormerConfig(**_A ) SCREAMING_SNAKE_CASE_ : Tuple =text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' SCREAMING_SNAKE_CASE_ : Tuple =CONFIG_MAPPING[text_model_type](**_A ) SCREAMING_SNAKE_CASE_ : Dict =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE_ : Optional[int] =num_query_tokens SCREAMING_SNAKE_CASE_ : Optional[int] =self.vision_config.hidden_size SCREAMING_SNAKE_CASE_ : str =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE_ : str =1.0 SCREAMING_SNAKE_CASE_ : Union[str, Any] =0.02 @classmethod def _snake_case ( cls , __A , __A , __A , **__A , ) -> Optional[int]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : Dict =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ : Tuple =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] =self.text_config.to_dict() SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.__class__.model_type return output
443
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 def UpperCAmelCase__ ( self : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_A , _A ) def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(_A ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_A , """w""" ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(_A ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_A , """w""" ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(_A ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_A , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A ).to_dict() config_dict.pop("""image_processor_type""" ) __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_A , _A ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" with self.assertRaisesRegex( _A , """clip-base is not a local folder and is not a valid model identifier""" ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( _A , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A , revision="""aaaaaa""" ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" with self.assertRaisesRegex( _A , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_A ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_A ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" try: AutoConfig.register("""custom""" , _A ) AutoImageProcessor.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoImageProcessor.register(_A , _A ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(_A ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_A , """w""" ) ) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(_A ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" class lowerCAmelCase__ ( __lowercase ): """simple docstring""" lowerCAmelCase__ = True try: AutoConfig.register("""custom""" , _A ) AutoImageProcessor.register(_A , _A ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(_A , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
627
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
"""simple docstring""" def lowerCAmelCase_ () -> Optional[int]: return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCamelCase = generate_large_matrix() UpperCamelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Union[str, Any]: assert all(row == sorted(__snake_case , reverse=__snake_case ) for row in grid ) assert all(list(__snake_case ) == sorted(__snake_case , reverse=__snake_case ) for col in zip(*__snake_case ) ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> Any: a_ : Tuple = 0 a_ : int = len(__snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: a_ : str = (left + right) // 2 a_ : Union[str, Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: a_ : int = mid + 1 else: a_ : str = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__snake_case ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] ) -> List[str]: a_ : List[str] = 0 a_ : str = len(grid[0] ) for i in range(len(__snake_case ) ): a_ : Optional[Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__snake_case ) * len(grid[0] )) - total def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> Optional[Any]: return len([number for row in grid for number in row if number < 0] ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> Union[str, Any]: a_ : int = 0 for row in grid: for i, number in enumerate(__snake_case ): if number < 0: total += len(__snake_case ) - i break return total def lowerCAmelCase_ () -> Optional[int]: from timeit import timeit print("Running benchmarks" ) a_ : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): a_ : Tuple = timeit(F'''{func}(grid=grid)''' , setup=__snake_case , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
473
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
558
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
0
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def __UpperCAmelCase ( __UpperCamelCase ): if not sentence: return "" __lowercase : List[Any] = dict(zip(__snake_case , __snake_case ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
76
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCamelCase__ ( ): __snake_case = HfArgumentParser(__snake_case ) __snake_case = parser.parse_args_into_dataclasses()[0] __snake_case = TensorFlowBenchmark(args=__snake_case ) try: __snake_case = parser.parse_args_into_dataclasses()[0] except ValueError as e: __snake_case = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' __snake_case = ' '.join(str(__snake_case ).split(' ' )[:-1] ) __snake_case = '' __snake_case = eval(str(__snake_case ).split(' ' )[-1] ) __snake_case = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__snake_case ) if len(__snake_case ) > 0: __snake_case = full_error_msg + begin_error_msg + str(__snake_case ) raise ValueError(__snake_case ) benchmark.run() if __name__ == "__main__": main()
356
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : Tuple =logging.get_logger(__name__) class __UpperCAmelCase ( __lowercase ): __A : Optional[int] = ['pixel_values'] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = IMAGENET_DEFAULT_MEAN , _lowerCamelCase = IMAGENET_DEFAULT_STD , **_lowerCamelCase , ): super().__init__(**_A ) lowerCAmelCase_ = size if size is not None else {'''shortest_edge''': 224} lowerCAmelCase_ = get_size_dict(_A , default_to_square=_A ) lowerCAmelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase_ = get_size_dict(_A , param_name='''crop_size''' ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = resample lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): lowerCAmelCase_ = get_size_dict(_A , default_to_square=_A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCAmelCase_ = int((256 / 224) * size['''shortest_edge'''] ) lowerCAmelCase_ = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) lowerCAmelCase_ = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _A , size=(size_dict['''height'''], size_dict['''width''']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): lowerCAmelCase_ = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_A , default_to_square=_A ) lowerCAmelCase_ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ = get_size_dict(_A , param_name='''crop_size''' ) lowerCAmelCase_ = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(_A ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(_A , _A , _A ) for image in images] if do_center_crop: lowerCAmelCase_ = [self.center_crop(_A , _A ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(_A , _A ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(_A , _A , _A ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(_A , _A ) for image in images] lowerCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
274
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]: return str(__snake_case ) == str(__snake_case )[::-1] def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: return int(__snake_case ) + int(str(__snake_case )[::-1] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0 ) -> List[str]: lowerCAmelCase = [] for num in range(1 , __snake_case ): lowerCAmelCase = 0 lowerCAmelCase = num while iterations < 5_0: lowerCAmelCase = sum_reverse(__snake_case ) iterations += 1 if is_palindrome(__snake_case ): break else: lychrel_nums.append(__snake_case ) return len(__snake_case ) if __name__ == "__main__": print(f'{solution() = }')
312
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
0
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCAmelCase_ ( __lowercase ): __SCREAMING_SNAKE_CASE : Optional[int] = 4_2 __SCREAMING_SNAKE_CASE : str = 4_2 def __snake_case ( SCREAMING_SNAKE_CASE__ : Any ) -> int: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__snake_case ) )] def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _UpperCAmelCase : int = all_rotations(__snake_case ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCAmelCase : List[str] = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__snake_case ), } return response def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _UpperCAmelCase : List[Any] = int(__snake_case ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__snake_case ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _UpperCAmelCase : List[Any] = [""] * len(__snake_case ) for _ in range(len(__snake_case ) ): for i in range(len(__snake_case ) ): _UpperCAmelCase : Optional[int] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _lowerCAmelCase : Dict = "Provide a string that I will generate its BWT transform: " _lowerCAmelCase : Dict = input(entry_msg).strip() _lowerCAmelCase : Optional[int] = bwt_transform(s) print( F"Burrows Wheeler transform for string \'{s}\' results " F"in \'{result['bwt_string']}\'" ) _lowerCAmelCase : Optional[Any] = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( F"Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' " F"we get original string \'{original_string}\'" )
289
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[Any] ={ "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
136
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase = """src/diffusers""" _lowercase = """.""" # This is to make sure the diffusers module imported is the one in the repo. _lowercase = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) _lowercase = spec.loader.load_module() def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Union[str, Any]: return line.startswith(__snake_case ) or len(__snake_case ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , __snake_case ) is not None def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] ) -> int: SCREAMING_SNAKE_CASE_ : Any =object_name.split('''.''' ) SCREAMING_SNAKE_CASE_ : List[Any] =0 # First let's find the module where our object lives. SCREAMING_SNAKE_CASE_ : Optional[Any] =parts[i] while i < len(__snake_case ) and not os.path.isfile(os.path.join(__snake_case , f'{module}.py' ) ): i += 1 if i < len(__snake_case ): SCREAMING_SNAKE_CASE_ : Optional[Any] =os.path.join(__snake_case , parts[i] ) if i >= len(__snake_case ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__snake_case , f'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] =f.readlines() # Now let's find the class / func in the code! SCREAMING_SNAKE_CASE_ : Union[str, Any] ='''''' SCREAMING_SNAKE_CASE_ : int =0 for name in parts[i + 1 :]: while ( line_index < len(__snake_case ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__snake_case ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). SCREAMING_SNAKE_CASE_ : List[str] =line_index while line_index < len(__snake_case ) and _should_continue(lines[line_index] , __snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE_ : Optional[Any] =lines[start_index:line_index] return "".join(__snake_case ) _lowercase = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") _lowercase = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") _lowercase = re.compile(R"""<FILL\s+[^>]*>""") def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Tuple =code.split('''\n''' ) SCREAMING_SNAKE_CASE_ : Dict =0 while idx < len(__snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__snake_case ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Any =len(get_indent(__snake_case ) ) > 0 if has_indent: SCREAMING_SNAKE_CASE_ : Union[str, Any] =f'class Bla:\n{code}' SCREAMING_SNAKE_CASE_ : List[Any] =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__snake_case ) SCREAMING_SNAKE_CASE_ : Optional[int] =black.format_str(__snake_case , mode=__snake_case ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =style_docstrings_in_code(__snake_case ) return result[len('''class Bla:\n''' ) :] if has_indent else result def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=False ) -> int: with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] =f.readlines() SCREAMING_SNAKE_CASE_ : int =[] SCREAMING_SNAKE_CASE_ : Dict =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__snake_case ): SCREAMING_SNAKE_CASE_ : List[Any] =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =search.groups() SCREAMING_SNAKE_CASE_ : Dict =find_code_in_diffusers(__snake_case ) SCREAMING_SNAKE_CASE_ : Any =get_indent(__snake_case ) SCREAMING_SNAKE_CASE_ : List[str] =line_index + 1 if indent == theoretical_indent else line_index + 2 SCREAMING_SNAKE_CASE_ : Dict =theoretical_indent SCREAMING_SNAKE_CASE_ : List[Any] =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. SCREAMING_SNAKE_CASE_ : Optional[Any] =True while line_index < len(__snake_case ) and should_continue: line_index += 1 if line_index >= len(__snake_case ): break SCREAMING_SNAKE_CASE_ : Optional[int] =lines[line_index] SCREAMING_SNAKE_CASE_ : int =_should_continue(__snake_case , __snake_case ) and re.search(f'^{indent}# End copy' , __snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE_ : Tuple =lines[start_index:line_index] SCREAMING_SNAKE_CASE_ : int =''''''.join(__snake_case ) # Remove any nested `Copied from` comments to avoid circular copies SCREAMING_SNAKE_CASE_ : str =[line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__snake_case ) is None] SCREAMING_SNAKE_CASE_ : int ='''\n'''.join(__snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(__snake_case ) > 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] =replace_pattern.replace('''with''' , '''''' ).split(''',''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =[_re_replace_pattern.search(__snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =pattern.groups() SCREAMING_SNAKE_CASE_ : str =re.sub(__snake_case , __snake_case , __snake_case ) if option.strip() == "all-casing": SCREAMING_SNAKE_CASE_ : Any =re.sub(obja.lower() , obja.lower() , __snake_case ) SCREAMING_SNAKE_CASE_ : Dict =re.sub(obja.upper() , obja.upper() , __snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line SCREAMING_SNAKE_CASE_ : List[str] =blackify(lines[start_index - 1] + theoretical_code ) SCREAMING_SNAKE_CASE_ : int =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: SCREAMING_SNAKE_CASE_ : Tuple =lines[:start_index] + [theoretical_code] + lines[line_index:] SCREAMING_SNAKE_CASE_ : int =start_index + 1 if overwrite and len(__snake_case ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__snake_case ) return diffs def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] = False ) -> Dict: SCREAMING_SNAKE_CASE_ : List[str] =glob.glob(os.path.join(__snake_case , '''**/*.py''' ) , recursive=__snake_case ) SCREAMING_SNAKE_CASE_ : Optional[int] =[] for filename in all_files: SCREAMING_SNAKE_CASE_ : str =is_copy_consistent(__snake_case , __snake_case ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__snake_case ) > 0: SCREAMING_SNAKE_CASE_ : Optional[int] ='''\n'''.join(__snake_case ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowercase = parser.parse_args() check_copies(args.fix_and_overwrite)
443
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : str = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Any = { 'Salesforce/codegen-350M-mono': 2_0_4_8, } class lowerCAmelCase__ ( __lowercase ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = CodeGenTokenizer def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]="<|endoftext|>" , __SCREAMING_SNAKE_CASE : Any="<|endoftext|>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<|endoftext|>" , __SCREAMING_SNAKE_CASE : List[Any]=False , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> int: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) if kwargs.pop("""add_bos_token""" , _A ): __SCREAMING_SNAKE_CASE = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n""" f'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' f'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _A ) != add_prefix_space: __SCREAMING_SNAKE_CASE = getattr(_A , pre_tok_state.pop("""type""" ) ) __SCREAMING_SNAKE_CASE = add_prefix_space __SCREAMING_SNAKE_CASE = pre_tok_class(**_A ) __SCREAMING_SNAKE_CASE = add_prefix_space def UpperCAmelCase__ ( self : int , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , _A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def UpperCAmelCase__ ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , _A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = super().decode( token_ids=_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , **_A , ) if truncate_before_pattern is not None and len(_A ) > 0: __SCREAMING_SNAKE_CASE = self.truncate(_A , _A ) return decoded_text def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict ) -> Tuple: """simple docstring""" def find_re(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ): __SCREAMING_SNAKE_CASE = pattern.search(_A , _A ) return m.start() if m else -1 __SCREAMING_SNAKE_CASE = [re.compile(_A , re.MULTILINE ) for pattern in truncate_before_pattern] __SCREAMING_SNAKE_CASE = list(re.finditer("""^print""" , _A , re.MULTILINE ) ) if len(_A ) > 1: __SCREAMING_SNAKE_CASE = completion[: prints[1].start()] __SCREAMING_SNAKE_CASE = list(re.finditer("""^def""" , _A , re.MULTILINE ) ) if len(_A ) > 1: __SCREAMING_SNAKE_CASE = completion[: defs[1].start()] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ pos for pos in [find_re(_A , _A , _A ) for terminal in terminals] if pos != -1 ] if len(_A ) > 0: return completion[: min(_A )] else: return completion
627
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
473
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _UpperCAmelCase = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def UpperCamelCase ( __lowercase : Optional[int] ): '''simple docstring''' A_ : List[str] = {} state_dict.pop('pixel_mean' ,__snake_case ) state_dict.pop('pixel_std' ,__snake_case ) A_ : Optional[int] = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A_ : List[Any] = key.replace(__snake_case ,__snake_case ) if re.match(__snake_case ,__snake_case ): A_ : str = int(re.match(__snake_case ,__snake_case ).group(2 ) ) if layer_nb == 0: A_ : List[Any] = key.replace('layers.0' ,'proj_in' ) elif layer_nb == 1: A_ : Dict = key.replace('layers.1' ,'layers.0' ) elif layer_nb == 2: A_ : str = key.replace('layers.2' ,'proj_out' ) A_ : Dict = value A_ : str = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def UpperCamelCase ( __lowercase : str ,__lowercase : Any ,__lowercase : int ,__lowercase : Optional[Any]="ybelkada/segment-anything" ): '''simple docstring''' A_ : Optional[int] = hf_hub_download(__snake_case ,f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: A_ : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: A_ : List[Any] = SamVisionConfig( hidden_size=10_24 ,num_hidden_layers=24 ,num_attention_heads=16 ,global_attn_indexes=[5, 11, 17, 23] ,) A_ : Optional[int] = SamConfig( vision_config=__snake_case ,) elif "sam_vit_h" in model_name: A_ : Tuple = SamVisionConfig( hidden_size=12_80 ,num_hidden_layers=32 ,num_attention_heads=16 ,global_attn_indexes=[7, 15, 23, 31] ,) A_ : List[Any] = SamConfig( vision_config=__snake_case ,) A_ : List[Any] = torch.load(__snake_case ,map_location='cpu' ) A_ : List[Any] = replace_keys(__snake_case ) A_ : List[Any] = SamImageProcessor() A_ : Optional[int] = SamProcessor(image_processor=__snake_case ) A_ : Tuple = SamModel(__snake_case ) hf_model.load_state_dict(__snake_case ) A_ : Union[str, Any] = hf_model.to('cuda' ) A_ : List[Any] = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' A_ : int = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ).convert('RGB' ) A_ : int = [[[4_00, 6_50]]] A_ : Optional[Any] = [[1]] A_ : Optional[int] = processor(images=np.array(__snake_case ) ,return_tensors='pt' ).to('cuda' ) with torch.no_grad(): A_ : Any = hf_model(**__snake_case ) A_ : List[str] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 A_ : List[Any] = processor( images=np.array(__snake_case ) ,input_points=__snake_case ,input_labels=__snake_case ,return_tensors='pt' ).to('cuda' ) with torch.no_grad(): A_ : int = hf_model(**__snake_case ) A_ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 A_ : int = ((75, 2_75, 17_25, 8_50),) A_ : Optional[int] = processor(images=np.array(__snake_case ) ,input_boxes=__snake_case ,return_tensors='pt' ).to('cuda' ) with torch.no_grad(): A_ : Tuple = hf_model(**__snake_case ) A_ : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. A_ : List[str] = [[[4_00, 6_50], [8_00, 6_50]]] A_ : Any = [[1, 1]] A_ : Dict = processor( images=np.array(__snake_case ) ,input_points=__snake_case ,input_labels=__snake_case ,return_tensors='pt' ).to('cuda' ) with torch.no_grad(): A_ : str = hf_model(**__snake_case ) A_ : int = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() _UpperCAmelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) _UpperCAmelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
558
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=30 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=None , ) -> Optional[Any]: __lowercase : Any = parent __lowercase : Any = batch_size __lowercase : str = image_size __lowercase : Union[str, Any] = patch_size __lowercase : Optional[int] = num_channels __lowercase : Any = is_training __lowercase : int = use_labels __lowercase : Optional[int] = hidden_size __lowercase : Any = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : Optional[int] = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : Union[str, Any] = type_sequence_label_size __lowercase : Any = initializer_range __lowercase : Optional[int] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : List[str] = (image_size // patch_size) ** 2 __lowercase : Optional[Any] = num_patches + 1 def _lowerCamelCase ( self ) -> str: __lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Any = None if self.use_labels: __lowercase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ) -> Optional[int]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : Optional[int] = TFViTModel(config=_A ) __lowercase : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __lowercase : Tuple = self.image_size // 2 __lowercase : Optional[Any] = pixel_values[:, :, :image_size, :image_size] __lowercase : List[str] = model(_A , interpolate_pos_encoding=_A , training=_A ) __lowercase : Dict = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: __lowercase : List[str] = self.type_sequence_label_size __lowercase : str = TFViTForImageClassification(_A ) __lowercase : Any = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __lowercase : List[Any] = self.image_size // 2 __lowercase : str = pixel_values[:, :, :image_size, :image_size] __lowercase : int = model(_A , interpolate_pos_encoding=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase : str = 1 __lowercase : Dict = TFViTForImageClassification(_A ) __lowercase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : int = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ) -> Any: __lowercase : List[Any] = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase =( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase =False UpperCamelCase =False UpperCamelCase =False def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[Any] = TFViTModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def _lowerCamelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowerCamelCase ( self ) -> List[str]: pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowerCamelCase ( self ) -> Tuple: pass def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase ,__lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : int = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowercase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase ,__lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : str = model_class(_A ) __lowercase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : str = [*signature.parameters.keys()] __lowercase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _lowerCamelCase ( self ) -> Dict: __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : str = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ): __lowercase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ) -> Optional[Any]: return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self ) -> Any: __lowercase : List[Any] = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) __lowercase : Optional[Any] = self.default_image_processor __lowercase : str = prepare_img() __lowercase : str = image_processor(images=_A , return_tensors='''tf''' ) # forward pass __lowercase : Optional[Any] = model(**_A ) # verify the logits __lowercase : int = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) __lowercase : Optional[Any] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1E-4 )
76
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
0
'''simple docstring''' import os def lowerCamelCase__ ( ): __snake_case = os.path.join(os.path.dirname(__snake_case ) , 'num.txt' ) with open(__snake_case ) as file_hand: return str(sum(int(__snake_case ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
356
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
0
'''simple docstring''' def snake_case_ ( __snake_case : Union[str, Any]) -> Union[str, Any]: if not isinstance(__snake_case , __snake_case): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(__snake_case) if number < 1: lowerCAmelCase_ = F'''Input value of [number={number}] must be > 0''' raise ValueError(__snake_case) lowerCAmelCase_ = 1 for i in range(1 , __snake_case): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
274
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Any , __A :str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 250 SCREAMING_SNAKE_CASE__ = ids_tensor((batch_size, length) , _A ) SCREAMING_SNAKE_CASE__ = torch.ones((batch_size, length) , device=_A , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self :Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(5 ) SCREAMING_SNAKE_CASE__ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_A , _A ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def _snake_case ( self :List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = MaxLengthCriteria(max_length=10 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def _snake_case ( self :Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) SCREAMING_SNAKE_CASE__ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(5 ) SCREAMING_SNAKE_CASE__ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_A , _A ) ) SCREAMING_SNAKE_CASE__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_A , _A ) ) def _snake_case ( self :Any ) -> List[Any]: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) SCREAMING_SNAKE_CASE__ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_A ) , 1 )
6
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import math class lowercase_ : """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Dict: lowerCAmelCase = 0.0 lowerCAmelCase = 0.0 for i in range(len(_A ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->int: for i in range(len(_A ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: # Training Examples ( m, n ) lowerCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCAmelCase = SelfOrganizingMap() lowerCAmelCase = 3 lowerCAmelCase = 0.5 for _ in range(__snake_case ): for j in range(len(__snake_case ) ): # training sample lowerCAmelCase = training_samples[j] # Compute the winning vector lowerCAmelCase = self_organizing_map.get_winner(__snake_case , __snake_case ) # Update the winning vector lowerCAmelCase = self_organizing_map.update(__snake_case , __snake_case , __snake_case , __snake_case ) # classify test sample lowerCAmelCase = [0, 0, 0, 1] lowerCAmelCase = self_organizing_map.get_winner(__snake_case , __snake_case ) # results print(f"Clusters that the test sample belongs to : {winner}" ) print(f"Weights that have been trained : {weights}" ) # running the main() function if __name__ == "__main__": main()
312
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
"""simple docstring""" import math def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( SCREAMING_SNAKE_CASE__ : str = 10_001 ) -> Tuple: '''simple docstring''' try: _UpperCAmelCase : List[str] = int(__snake_case ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) _UpperCAmelCase : Any = [] _UpperCAmelCase : str = 2 while len(__snake_case ) < nth: if is_prime(__snake_case ): primes.append(__snake_case ) num += 1 else: num += 1 return primes[len(__snake_case ) - 1] if __name__ == "__main__": print(F"{solution() = }")
289
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
class snake_case__ : """simple docstring""" def __init__( self , __lowercase ) -> str: """simple docstring""" a__ : Any = set_counts a__ : int = max(_A ) a__ : Optional[Any] = len(_A ) a__ : Optional[int] = [1] * num_sets a__ : str = list(range(_A ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : List[str] = self.get_parent(_A ) a__ : Tuple = self.get_parent(_A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] a__ : Union[str, Any] = 0 a__ : List[str] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 a__ : str = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] a__ : int = 0 a__ : Optional[Any] = src_parent a__ : Union[str, Any] = self.set_counts[src_parent] a__ : Tuple = max(self.max_set , _A ) return True def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set a__ : Optional[int] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
136
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
443
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def a__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): """simple docstring""" __SCREAMING_SNAKE_CASE = tau * frequency / samplerate __SCREAMING_SNAKE_CASE = sin(__snake_case ) __SCREAMING_SNAKE_CASE = cos(__snake_case ) __SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE = (1 - _cos) / 2 __SCREAMING_SNAKE_CASE = 1 - _cos __SCREAMING_SNAKE_CASE = 1 + alpha __SCREAMING_SNAKE_CASE = -2 * _cos __SCREAMING_SNAKE_CASE = 1 - alpha __SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): """simple docstring""" __SCREAMING_SNAKE_CASE = tau * frequency / samplerate __SCREAMING_SNAKE_CASE = sin(__snake_case ) __SCREAMING_SNAKE_CASE = cos(__snake_case ) __SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE = (1 + _cos) / 2 __SCREAMING_SNAKE_CASE = -1 - _cos __SCREAMING_SNAKE_CASE = 1 + alpha __SCREAMING_SNAKE_CASE = -2 * _cos __SCREAMING_SNAKE_CASE = 1 - alpha __SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): """simple docstring""" __SCREAMING_SNAKE_CASE = tau * frequency / samplerate __SCREAMING_SNAKE_CASE = sin(__snake_case ) __SCREAMING_SNAKE_CASE = cos(__snake_case ) __SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE = _sin / 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = -ba __SCREAMING_SNAKE_CASE = 1 + alpha __SCREAMING_SNAKE_CASE = -2 * _cos __SCREAMING_SNAKE_CASE = 1 - alpha __SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): """simple docstring""" __SCREAMING_SNAKE_CASE = tau * frequency / samplerate __SCREAMING_SNAKE_CASE = sin(__snake_case ) __SCREAMING_SNAKE_CASE = cos(__snake_case ) __SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE = 1 - alpha __SCREAMING_SNAKE_CASE = -2 * _cos __SCREAMING_SNAKE_CASE = 1 + alpha __SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def a__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): """simple docstring""" __SCREAMING_SNAKE_CASE = tau * frequency / samplerate __SCREAMING_SNAKE_CASE = sin(__snake_case ) __SCREAMING_SNAKE_CASE = cos(__snake_case ) __SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE = 10 ** (gain_db / 40) __SCREAMING_SNAKE_CASE = 1 + alpha * big_a __SCREAMING_SNAKE_CASE = -2 * _cos __SCREAMING_SNAKE_CASE = 1 - alpha * big_a __SCREAMING_SNAKE_CASE = 1 + alpha / big_a __SCREAMING_SNAKE_CASE = -2 * _cos __SCREAMING_SNAKE_CASE = 1 - alpha / big_a __SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): """simple docstring""" __SCREAMING_SNAKE_CASE = tau * frequency / samplerate __SCREAMING_SNAKE_CASE = sin(__snake_case ) __SCREAMING_SNAKE_CASE = cos(__snake_case ) __SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE = 10 ** (gain_db / 40) __SCREAMING_SNAKE_CASE = (big_a + 1) - (big_a - 1) * _cos __SCREAMING_SNAKE_CASE = (big_a + 1) + (big_a - 1) * _cos __SCREAMING_SNAKE_CASE = (big_a - 1) - (big_a + 1) * _cos __SCREAMING_SNAKE_CASE = (big_a - 1) + (big_a + 1) * _cos __SCREAMING_SNAKE_CASE = 2 * sqrt(__snake_case ) * alpha __SCREAMING_SNAKE_CASE = big_a * (pmc + aaa) __SCREAMING_SNAKE_CASE = 2 * big_a * mpc __SCREAMING_SNAKE_CASE = big_a * (pmc - aaa) __SCREAMING_SNAKE_CASE = ppmc + aaa __SCREAMING_SNAKE_CASE = -2 * pmpc __SCREAMING_SNAKE_CASE = ppmc - aaa __SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): """simple docstring""" __SCREAMING_SNAKE_CASE = tau * frequency / samplerate __SCREAMING_SNAKE_CASE = sin(__snake_case ) __SCREAMING_SNAKE_CASE = cos(__snake_case ) __SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE = 10 ** (gain_db / 40) __SCREAMING_SNAKE_CASE = (big_a + 1) - (big_a - 1) * _cos __SCREAMING_SNAKE_CASE = (big_a + 1) + (big_a - 1) * _cos __SCREAMING_SNAKE_CASE = (big_a - 1) - (big_a + 1) * _cos __SCREAMING_SNAKE_CASE = (big_a - 1) + (big_a + 1) * _cos __SCREAMING_SNAKE_CASE = 2 * sqrt(__snake_case ) * alpha __SCREAMING_SNAKE_CASE = big_a * (ppmc + aaa) __SCREAMING_SNAKE_CASE = -2 * big_a * pmpc __SCREAMING_SNAKE_CASE = big_a * (ppmc - aaa) __SCREAMING_SNAKE_CASE = pmc + aaa __SCREAMING_SNAKE_CASE = 2 * mpc __SCREAMING_SNAKE_CASE = pmc - aaa __SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
627
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
"""simple docstring""" import logging import os from .state import PartialState class UpperCAmelCase__ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def A ( _SCREAMING_SNAKE_CASE ) -> Tuple: a_ : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) a_ : str = kwargs.pop("main_process_only" , _A ) a_ : List[Any] = kwargs.pop("in_order" , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): a_ , a_ : Tuple = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: a_ : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: a_ , a_ : Dict = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :Optional[int] = None ) -> str: if log_level is None: a_ : Optional[Any] = os.environ.get("ACCELERATE_LOG_LEVEL" , __snake_case ) a_ : Optional[Any] = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
473
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class UpperCAmelCase ( __lowercase ): '''simple docstring''' lowerCamelCase_ = '''segformer''' def __init__( self , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[3_2, 6_4, 1_6_0, 2_5_6] , lowercase=[7, 3, 3, 3] , lowercase=[4, 2, 2, 2] , lowercase=[1, 2, 5, 8] , lowercase=[4, 4, 4, 4] , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase=0.02 , lowercase=0.1 , lowercase=1E-6 , lowercase=2_5_6 , lowercase=2_5_5 , **lowercase , ): """simple docstring""" super().__init__(**_A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , _A , ) A_ : Union[str, Any] = num_channels A_ : Any = num_encoder_blocks A_ : int = depths A_ : List[str] = sr_ratios A_ : int = hidden_sizes A_ : str = patch_sizes A_ : List[str] = strides A_ : Any = mlp_ratios A_ : str = num_attention_heads A_ : int = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Tuple = classifier_dropout_prob A_ : int = initializer_range A_ : Dict = drop_path_rate A_ : Optional[Any] = layer_norm_eps A_ : Tuple = decoder_hidden_size A_ : List[str] = kwargs.get('reshape_last_stage' , _A ) A_ : int = semantic_loss_ignore_index class UpperCAmelCase ( __lowercase ): '''simple docstring''' lowerCamelCase_ = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return 1E-4 @property def lowerCAmelCase_ ( self ): """simple docstring""" return 1_2
558
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a_ = datasets.load_iris() a_ = np.array(data['data']) a_ = np.array(data['target']) a_ = data['target_names'] a_ , a_ , a_ , a_ = train_test_split(X, y) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=5 ): __lowercase : List[str] = zip(__snake_case , __snake_case ) # List of distances of all points from the point to be classified __lowercase : Any = [] for data_point in data: __lowercase : str = euclidean_distance(data_point[0] , __snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __lowercase : int = [i[1] for i in sorted(__snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowercase : Optional[Any] = Counter(__snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
76
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
0
'''simple docstring''' import math def lowerCamelCase__ ( a = 100 ): __snake_case = sum(i * i for i in range(1 , n + 1 ) ) __snake_case = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
356
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A_ : List[Any] ='''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A_ : Tuple =f'''https://www.google.com/search?q={query}&num=100''' A_ : List[Any] =requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A_ : Optional[Any] =( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A_ : List[Any] =parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
274
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __lowercase ): lowerCamelCase_ = (UnCLIPScheduler,) def _snake_case ( self :Any , **__A :int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_A ) return config def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def _snake_case ( self :int ) -> Optional[Any]: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_A ) def _snake_case ( self :Union[str, Any] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_A ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_A , prev_timestep=_A ) def _snake_case ( self :Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) SCREAMING_SNAKE_CASE__ = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1E-5 def _snake_case ( self :List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type="""learned_range""" ) SCREAMING_SNAKE_CASE__ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=_A ) - -1_0.1_7_1_2_7_9_0 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_A ) - -5.7_9_9_8_0_5_2 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_A ) - -0.0_0_1_0_0_1_1 < 1E-5 def _snake_case ( self :str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(_A , _A ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(_A , _A , _A , generator=_A ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(_A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1E-3 def _snake_case ( self :List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**_A ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(_A , _A ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( _A , _A , _A , prev_timestep=_A , generator=_A ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(_A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1E-3 def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" pass def _snake_case ( self :Dict ) -> List[str]: """simple docstring""" pass
6
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
from torch import nn def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Dict: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
312
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def snake_case_ ( *A : Optional[int] , **A : Optional[Any] ): pass @is_pipeline_test @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def snake_case_ ( self : Optional[Any] , A : List[Any] , A : Optional[Any] , A : List[str] ): _UpperCAmelCase : Optional[int] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) _UpperCAmelCase : str = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def snake_case_ ( self : Dict , A : Tuple , A : str ): _UpperCAmelCase : List[str] = object_detector(examples[0] , threshold=0.0 ) _UpperCAmelCase : Dict = len(_A ) self.assertGreater(_A , 0 ) self.assertEqual( _A , [ { "score": ANY(_A ), "label": ANY(_A ), "box": {"xmin": ANY(_A ), "ymin": ANY(_A ), "xmax": ANY(_A ), "ymax": ANY(_A )}, } for i in range(_A ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def snake_case_ ( self : List[Any] ): pass @require_torch def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Tuple = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) _UpperCAmelCase : Any = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) _UpperCAmelCase : Optional[Any] = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def snake_case_ ( self : Dict ): _UpperCAmelCase : List[str] = pipeline("zero-shot-object-detection" ) _UpperCAmelCase : List[Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) _UpperCAmelCase : int = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def snake_case_ ( self : List[Any] ): pass @require_torch @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = 0.2 _UpperCAmelCase : List[str] = pipeline("zero-shot-object-detection" ) _UpperCAmelCase : Tuple = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=_A , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def snake_case_ ( self : Any ): _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Optional[int] = pipeline("zero-shot-object-detection" ) _UpperCAmelCase : Dict = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=_A , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
289
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( _lowercase : List[Any]) -> Tuple: """simple docstring""" # A local function to see if a dot lands in the circle. def is_in_circle(_lowercase : Any , _lowercase : List[Any]) -> bool: a__ : Optional[Any] = sqrt((x**2) + (y**2)) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle a__ : Union[str, Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0) , uniform(-1.0 , 1.0))) for _ in range(__snake_case)) # The ratio of the area for circle to square is pi/4. a__ : int = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''') print(F'''The numpy value of pi is {pi}''') print(F'''The total error is {abs(pi - pi_estimate)}''') def lowerCAmelCase_ ( _lowercase : str , _lowercase : Tuple , _lowercase : List[Any] = 0.0 , _lowercase : str = 1.0 , ) -> Tuple: """simple docstring""" return mean( function_to_integrate(uniform(__snake_case , __snake_case)) for _ in range(__snake_case)) * (max_value - min_value) def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Any = 0.0 , _lowercase : int = 1.0) -> Union[str, Any]: """simple docstring""" def identity_function(_lowercase : Tuple) -> float: return x a__ : Tuple = area_under_curve_estimator( __snake_case , __snake_case , __snake_case , __snake_case) a__ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""") print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''') print(F'''Estimated value is {estimated_value}''') print(F'''Expected value is {expected_value}''') print(F'''Total error is {abs(estimated_value - expected_value)}''') print("""******************""") def lowerCAmelCase_ ( _lowercase : Any) -> int: """simple docstring""" def function_to_integrate(_lowercase : Union[str, Any]) -> float: return sqrt(4.0 - x * x) a__ : Dict = area_under_curve_estimator( __snake_case , __snake_case , 0.0 , 2.0) print("""******************""") print("""Estimating pi using area_under_curve_estimator""") print(F'''Estimated value is {estimated_value}''') print(F'''Expected value is {pi}''') print(F'''Total error is {abs(estimated_value - pi)}''') print("""******************""") if __name__ == "__main__": import doctest doctest.testmod()
136
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ : List[str] =[tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowercase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): __lowerCamelCase = StableDiffusionLatentUpscalePipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } __lowerCamelCase = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCamelCase = frozenset([] ) __lowerCamelCase = True @property def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : Optional[Any] =1 SCREAMING_SNAKE_CASE_ : Optional[Any] =4 SCREAMING_SNAKE_CASE_ : int =(16, 16) SCREAMING_SNAKE_CASE_ : Any =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_A ) return image def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] =UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_A , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_A , only_cross_attention=_A , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) SCREAMING_SNAKE_CASE_ : List[str] =AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) SCREAMING_SNAKE_CASE_ : Optional[Any] =EulerDiscreteScheduler(prediction_type='''sample''' ) SCREAMING_SNAKE_CASE_ : Tuple =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : str =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE_ : List[Any] ={ '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _snake_case ( self , __A , __A=0 ) -> Dict: if str(_A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ : Optional[int] =torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : List[Any] =torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Any ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Tuple ='''cpu''' SCREAMING_SNAKE_CASE_ : Dict =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Optional[Any] =self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] =self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : str =pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Tuple =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : List[str] =np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) SCREAMING_SNAKE_CASE_ : Any =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def _snake_case ( self ) -> Tuple: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def _snake_case ( self ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def _snake_case ( self ) -> Optional[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _snake_case ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def _snake_case ( self ) -> List[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def _snake_case ( self ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def _snake_case ( self ) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : List[str] =[ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] SCREAMING_SNAKE_CASE_ : List[Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Dict =self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Dict =self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] =2 SCREAMING_SNAKE_CASE_ : int =[] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : List[Any] =getattr(_A , scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Any =scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] =pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class lowercase_ ( unittest.TestCase ): def _snake_case ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : List[Any] =StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) SCREAMING_SNAKE_CASE_ : str ='''a photo of an astronaut high resolution, unreal engine, ultra realistic''' SCREAMING_SNAKE_CASE_ : Tuple =pipe(_A , generator=_A , output_type='''latent''' ).images SCREAMING_SNAKE_CASE_ : Tuple =upscaler( prompt=_A , image=_A , num_inference_steps=20 , guidance_scale=0 , generator=_A , output_type='''np''' , ).images[0] SCREAMING_SNAKE_CASE_ : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : str =torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Dict =StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) SCREAMING_SNAKE_CASE_ : List[str] ='''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' SCREAMING_SNAKE_CASE_ : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) SCREAMING_SNAKE_CASE_ : Optional[int] =upscaler( prompt=_A , image=_A , num_inference_steps=20 , guidance_scale=0 , generator=_A , output_type='''np''' , ).images[0] SCREAMING_SNAKE_CASE_ : int =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
443
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Optional[Any] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
627
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[str]: a_ : int = prime_factors(__snake_case ) if is_square_free(__snake_case ): return -1 if len(__snake_case ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
473
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class UpperCAmelCase ( ctypes.Structure ): '''simple docstring''' lowerCamelCase_ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def UpperCamelCase ( ): '''simple docstring''' if os.name == "nt": A_ : Union[str, Any] = CursorInfo() A_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__snake_case ,ctypes.byref(__snake_case ) ) A_ : Optional[int] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__snake_case ,ctypes.byref(__snake_case ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def UpperCamelCase ( ): '''simple docstring''' if os.name == "nt": A_ : Any = CursorInfo() A_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__snake_case ,ctypes.byref(__snake_case ) ) A_ : Union[str, Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__snake_case ,ctypes.byref(__snake_case ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def UpperCamelCase ( ): '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
558
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '▁' a_ = {'vocab_file': 'sentencepiece.bpe.model'} a_ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } a_ = { 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off a_ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCAmelCase_ ( __lowercase ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =["input_ids", "attention_mask"] UpperCamelCase =[] UpperCamelCase =[] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_=None , UpperCamelCase_=False , **UpperCamelCase_ , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it __lowercase : Union[str, Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __lowercase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __lowercase : str = legacy_behaviour super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_A , **_A , ) __lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) __lowercase : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase : Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase : Union[str, Any] = 1 __lowercase : Union[str, Any] = len(self.sp_model ) __lowercase : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } __lowercase : List[Any] = {v: k for k, v in self.lang_code_to_id.items()} __lowercase : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowercase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowercase : List[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __lowercase : str = src_lang if src_lang is not None else '''eng_Latn''' __lowercase : Optional[int] = self.lang_code_to_id[self._src_lang] __lowercase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> List[Any]: __lowercase : Optional[int] = self.__dict__.copy() __lowercase : List[str] = None __lowercase : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ) -> List[Any]: __lowercase : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowercase : List[str] = {} __lowercase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _lowerCamelCase ( self ) -> Optional[Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCamelCase ( self ) -> Dict: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[int]: __lowercase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ) -> int: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) __lowercase : int = [1] * len(self.prefix_tokens ) __lowercase : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[str]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Dict: __lowercase : Any = [self.sep_token_id] __lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __lowercase : Union[str, Any] = src_lang __lowercase : List[Any] = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __lowercase : Optional[Any] = self.convert_tokens_to_ids(_A ) __lowercase : Union[str, Any] = tgt_lang_id return inputs def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Union[str, Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[Any]: return self.sp_model.encode(_A , out_type=_A ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase : int = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : List[Any] = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[str]: if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase : Optional[Any] = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: __lowercase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = "eng_Latn" , UpperCamelCase_ = None , UpperCamelCase_ = "fra_Latn" , **UpperCamelCase_ , ) -> List[str]: __lowercase : int = src_lang __lowercase : List[str] = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _lowerCamelCase ( self ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self ) -> Optional[int]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any: __lowercase : Tuple = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __lowercase : Optional[Any] = [] __lowercase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __lowercase : int = [self.cur_lang_code] __lowercase : str = [self.eos_token_id] def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any: __lowercase : Tuple = self.lang_code_to_id[lang] if self.legacy_behaviour: __lowercase : Optional[Any] = [] __lowercase : int = [self.eos_token_id, self.cur_lang_code] else: __lowercase : Any = [self.cur_lang_code] __lowercase : List[str] = [self.eos_token_id]
76
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
0
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class a_ : def __init__( self : str ): __snake_case = [] __snake_case = 0 __snake_case = 0 def lowercase__ ( self : Dict ): return self.head == self.tail def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : Any ): self.data.append(_A ) __snake_case = self.tail + 1 def lowercase__ ( self : Union[str, Any] ): __snake_case = self.data[self.head] __snake_case = self.head + 1 return ret def lowercase__ ( self : Tuple ): return self.tail - self.head def lowercase__ ( self : Dict ): print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class a_ : def __init__( self : Any , __lowerCAmelCase : Any ): __snake_case = data __snake_case = None __snake_case = None __snake_case = 1 def lowercase__ ( self : Dict ): return self.data def lowercase__ ( self : List[Any] ): return self.left def lowercase__ ( self : Optional[Any] ): return self.right def lowercase__ ( self : Optional[Any] ): return self.height def lowercase__ ( self : List[Any] , __lowerCAmelCase : Any ): __snake_case = data def lowercase__ ( self : Dict , __lowerCAmelCase : MyNode | None ): __snake_case = node def lowercase__ ( self : Optional[int] , __lowerCAmelCase : MyNode | None ): __snake_case = node def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : int ): __snake_case = height def lowerCamelCase__ ( a ): if node is None: return 0 return node.get_height() def lowerCamelCase__ ( a , a ): if a > b: return a return b def lowerCamelCase__ ( a ): print('left rotation node:' , node.get_data() ) __snake_case = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__snake_case ) __snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__snake_case ) __snake_case = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__snake_case ) return ret def lowerCamelCase__ ( a ): print('right rotation node:' , node.get_data() ) __snake_case = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__snake_case ) __snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__snake_case ) __snake_case = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__snake_case ) return ret def lowerCamelCase__ ( a ): __snake_case = node.get_left() assert left_child is not None node.set_left(left_rotation(__snake_case ) ) return right_rotation(__snake_case ) def lowerCamelCase__ ( a ): __snake_case = node.get_right() assert right_child is not None node.set_right(right_rotation(__snake_case ) ) return left_rotation(__snake_case ) def lowerCamelCase__ ( a , a ): if node is None: return MyNode(__snake_case ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __snake_case ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __snake_case = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __snake_case = right_rotation(__snake_case ) else: __snake_case = lr_rotation(__snake_case ) else: node.set_right(insert_node(node.get_right() , __snake_case ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __snake_case = node.get_right() assert right_child is not None if data < right_child.get_data(): __snake_case = rl_rotation(__snake_case ) else: __snake_case = left_rotation(__snake_case ) __snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__snake_case ) return node def lowerCamelCase__ ( a ): while True: __snake_case = root.get_right() if right_child is None: break __snake_case = right_child return root.get_data() def lowerCamelCase__ ( a ): while True: __snake_case = root.get_left() if left_child is None: break __snake_case = left_child return root.get_data() def lowerCamelCase__ ( a , a ): __snake_case = root.get_left() __snake_case = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __snake_case = get_left_most(__snake_case ) root.set_data(__snake_case ) root.set_right(del_node(__snake_case , __snake_case ) ) elif left_child is not None: __snake_case = left_child elif right_child is not None: __snake_case = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(__snake_case , __snake_case ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__snake_case , __snake_case ) ) if get_height(__snake_case ) - get_height(__snake_case ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __snake_case = left_rotation(__snake_case ) else: __snake_case = rl_rotation(__snake_case ) elif get_height(__snake_case ) - get_height(__snake_case ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __snake_case = right_rotation(__snake_case ) else: __snake_case = lr_rotation(__snake_case ) __snake_case = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__snake_case ) return root class a_ : def __init__( self : Any ): __snake_case = None def lowercase__ ( self : Dict ): return get_height(self.root ) def lowercase__ ( self : Any , __lowerCAmelCase : Any ): print('insert:' + str(_A ) ) __snake_case = insert_node(self.root , _A ) def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : Any ): print('delete:' + str(_A ) ) if self.root is None: print('Tree is empty!' ) return __snake_case = del_node(self.root , _A ) def __str__( self : Any , ): # a level traversale, gives a more intuitive look on the tree __snake_case = '' __snake_case = MyQueue() q.push(self.root ) __snake_case = self.get_height() if layer == 0: return output __snake_case = 0 while not q.is_empty(): __snake_case = q.pop() __snake_case = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_A ) q.push(_A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __snake_case = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , _A ) - 1: __snake_case = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _lowercase = AVLtree() _lowercase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
356
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class __UpperCAmelCase : def __init__( self ): lowerCAmelCase_ = {} def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = {} def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if nodea not in self.connections: self.add_node(_A ) if nodea not in self.connections: self.add_node(_A ) lowerCAmelCase_ = probability def UpperCAmelCase_ ( self ): return list(self.connections ) def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = 0 lowerCAmelCase_ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case_ ( __snake_case : str , __snake_case : List[str] , __snake_case : Dict) -> Union[str, Any]: lowerCAmelCase_ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__snake_case , __snake_case , __snake_case) lowerCAmelCase_ = Counter(graph.get_nodes()) lowerCAmelCase_ = start for _ in range(__snake_case): lowerCAmelCase_ = graph.transition(__snake_case) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
274
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
_lowerCamelCase = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
6
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart lowercase__ : List[str] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } lowercase__ : Dict = { '''facebook/bart-base''': 1_0_2_4, '''facebook/bart-large''': 1_0_2_4, '''facebook/bart-large-mnli''': 1_0_2_4, '''facebook/bart-large-cnn''': 1_0_2_4, '''facebook/bart-large-xsum''': 1_0_2_4, '''yjernite/bart_eli5''': 1_0_2_4, } @lru_cache() def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: lowerCAmelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase = bs[:] lowerCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 lowerCAmelCase = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int: lowerCAmelCase = set() lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase = char return pairs class lowercase_ ( __lowercase ): """simple docstring""" UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="replace" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->Tuple: lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase = json.load(_A ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} lowerCAmelCase = errors # how to handle errors in decoding lowerCAmelCase = bytes_to_unicode() lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase = dict(zip(_A , range(len(_A ) ) ) ) lowerCAmelCase = {} lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: return len(self.encoder ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]: if token in self.cache: return self.cache[token] lowerCAmelCase = tuple(_A ) lowerCAmelCase = get_pairs(_A ) if not pairs: return token while True: lowerCAmelCase = min(_A , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase , lowerCAmelCase = bigram lowerCAmelCase = [] lowerCAmelCase = 0 while i < len(_A ): try: lowerCAmelCase = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase = tuple(_A ) lowerCAmelCase = new_word if len(_A ) == 1: break else: lowerCAmelCase = get_pairs(_A ) lowerCAmelCase = ''' '''.join(_A ) lowerCAmelCase = word return word def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = [] for token in re.findall(self.pat , _A ): lowerCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(''' ''' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]: return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]: return self.decoder.get(_A ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]: lowerCAmelCase = ''''''.join(_A ) lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple: if not os.path.isdir(_A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) lowerCAmelCase = 0 with open(_A , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase = token_index writer.write(''' '''.join(_A ) + '''\n''' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Dict: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->Optional[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Any: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ) ->Dict: lowerCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): lowerCAmelCase = ''' ''' + text return (text, kwargs)
312
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=0.999 , SCREAMING_SNAKE_CASE__ : List[str]="cosine" , ) -> Dict: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase : Any = [] for i in range(__snake_case ): _UpperCAmelCase : List[Any] = i / num_diffusion_timesteps _UpperCAmelCase : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class UpperCAmelCase_ ( __lowercase , __lowercase ): __SCREAMING_SNAKE_CASE : Any = [e.name for e in KarrasDiffusionSchedulers] __SCREAMING_SNAKE_CASE : Any = 2 @register_to_config def __init__( self : Optional[Any] , A : int = 1_0_0_0 , A : float = 0.00_085 , A : float = 0.012 , A : str = "linear" , A : Optional[Union[np.ndarray, List[float]]] = None , A : str = "epsilon" , A : str = "linspace" , A : int = 0 , ): if trained_betas is not None: _UpperCAmelCase : int = torch.tensor(_A , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase : Optional[Any] = torch.linspace(_A , _A , _A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : str = betas_for_alpha_bar(_A ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase : str = 1.0 - self.betas _UpperCAmelCase : str = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_A , _A , _A ) def snake_case_ ( self : Union[str, Any] , A : Dict , A : List[str]=None ): if schedule_timesteps is None: _UpperCAmelCase : str = self.timesteps _UpperCAmelCase : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _UpperCAmelCase : Optional[int] = 1 if len(_A ) > 1 else 0 else: _UpperCAmelCase : Dict = timestep.cpu().item() if torch.is_tensor(_A ) else timestep _UpperCAmelCase : List[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self : str ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self : str , A : torch.FloatTensor , A : Union[float, torch.FloatTensor] , ): _UpperCAmelCase : Optional[int] = self.index_for_timestep(_A ) if self.state_in_first_order: _UpperCAmelCase : Tuple = self.sigmas[step_index] else: _UpperCAmelCase : Dict = self.sigmas_interpol[step_index] _UpperCAmelCase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self : Optional[Any] , A : int , A : Union[str, torch.device] = None , A : Optional[int] = None , ): _UpperCAmelCase : int = num_inference_steps _UpperCAmelCase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCAmelCase : int = np.linspace(0 , num_train_timesteps - 1 , _A , dtype=_A )[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCAmelCase : Optional[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : List[Any] = (np.arange(0 , _A ) * step_ratio).round()[::-1].copy().astype(_A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCAmelCase : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : List[Any] = (np.arange(_A , 0 , -step_ratio )).round().copy().astype(_A ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) _UpperCAmelCase : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _UpperCAmelCase : Union[str, Any] = torch.from_numpy(np.log(_A ) ).to(_A ) _UpperCAmelCase : Any = np.interp(_A , np.arange(0 , len(_A ) ) , _A ) _UpperCAmelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _UpperCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ) # interpolate sigmas _UpperCAmelCase : Optional[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _UpperCAmelCase : int = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _UpperCAmelCase : str = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_A ).startswith("mps" ): # mps does not support float64 _UpperCAmelCase : Union[str, Any] = torch.from_numpy(_A ).to(_A , dtype=torch.floataa ) else: _UpperCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(_A ) # interpolate timesteps _UpperCAmelCase : Union[str, Any] = self.sigma_to_t(_A ).to(_A , dtype=timesteps.dtype ) _UpperCAmelCase : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _UpperCAmelCase : Union[str, Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) _UpperCAmelCase : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCAmelCase : List[Any] = defaultdict(_A ) def snake_case_ ( self : Any , A : List[Any] ): # get log sigma _UpperCAmelCase : Optional[Any] = sigma.log() # get distribution _UpperCAmelCase : List[Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range _UpperCAmelCase : Union[str, Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _UpperCAmelCase : Dict = low_idx + 1 _UpperCAmelCase : Dict = self.log_sigmas[low_idx] _UpperCAmelCase : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas _UpperCAmelCase : Optional[Any] = (low - log_sigma) / (low - high) _UpperCAmelCase : Optional[int] = w.clamp(0 , 1 ) # transform interpolation to time range _UpperCAmelCase : Dict = (1 - w) * low_idx + w * high_idx _UpperCAmelCase : List[Any] = t.view(sigma.shape ) return t @property def snake_case_ ( self : Optional[Any] ): return self.sample is None def snake_case_ ( self : Optional[int] , A : Union[torch.FloatTensor, np.ndarray] , A : Union[float, torch.FloatTensor] , A : Union[torch.FloatTensor, np.ndarray] , A : bool = True , ): _UpperCAmelCase : List[Any] = self.index_for_timestep(_A ) # advance index counter by 1 _UpperCAmelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(_A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCAmelCase : Optional[Any] = self.sigmas[step_index] _UpperCAmelCase : List[str] = self.sigmas_interpol[step_index + 1] _UpperCAmelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _UpperCAmelCase : Dict = self.sigmas[step_index - 1] _UpperCAmelCase : Union[str, Any] = self.sigmas_interpol[step_index] _UpperCAmelCase : str = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCAmelCase : Any = 0 _UpperCAmelCase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCAmelCase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCAmelCase : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCAmelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCAmelCase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCAmelCase : Union[str, Any] = sigma_interpol - sigma_hat # store for 2nd order step _UpperCAmelCase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _UpperCAmelCase : int = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _UpperCAmelCase : Optional[Any] = sigma_next - sigma_hat _UpperCAmelCase : Optional[int] = self.sample _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_A ) def snake_case_ ( self : List[Any] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples _UpperCAmelCase : Optional[int] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_A ): # mps does not support float64 _UpperCAmelCase : str = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _UpperCAmelCase : List[str] = self.timesteps.to(original_samples.device ) _UpperCAmelCase : List[Any] = timesteps.to(original_samples.device ) _UpperCAmelCase : Union[str, Any] = [self.index_for_timestep(_A , _A ) for t in timesteps] _UpperCAmelCase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _UpperCAmelCase : str = sigma.unsqueeze(-1 ) _UpperCAmelCase : str = original_samples + noise * sigma return noisy_samples def __len__( self : List[str] ): return self.config.num_train_timesteps
289
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowercase : Union[str, Any] =logging.get_logger(__name__) class snake_case__ (__lowercase ): """simple docstring""" __lowerCAmelCase :Tuple = ["pixel_values"] def __init__( self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 2_5_5 , __lowercase = True , __lowercase = None , __lowercase = None , **__lowercase , ) -> int: """simple docstring""" super().__init__(**_A ) a__ : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_5_6} a__ : str = get_size_dict(_A , default_to_square=_A ) a__ : Any = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} a__ : Any = get_size_dict(_A ) a__ : Tuple = do_resize a__ : int = size a__ : List[Any] = resample a__ : str = do_center_crop a__ : Tuple = crop_size a__ : List[Any] = do_rescale a__ : Optional[int] = rescale_factor a__ : Any = do_normalize a__ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) a__ : List[Any] = get_resize_output_image_size(_A , size=size["""shortest_edge"""] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> Optional[Any]: """simple docstring""" a__ : str = get_size_dict(_A ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase = None , **__lowercase ) -> int: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> Any: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> Optional[int]: """simple docstring""" a__ : int = do_resize if do_resize is not None else self.do_resize a__ : Union[str, Any] = size if size is not None else self.size a__ : Any = get_size_dict(_A , default_to_square=_A ) a__ : Optional[Any] = resample if resample is not None else self.resample a__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop a__ : List[Any] = crop_size if crop_size is not None else self.crop_size a__ : List[Any] = get_size_dict(_A ) a__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale a__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a__ : Any = do_normalize if do_normalize is not None else self.do_normalize a__ : Any = image_mean if image_mean is not None else self.image_mean a__ : List[Any] = image_std if image_std is not None else self.image_std a__ : List[str] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. a__ : str = [to_numpy_array(_A ) for image in images] if do_resize: a__ : str = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: a__ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: a__ : int = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: a__ : Dict = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] a__ : Any = [to_channel_dimension_format(_A , _A ) for image in images] a__ : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=_A , tensor_type=_A )
136
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
# flake8: noqa # Lint as: python3 _lowercase = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
443
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Any = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__ ( __lowercase ): """simple docstring""" lowerCAmelCase__ = "speech_to_text_2" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Dict=10_000 , __SCREAMING_SNAKE_CASE : Any=6 , __SCREAMING_SNAKE_CASE : Optional[int]=2_048 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Dict="relu" , __SCREAMING_SNAKE_CASE : Optional[Any]=256 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : str=1_024 , **__SCREAMING_SNAKE_CASE : str , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = max_target_positions super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
627
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class UpperCAmelCase__ ( __lowercase ): """simple docstring""" lowerCAmelCase__ : Any = """swinv2""" lowerCAmelCase__ : Dict = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , _SCREAMING_SNAKE_CASE=2_2_4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=9_6 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[3, 6, 1_2, 2_4] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=3_2 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_A ) a_ : Tuple = image_size a_ : Any = patch_size a_ : List[str] = num_channels a_ : int = embed_dim a_ : Tuple = depths a_ : Dict = len(_A ) a_ : Optional[Any] = num_heads a_ : Tuple = window_size a_ : int = mlp_ratio a_ : List[Any] = qkv_bias a_ : Optional[int] = hidden_dropout_prob a_ : Optional[Any] = attention_probs_dropout_prob a_ : str = drop_path_rate a_ : Dict = hidden_act a_ : Any = use_absolute_embeddings a_ : Optional[Any] = layer_norm_eps a_ : Tuple = initializer_range a_ : List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a_ : Tuple = int(embed_dim * 2 ** (len(_A ) - 1) ) a_ : Union[str, Any] = (0, 0, 0, 0)
473
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
0
from __future__ import annotations def UpperCamelCase ( __lowercase : Tuple ): '''simple docstring''' if not nums: raise ValueError('List is empty' ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
558
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
0
"""simple docstring""" import os def __UpperCAmelCase ( __UpperCamelCase = "matrix.txt" ): with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as in_file: __lowercase : int = in_file.read() __lowercase : Tuple = [[int(__snake_case ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] __lowercase : int = [[0 for cell in row] for row in grid] __lowercase : List[Any] = len(grid[0] ) __lowercase : List[str] = [[0 for i in range(__snake_case )] for j in range(__snake_case )] __lowercase : Tuple = grid[0][0] for i in range(1 , __snake_case ): __lowercase : Optional[Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , __snake_case ): __lowercase : Union[str, Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , __snake_case ): for j in range(1 , __snake_case ): __lowercase : Any = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
76
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int =logging.get_logger(__name__) A_ : Union[str, Any] ={ '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __UpperCAmelCase ( __lowercase ): __A : Tuple = 'cvt' def __init__( self , _lowerCamelCase=3 , _lowerCamelCase=[7, 3, 3] , _lowerCamelCase=[4, 2, 2] , _lowerCamelCase=[2, 1, 1] , _lowerCamelCase=[64, 192, 384] , _lowerCamelCase=[1, 3, 6] , _lowerCamelCase=[1, 2, 10] , _lowerCamelCase=[4.0, 4.0, 4.0] , _lowerCamelCase=[0.0, 0.0, 0.0] , _lowerCamelCase=[0.0, 0.0, 0.0] , _lowerCamelCase=[0.0, 0.0, 0.1] , _lowerCamelCase=[True, True, True] , _lowerCamelCase=[False, False, True] , _lowerCamelCase=["dw_bn", "dw_bn", "dw_bn"] , _lowerCamelCase=[3, 3, 3] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=0.02 , _lowerCamelCase=1E-12 , **_lowerCamelCase , ): super().__init__(**_A ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_sizes lowerCAmelCase_ = patch_stride lowerCAmelCase_ = patch_padding lowerCAmelCase_ = embed_dim lowerCAmelCase_ = num_heads lowerCAmelCase_ = depth lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = attention_drop_rate lowerCAmelCase_ = drop_rate lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = cls_token lowerCAmelCase_ = qkv_projection_method lowerCAmelCase_ = kernel_qkv lowerCAmelCase_ = padding_kv lowerCAmelCase_ = stride_kv lowerCAmelCase_ = padding_q lowerCAmelCase_ = stride_q lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps
274
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCamelCase_ : def __init__( self :Dict , __A :Optional[Any] , __A :Dict=13 , __A :int=7 , __A :List[str]=True , __A :Optional[int]=True , __A :Union[str, Any]=True , __A :Optional[Any]=True , __A :List[Any]=99 , __A :Any=32 , __A :Union[str, Any]=2 , __A :Optional[int]=4 , __A :int=37 , __A :Any="gelu" , __A :int=0.1 , __A :Dict=0.1 , __A :Any=512 , __A :List[Any]=16 , __A :Tuple=2 , __A :List[Any]=0.0_2 , __A :List[Any]=False , __A :int=True , __A :Union[str, Any]="None" , __A :Optional[Any]=3 , __A :Dict=4 , __A :Any=None , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = position_biased_input SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any] , __A :str , __A :str , __A :Optional[Any] , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDebertaVaModel(config=_A ) SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(_A ) SCREAMING_SNAKE_CASE__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :Optional[Any] , __A :int , __A :List[str] , __A :str , __A :Tuple , __A :List[Any] , __A :Dict , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDebertaVaForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :int , __A :str , __A :str , __A :Union[str, Any] , __A :int , __A :Optional[Any] , __A :str , __A :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFDebertaVaForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self :List[Any] , __A :List[str] , __A :Tuple , __A :int , __A :int , __A :Tuple , __A :Tuple , __A :int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFDebertaVaForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :Dict , __A :Any , __A :Union[str, Any] , __A :List[str] , __A :Dict , __A :Tuple , __A :Any , __A :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDebertaVaForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase_ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase_ = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDebertaVaModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_A , hidden_size=37 ) def _snake_case ( self :Dict ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def _snake_case ( self :Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def _snake_case ( self :int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(_A ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def _snake_case ( self :int ) -> Union[str, Any]: """simple docstring""" pass @slow def _snake_case ( self :List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) SCREAMING_SNAKE_CASE__ = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) SCREAMING_SNAKE_CASE__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE__ = model(_A , attention_mask=_A )[0] SCREAMING_SNAKE_CASE__ = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _A , atol=1E-4 )
6
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ : List[str] = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ['''ViTFeatureExtractor'''] lowercase__ : Tuple = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : str=None ) -> Optional[Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : List[str] = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) __SCREAMING_SNAKE_CASE : Dict = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) __SCREAMING_SNAKE_CASE : Optional[Any] = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) __SCREAMING_SNAKE_CASE : List[Any] = field( default=__lowercase , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = field( default=__lowercase , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) __SCREAMING_SNAKE_CASE : List[Any] = field( default=__lowercase , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) __SCREAMING_SNAKE_CASE : Tuple = field(default=__lowercase , metadata={'help': 'Use FP16 to accelerate inference.'} ) __SCREAMING_SNAKE_CASE : int = field(default=__lowercase , metadata={'help': 'Benchmark training of model'} ) __SCREAMING_SNAKE_CASE : List[Any] = field(default=__lowercase , metadata={'help': 'Verbose memory tracing'} ) __SCREAMING_SNAKE_CASE : int = field( default=__lowercase , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) __SCREAMING_SNAKE_CASE : Tuple = field(default=__lowercase , metadata={'help': 'Trace memory line by line'} ) __SCREAMING_SNAKE_CASE : List[str] = field(default=__lowercase , metadata={'help': 'Save result to a CSV file'} ) __SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'help': 'Save all print statements in a log file'} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = field(default=__lowercase , metadata={'help': 'Whether to print environment information'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) __SCREAMING_SNAKE_CASE : int = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) __SCREAMING_SNAKE_CASE : List[str] = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) __SCREAMING_SNAKE_CASE : Any = field( default=f"""train_time_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) __SCREAMING_SNAKE_CASE : Tuple = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) __SCREAMING_SNAKE_CASE : int = field( default=f"""env_info_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving environment information.'} , ) __SCREAMING_SNAKE_CASE : str = field( default=f"""log_{round(time() )}.csv""" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) __SCREAMING_SNAKE_CASE : List[str] = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) __SCREAMING_SNAKE_CASE : Tuple = field( default=__lowercase , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def snake_case_ ( self : Union[str, Any] ): warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , _A , ) def snake_case_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = [\'bert-base-cased\']." ) return self.models @property def snake_case_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
289
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class snake_case__ (unittest.TestCase ): """simple docstring""" @require_torch def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[Any] = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) a__ : Dict = load_dataset("""ashraq/esc50""" ) a__ : int = dataset["""train"""]["""audio"""][-1]["""array"""] a__ : int = audio_classifier(_A , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_A ) , [{"""score""": 0.5_0_1, """label""": """Sound of a dog"""}, {"""score""": 0.4_9_9, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" pass @slow @require_torch def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : int = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog a__ : Optional[Any] = load_dataset("""ashraq/esc50""" ) a__ : int = dataset["""train"""]["""audio"""][-1]["""array"""] a__ : str = audio_classifier(_A , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_A ) , [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ] , ) a__ : str = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_A ) , [ [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) a__ : Dict = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_A ) , [ [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" pass
136
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Optional[Any] =OmegaConf.load(__snake_case ) SCREAMING_SNAKE_CASE_ : Tuple =torch.load(__snake_case , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE_ : Optional[Any] =list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE_ : Optional[int] ={} SCREAMING_SNAKE_CASE_ : str ='''first_stage_model.''' for key in keys: if key.startswith(__snake_case ): SCREAMING_SNAKE_CASE_ : Any =state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE_ : Dict ={} SCREAMING_SNAKE_CASE_ : Tuple ='''model.diffusion_model.''' for key in keys: if key.startswith(__snake_case ): SCREAMING_SNAKE_CASE_ : Optional[int] =state_dict[key] SCREAMING_SNAKE_CASE_ : Optional[Any] =config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE_ : Any =config.model.params.unet_config.params SCREAMING_SNAKE_CASE_ : Optional[Any] =VQModel(**__snake_case ).eval() vqvae.load_state_dict(__snake_case ) SCREAMING_SNAKE_CASE_ : Tuple =UNetLDMModel(**__snake_case ).eval() unet.load_state_dict(__snake_case ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__snake_case , ) SCREAMING_SNAKE_CASE_ : int =LDMPipeline(__snake_case , __snake_case , __snake_case ) pipeline.save_pretrained(__snake_case ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) _lowercase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
443
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
'''simple docstring''' def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = (boundary[1] - boundary[0]) / steps __SCREAMING_SNAKE_CASE = boundary[0] __SCREAMING_SNAKE_CASE = boundary[1] __SCREAMING_SNAKE_CASE = make_points(__snake_case , __snake_case , __snake_case ) __SCREAMING_SNAKE_CASE = 0.0 y += (h / 2.0) * f(__snake_case ) for i in x_i: # print(i) y += h * f(__snake_case ) y += (h / 2.0) * f(__snake_case ) return y def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = a + h while x < (b - h): yield x __SCREAMING_SNAKE_CASE = x + h def a__ ( a__ ): # enter your function here """simple docstring""" __SCREAMING_SNAKE_CASE = (x - 0) * (x - 0) return y def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = 0.0 # Lower bound of integration __SCREAMING_SNAKE_CASE = 1.0 # Upper bound of integration __SCREAMING_SNAKE_CASE = 10.0 # define number of steps or resolution __SCREAMING_SNAKE_CASE = [a, b] # define boundary of integration __SCREAMING_SNAKE_CASE = method_a(__snake_case , __snake_case ) print(F'y = {y}' ) if __name__ == "__main__": main()
627
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCamelCase = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCamelCase = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCamelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } UpperCamelCase = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } UpperCamelCase = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } UpperCamelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } UpperCamelCase = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } UpperCamelCase = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class UpperCAmelCase__ ( __lowercase ): """simple docstring""" lowerCAmelCase__ : str = VOCAB_FILES_NAMES lowerCAmelCase__ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : List[Any] = DPRContextEncoderTokenizer class UpperCAmelCase__ ( __lowercase ): """simple docstring""" lowerCAmelCase__ : str = VOCAB_FILES_NAMES lowerCAmelCase__ : int = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : int = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : Dict = DPRQuestionEncoderTokenizer UpperCamelCase = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) UpperCamelCase = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) UpperCamelCase = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__lowercase ) class UpperCAmelCase__ : """simple docstring""" def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: if titles is None and texts is None: return super().__call__( _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) elif titles is None or texts is None: a_ : Optional[Any] = titles if texts is None else texts return super().__call__( _A , _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) a_ : Optional[int] = titles if not isinstance(_A , _A ) else [titles] a_ : Optional[int] = texts if not isinstance(_A , _A ) else [texts] a_ : Dict = len(_A ) a_ : Dict = questions if not isinstance(_A , _A ) else [questions] * n_passages assert len(_A ) == len( _A ), f'''There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.''' a_ : Optional[int] = super().__call__(_A , _A , padding=_A , truncation=_A )["input_ids"] a_ : List[str] = super().__call__(_A , add_special_tokens=_A , padding=_A , truncation=_A )["input_ids"] a_ : Union[str, Any] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A , _A ) ] } if return_attention_mask is not False: a_ : int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) a_ : List[Any] = attention_mask return self.pad(_A , padding=_A , max_length=_A , return_tensors=_A ) def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1_6 , _SCREAMING_SNAKE_CASE = 6_4 , _SCREAMING_SNAKE_CASE = 4 , ) -> Any: a_ : Any = reader_input["input_ids"] a_ , a_ , a_ : Tuple = reader_output[:3] a_ : Dict = len(_A ) a_ : Optional[Any] = sorted(range(_A ) , reverse=_A , key=relevance_logits.__getitem__ ) a_ : Optional[Any] = [] for doc_id in sorted_docs: a_ : Dict = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence a_ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a_ : List[Any] = sequence_ids.index(self.pad_token_id ) else: a_ : List[Any] = len(_A ) a_ : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_A , top_spans=_A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_A , start_index=_A , end_index=_A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: a_ : Union[str, Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) a_ : Union[str, Any] = sorted(_A , key=lambda _SCREAMING_SNAKE_CASE : x[1] , reverse=_A ) a_ : Tuple = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' a_ : Union[str, Any] = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowercase ) class UpperCAmelCase__ ( __lowercase, __lowercase ): """simple docstring""" lowerCAmelCase__ : Any = VOCAB_FILES_NAMES lowerCAmelCase__ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : str = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : List[str] = DPRReaderTokenizer
473
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
0
from __future__ import annotations from typing import Any def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if not postfix_notation: return 0 A_ : str = {'+', '-', '*', '/'} A_ : Tuple = [] for token in postfix_notation: if token in operations: A_ , A_ : Union[str, Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
558
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
0
'''simple docstring''' def lowerCamelCase__ ( a , a ): if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__snake_case ) ) return round(__snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
356
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A_ : List[str] =logging.get_logger(__name__) class __UpperCAmelCase ( __lowercase ): def __init__( self , **_lowerCamelCase ): requires_backends(self , ['''bs4'''] ) super().__init__(**_A ) def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCAmelCase_ = parent.find_all(child.name , recursive=_A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_A ) else next(i for i, s in enumerate(_A , 1 ) if s is child ) ) lowerCAmelCase_ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = BeautifulSoup(_A , '''html.parser''' ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] for element in html_code.descendants: if type(_A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCAmelCase_ = html.unescape(_A ).strip() if not text_in_this_tag: continue all_doc_strings.append(_A ) lowerCAmelCase_ ,lowerCAmelCase_ = self.xpath_soup(_A ) stringaxtag_seq.append(_A ) stringaxsubs_seq.append(_A ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = '''''' for tagname, subs in zip(_A , _A ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self , _lowerCamelCase ): lowerCAmelCase_ = False # Check that strings has a valid type if isinstance(_A , _A ): lowerCAmelCase_ = True elif isinstance(_A , (list, tuple) ): if len(_A ) == 0 or isinstance(html_strings[0] , _A ): lowerCAmelCase_ = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F'''but is of type {type(_A )}.''' ) lowerCAmelCase_ = bool(isinstance(_A , (list, tuple) ) and (isinstance(html_strings[0] , _A )) ) if not is_batched: lowerCAmelCase_ = [html_strings] # Get nodes + xpaths lowerCAmelCase_ = [] lowerCAmelCase_ = [] for html_string in html_strings: lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = self.get_three_from_single(_A ) nodes.append(_A ) lowerCAmelCase_ = [] for node, tag_list, sub_list in zip(_A , _A , _A ): lowerCAmelCase_ = self.construct_xpath(_A , _A ) xpath_strings.append(_A ) xpaths.append(_A ) # return as Dict lowerCAmelCase_ = {'''nodes''': nodes, '''xpaths''': xpaths} lowerCAmelCase_ = BatchFeature(data=_A , tensor_type=_A ) return encoded_inputs
274
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase_ = LEDTokenizer lowerCamelCase_ = LEDTokenizerFast lowerCamelCase_ = True def _snake_case ( self :Dict ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE__ = dict(zip(_A , range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE__ = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def _snake_case ( self :List[Any] , **__A :Dict ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _snake_case ( self :Any , **__A :Any ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _snake_case ( self :Tuple , __A :str ) -> Tuple: """simple docstring""" return "lower newer", "lower newer" @cached_property def _snake_case ( self :str ) -> str: """simple docstring""" return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def _snake_case ( self :Any ) -> Tuple: """simple docstring""" return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def _snake_case ( self :Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] SCREAMING_SNAKE_CASE__ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors="""pt""" ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def _snake_case ( self :List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer(_A , padding=_A , return_tensors="""pt""" ) self.assertIn("""input_ids""" , _A ) self.assertIn("""attention_mask""" , _A ) self.assertNotIn("""labels""" , _A ) self.assertNotIn("""decoder_attention_mask""" , _A ) @require_torch def _snake_case ( self :List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer(text_target=_A , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def _snake_case ( self :List[Any] ) -> List[str]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=_A , truncation=_A , return_tensors="""pt""" ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization."""] SCREAMING_SNAKE_CASE__ = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer(_A , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = tokenizer(text_target=_A , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = inputs["""input_ids"""] SCREAMING_SNAKE_CASE__ = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _snake_case ( self :str ) -> Tuple: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = ["""Summary of the text.""", """Another summary."""] SCREAMING_SNAKE_CASE__ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] SCREAMING_SNAKE_CASE__ = tokenizer(_A , padding=_A ) SCREAMING_SNAKE_CASE__ = [[0] * len(_A ) for x in encoded_output["""input_ids"""]] SCREAMING_SNAKE_CASE__ = tokenizer.pad(_A ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , _A ) def _snake_case ( self :Any ) -> int: """simple docstring""" pass def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = """A, <mask> AllenNLP sentence.""" SCREAMING_SNAKE_CASE__ = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
6
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase_ ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: torch.manual_seed(0 ) lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_A ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = DDIMScheduler() lowerCAmelCase = self.dummy_vq_model lowerCAmelCase = LDMPipeline(unet=_A , vqvae=_A , scheduler=_A ) ldm.to(_A ) ldm.set_progress_bar_config(disable=_A ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = ldm(generator=_A , num_inference_steps=2 , output_type='''numpy''' ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = ldm(generator=_A , num_inference_steps=2 , output_type='''numpy''' , return_dict=_A )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) lowerCAmelCase = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(_A ) ldm.set_progress_bar_config(disable=_A ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = ldm(generator=_A , num_inference_steps=5 , output_type='''numpy''' ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) lowerCAmelCase = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
312
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
289
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : int ={"vocab_file": "spiece.model"} _lowercase : Optional[int] ={ "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class snake_case__ (__lowercase ): """simple docstring""" def __init__( self , __lowercase , __lowercase=False , __lowercase=True , __lowercase=False , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<unk>" , __lowercase="<sep>" , __lowercase="<pad>" , __lowercase="<cls>" , __lowercase="<mask>" , __lowercase=["<eop>", "<eod>"] , __lowercase = None , **__lowercase , ) -> int: """simple docstring""" a__ : Dict = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token a__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) a__ : Dict = 3 a__ : Union[str, Any] = do_lower_case a__ : int = remove_space a__ : List[Any] = keep_accents a__ : Optional[int] = vocab_file a__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) a__ : Union[str, Any] = jieba a__ : Optional[int] = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : Any = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: """simple docstring""" a__ : List[Any] = self.__dict__.copy() a__ : Optional[int] = None return state def __setstate__( self , __lowercase ) -> str: """simple docstring""" a__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a__ : List[str] = {} a__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" if self.remove_space: a__ : Optional[Any] = """ """.join(inputs.strip().split() ) else: a__ : Optional[int] = inputs a__ : Tuple = outputs.replace("""``""" , """\"""" ).replace("""\'\'""" , """\"""" ) if not self.keep_accents: a__ : Optional[Any] = unicodedata.normalize("""NFKD""" , _A ) a__ : str = """""".join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: a__ : Union[str, Any] = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : List[Any] = self.preprocess_text(_A ) a__ : int = self.sp_model.encode(_A , out_type=_A ) a__ : Optional[int] = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): a__ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__ : Union[str, Any] = cur_pieces[1:] else: a__ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" return self.sp_model.PieceToId(_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" return self.sp_model.IdToPiece(_A ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" a__ : Optional[int] = """""".join(_A ).replace(_A , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Any: """simple docstring""" a__ : List[Any] = [self.sep_token_id] a__ : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> int: """simple docstring""" a__ : str = [self.sep_token_id] a__ : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Any: """simple docstring""" if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : Tuple = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , """wb""" ) as fi: a__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__( self , *__lowercase , **__lowercase ) -> List[Any]: """simple docstring""" a__ : Optional[int] = super()._decode(*_A , **_A ) a__ : Union[str, Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
136
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0