code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
_snake_case : str = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
_snake_case : Tuple = [{"type": "code", "content": INSTALL_CONTENT}]
_snake_case : Dict = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 81 | import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_lengths
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = gelu_activation
_UpperCamelCase = sinusoidal_embeddings
_UpperCamelCase = causal
_UpperCamelCase = asm
_UpperCamelCase = n_langs
_UpperCamelCase = vocab_size
_UpperCamelCase = n_special
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_labels
_UpperCamelCase = num_choices
_UpperCamelCase = summary_type
_UpperCamelCase = use_proj
_UpperCamelCase = scope
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_input_lengths:
_UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float()
_UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCamelCase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase_ ( self : str ):
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ):
_UpperCamelCase = FlaubertModel(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , lengths=_A , langs=_A )
_UpperCamelCase = model(_A , langs=_A )
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ):
_UpperCamelCase = FlaubertWithLMHeadModel(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ):
_UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ):
_UpperCamelCase = FlaubertForQuestionAnswering(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ):
_UpperCamelCase = FlaubertForSequenceClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ):
_UpperCamelCase = self.num_labels
_UpperCamelCase = FlaubertForTokenClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , attention_mask=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ):
_UpperCamelCase = self.num_choices
_UpperCamelCase = FlaubertForMultipleChoice(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCAmelCase = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ):
_UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
return inputs_dict
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = FlaubertModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 )
def UpperCamelCase_ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_A )
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_A )
@slow
def UpperCamelCase_ ( self : str ):
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = FlaubertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@slow
@require_torch_gpu
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
_UpperCamelCase = True
_UpperCamelCase = model_class(config=_A )
_UpperCamelCase = self._prepare_for_class(_A , _A )
_UpperCamelCase = torch.jit.trace(
_A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) )
_UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A )
loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' )
_UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
_UpperCamelCase = model(_A )[0]
_UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _A )
_UpperCamelCase = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
| 10 | 0 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class lowercase__ :
'''simple docstring'''
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Dict:
'''simple docstring'''
return None
class lowercase__ :
'''simple docstring'''
def lowercase__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
return None
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = [
# (model_name, model_kwargs)
('''bert-base-cased''', {}),
('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(_UpperCAmelCase , "tf" , 12 , **_UpperCAmelCase )
@require_torch
@slow
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(_UpperCAmelCase , "pt" , 12 , **_UpperCAmelCase )
@require_torch
@slow
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
from transformers import BertModel
UpperCAmelCase_ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(_UpperCAmelCase ) )
vocab_file.flush()
UpperCAmelCase_ = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
UpperCAmelCase_ = BertModel(BertConfig(vocab_size=len(_UpperCAmelCase ) ) )
model.save_pretrained(_UpperCAmelCase )
self._test_export(_UpperCAmelCase , "pt" , 12 , _UpperCAmelCase )
@require_tf
@slow
def lowercase__ ( self : str ) -> Any:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
UpperCAmelCase_ = self._test_export(_UpperCAmelCase , "tf" , 12 , **_UpperCAmelCase )
UpperCAmelCase_ = quantize(Path(_UpperCAmelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
UpperCAmelCase_ = self._test_export(_UpperCAmelCase , "pt" , 12 , **_UpperCAmelCase )
UpperCAmelCase_ = quantize(_UpperCAmelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Dict ) -> Optional[Any]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
UpperCAmelCase_ = Path(_UpperCAmelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
return path
except Exception as e:
self.fail(_UpperCAmelCase )
@require_torch
@require_tokenizers
@slow
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
from transformers import BertModel
UpperCAmelCase_ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
UpperCAmelCase_ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
from transformers import TFBertModel
UpperCAmelCase_ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
UpperCAmelCase_ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , "tf" )
def lowercase__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = FeatureExtractionPipeline(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = infer_shapes(_UpperCAmelCase , _UpperCAmelCase )
# Assert all variables are present
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , _UpperCAmelCase )
self.assertSequenceEqual(variable_names[3:] , _UpperCAmelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def lowercase__ ( self : Any ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = ["input_ids", "attention_mask", "token_type_ids"]
UpperCAmelCase_ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
UpperCAmelCase_ , UpperCAmelCase_ = ensure_valid_input(FuncContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(_UpperCAmelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(_UpperCAmelCase ) , set(_UpperCAmelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(_UpperCAmelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
UpperCAmelCase_ , UpperCAmelCase_ = ensure_valid_input(FuncNonContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(_UpperCAmelCase ) , 1 )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
| 82 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = projection_dim
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
_UpperCamelCase = bos_token_id
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
_UpperCamelCase = input_mask.numpy()
_UpperCamelCase , _UpperCamelCase = input_mask.shape
_UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_A ):
_UpperCamelCase = 1
_UpperCamelCase = 0
_UpperCamelCase = self.get_config()
return config, input_ids, tf.convert_to_tensor(_A )
def UpperCamelCase_ ( self : str ):
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ):
_UpperCamelCase = TFBlipTextModel(config=_A )
_UpperCamelCase = model(_A , attention_mask=_A , training=_A )
_UpperCamelCase = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else ()
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = BlipTextModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 )
def UpperCamelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : List[str] ):
pass
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = TFBlipTextModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase_ ( self : int , _A : Optional[int]=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
| 10 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __snake_case ( _lowercase , _lowercase , unittest.TestCase):
snake_case__ : Optional[Any] = StableDiffusionXLImgaImgPipeline
snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
snake_case__ : int = PipelineTesterMixin.required_optional_params - {"latents"}
snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case__ : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
snake_case__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCamelCase : Union[str, Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , )
_lowerCamelCase : Dict = EulerDiscreteScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , )
torch.manual_seed(0 )
_lowerCamelCase : str = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
_lowerCamelCase : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=3_2 , )
_lowerCamelCase : Dict = CLIPTextModel(__lowerCAmelCase )
_lowerCamelCase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowerCAmelCase )
_lowerCamelCase : List[str] = CLIPTextModelWithProjection(__lowerCAmelCase )
_lowerCamelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__lowerCAmelCase )
_lowerCamelCase : List[Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''text_encoder_2''': text_encoder_a,
'''tokenizer_2''': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=0 ):
"""simple docstring"""
_lowerCamelCase : Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowerCamelCase : str = image / 2 + 0.5
if str(__lowerCAmelCase ).startswith('''mps''' ):
_lowerCamelCase : Any = torch.manual_seed(__lowerCAmelCase )
else:
_lowerCamelCase : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 5.0,
'''output_type''': '''numpy''',
'''strength''': 0.75,
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
_lowerCamelCase : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_lowerCamelCase : int = self.get_dummy_components()
_lowerCamelCase : Any = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase )
_lowerCamelCase : List[Any] = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self.get_dummy_inputs(__lowerCAmelCase )
_lowerCamelCase : List[Any] = sd_pipe(**__lowerCAmelCase ).images
_lowerCamelCase : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
_lowerCamelCase : Any = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
_lowerCamelCase : Dict = self.get_dummy_components()
_lowerCamelCase : Dict = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = sd_pipe.to(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
# forward without prompt embeds
_lowerCamelCase : List[Any] = self.get_dummy_inputs(__lowerCAmelCase )
_lowerCamelCase : str = 3 * ['''this is a negative prompt''']
_lowerCamelCase : Dict = negative_prompt
_lowerCamelCase : int = 3 * [inputs['''prompt''']]
_lowerCamelCase : Dict = sd_pipe(**__lowerCAmelCase )
_lowerCamelCase : Tuple = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
_lowerCamelCase : List[str] = self.get_dummy_inputs(__lowerCAmelCase )
_lowerCamelCase : str = 3 * ['''this is a negative prompt''']
_lowerCamelCase : int = 3 * [inputs.pop('''prompt''' )]
(
(
_lowerCamelCase
) , (
_lowerCamelCase
) , (
_lowerCamelCase
) , (
_lowerCamelCase
) ,
) : Any = sd_pipe.encode_prompt(__lowerCAmelCase , negative_prompt=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = sd_pipe(
**__lowerCAmelCase , prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , pooled_prompt_embeds=__lowerCAmelCase , negative_pooled_prompt_embeds=__lowerCAmelCase , )
_lowerCamelCase : str = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase):
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple="cpu" , __lowerCAmelCase : Tuple=torch.floataa , __lowerCAmelCase : Dict=0 ):
"""simple docstring"""
_lowerCamelCase : Tuple = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 6_4, 6_4) )
_lowerCamelCase : List[Any] = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
_lowerCamelCase : List[str] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : List[Any] = self.get_inputs(__lowerCAmelCase )
_lowerCamelCase : int = pipe(**__lowerCAmelCase ).images
_lowerCamelCase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_lowerCamelCase : Optional[int] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 83 | from __future__ import annotations
_lowerCAmelCase = [True] * 1_000_001
_lowerCAmelCase = 2
while i * i <= 1_000_000:
if seive[i]:
for j in range(i * i, 1_000_001, i):
_lowerCAmelCase = False
i += 1
def _snake_case ( __snake_case ):
return seive[n]
def _snake_case ( __snake_case ):
return any(digit in '''02468''' for digit in str(__snake_case ) )
def _snake_case ( __snake_case = 1000000 ):
_UpperCamelCase = [2] # result already includes the number 2.
for num in range(3 , limit + 1 , 2 ):
if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ):
_UpperCamelCase = str(__snake_case )
_UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )]
if all(is_prime(__snake_case ) for i in list_nums ):
result.append(__snake_case )
return result
def _snake_case ( ):
return len(find_circular_primes() )
if __name__ == "__main__":
print(f'{len(find_circular_primes()) = }')
| 10 | 0 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : Dict = """new-model"""
if is_tf_available():
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : Tuple = NewModelConfig
@require_tf
class A_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = 'bert-base-cased'
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = 'bert-base-cased'
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModelForPreTraining.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModelForCausalLM.from_pretrained(snake_case )
lowercase , lowercase = TFAutoModelForCausalLM.from_pretrained(snake_case , output_loading_info=snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModelWithLMHead.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModelForMaskedLM.from_pretrained(snake_case )
lowercase , lowercase = TFAutoModelForMaskedLM.from_pretrained(snake_case , output_loading_info=snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case )
lowercase , lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case , output_loading_info=snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModelForSequenceClassification.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModelForQuestionAnswering.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
@slow
@require_tensorflow_probability
def SCREAMING_SNAKE_CASE__ ( self ):
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
lowercase = AutoConfig.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained(snake_case )
lowercase , lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained(
snake_case , output_loading_info=snake_case )
self.assertIsNotNone(snake_case )
self.assertIsInstance(snake_case , snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = TFAutoModelWithLMHead.from_pretrained(snake_case )
self.assertIsInstance(snake_case , snake_case )
self.assertEqual(model.num_parameters() , 1_4410 )
self.assertEqual(model.num_parameters(only_trainable=snake_case ) , 1_4410 )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = TFAutoModelWithLMHead.from_pretrained(snake_case )
self.assertIsInstance(snake_case , snake_case )
self.assertEqual(model.num_parameters() , 1_4410 )
self.assertEqual(model.num_parameters(only_trainable=snake_case ) , 1_4410 )
def SCREAMING_SNAKE_CASE__ ( self ):
# For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
lowercase = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' )
self.assertIsInstance(snake_case , snake_case )
lowercase = copy.deepcopy(model.config )
lowercase = ['FunnelBaseModel']
lowercase = TFAutoModel.from_config(snake_case )
self.assertIsInstance(snake_case , snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(snake_case )
lowercase = TFAutoModel.from_pretrained(snake_case )
self.assertIsInstance(snake_case , snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
try:
AutoConfig.register('new-model' , snake_case )
lowercase = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(snake_case ):
auto_class.register(snake_case , snake_case )
auto_class.register(snake_case , snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case ):
auto_class.register(snake_case , snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
lowercase = BertModelTester(self ).get_config()
lowercase = NewModelConfig(**tiny_config.to_dict() )
lowercase = auto_class.from_config(snake_case )
self.assertIsInstance(snake_case , snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(snake_case )
lowercase = auto_class.from_pretrained(snake_case )
self.assertIsInstance(snake_case , snake_case )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def SCREAMING_SNAKE_CASE__ ( self ):
with self.assertRaisesRegex(
snake_case , 'bert-base is not a local folder and is not a valid model identifier' ):
lowercase = TFAutoModel.from_pretrained('bert-base' )
def SCREAMING_SNAKE_CASE__ ( self ):
with self.assertRaisesRegex(
snake_case , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
lowercase = TFAutoModel.from_pretrained(snake_case , revision='aaaaaa' )
def SCREAMING_SNAKE_CASE__ ( self ):
with self.assertRaisesRegex(
snake_case , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ):
lowercase = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' )
def SCREAMING_SNAKE_CASE__ ( self ):
with self.assertRaisesRegex(snake_case , 'Use `from_pt=True` to load this model' ):
lowercase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
def SCREAMING_SNAKE_CASE__ ( self ):
# Make sure we have cached the model.
lowercase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' )
with RequestCounter() as counter:
lowercase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
lowercase = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' )
with RequestCounter() as counter:
lowercase = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 84 | import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = DebertaVaTokenizer
UpperCAmelCase = DebertaVaTokenizerFast
UpperCAmelCase = True
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ):
_UpperCamelCase = '''this is a test'''
_UpperCamelCase = '''this is a test'''
return input_text, output_text
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(_A ) , 3_0001 )
def UpperCamelCase_ ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 )
def UpperCamelCase_ ( self : List[str] ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[Any] ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : int ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Tuple ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = tokenizer.encode(_A )
_UpperCamelCase = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''This is a test'''
_UpperCamelCase = [13, 1, 4398, 25, 21, 1289]
_UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
_UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = DebertaVaTokenizer(_A )
_UpperCamelCase = tokenizer.encode('''sequence builders''' )
_UpperCamelCase = tokenizer.encode('''multi-sequence build''' )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 10 | 0 |
from ....utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
class snake_case ( UpperCamelCase_ ):
def __init__( self : Tuple , a_ : str , a_ : str=None , a_ : int=2048 )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = config.__dict__
SCREAMING_SNAKE_CASE__ : List[str] = modal_hidden_size
if num_labels:
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_labels
| 85 | import sys
from collections import defaultdict
class lowerCAmelCase_ :
def __init__( self : Optional[int] ):
_UpperCamelCase = []
def UpperCamelCase_ ( self : Any , _A : str ):
return self.node_position[vertex]
def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ):
_UpperCamelCase = pos
def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_UpperCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_UpperCamelCase = 2 * start + 1
else:
_UpperCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
_UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child]
_UpperCamelCase , _UpperCamelCase = (
heap[start],
positions[start],
)
_UpperCamelCase , _UpperCamelCase = temp, tempa
_UpperCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _A )
self.top_to_bottom(_A , _A , _A , _A )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ):
_UpperCamelCase = position[index]
while index != 0:
_UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_UpperCamelCase = heap[parent]
_UpperCamelCase = position[parent]
self.set_position(position[parent] , _A )
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , _A )
break
_UpperCamelCase = parent
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , 0 )
def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ):
_UpperCamelCase = len(_A ) // 2 - 1
for i in range(_A , -1 , -1 ):
self.top_to_bottom(_A , _A , len(_A ) , _A )
def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ):
_UpperCamelCase = positions[0]
_UpperCamelCase = sys.maxsize
self.top_to_bottom(_A , 0 , len(_A ) , _A )
return temp
def _snake_case ( __snake_case ):
_UpperCamelCase = Heap()
_UpperCamelCase = [0] * len(__snake_case )
_UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
_UpperCamelCase = []
for vertex in range(len(__snake_case ) ):
distance_tv.append(sys.maxsize )
positions.append(__snake_case )
heap.node_position.append(__snake_case )
_UpperCamelCase = []
_UpperCamelCase = 1
_UpperCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_UpperCamelCase = 0
_UpperCamelCase = distance
heap.heapify(__snake_case , __snake_case )
for _ in range(1 , len(__snake_case ) ):
_UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_UpperCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__snake_case )]
):
_UpperCamelCase = distance
heap.bottom_to_top(
__snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case )
_UpperCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
_lowerCAmelCase = int(input("Enter number of edges: ").strip())
_lowerCAmelCase = defaultdict(list)
for _ in range(edges_number):
_lowerCAmelCase = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 10 | 0 |
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def __snake_case ( __UpperCamelCase : Dict[str, torch.Tensor] ):
"""simple docstring"""
A_ = []
A_ = []
A_ = []
for rt in rc.restypes:
A_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
A_ = {name: i for i, name in enumerate(__UpperCamelCase )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
A_ = torch.tensor(
__UpperCamelCase ,dtype=torch.intaa ,device=protein["aatype"].device ,)
A_ = torch.tensor(
__UpperCamelCase ,dtype=torch.intaa ,device=protein["aatype"].device ,)
A_ = torch.tensor(
__UpperCamelCase ,dtype=torch.floataa ,device=protein["aatype"].device ,)
A_ = protein["aatype"].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
A_ = restype_atomaa_to_atomaa[protein_aatype]
A_ = restype_atomaa_mask[protein_aatype]
A_ = residx_atomaa_mask
A_ = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
A_ = restype_atomaa_to_atomaa[protein_aatype]
A_ = residx_atomaa_to_atomaa.long()
# create the corresponding mask
A_ = torch.zeros([21, 37] ,dtype=torch.floataa ,device=protein["aatype"].device )
for restype, restype_letter in enumerate(rc.restypes ):
A_ = rc.restype_atoa[restype_letter]
A_ = rc.residue_atoms[restype_name]
for atom_name in atom_names:
A_ = rc.atom_order[atom_name]
A_ = 1
A_ = restype_atomaa_mask[protein_aatype]
A_ = residx_atomaa_mask
return protein
def __snake_case ( __UpperCamelCase : Dict[str, torch.Tensor] ):
"""simple docstring"""
A_ = tree_map(lambda __UpperCamelCase : torch.tensor(__UpperCamelCase ,device=batch["aatype"].device ) ,__UpperCamelCase ,np.ndarray )
A_ = tensor_tree_map(lambda __UpperCamelCase : np.array(__UpperCamelCase ) ,make_atomaa_masks(__UpperCamelCase ) )
return out | 86 | import logging
import os
from .state import PartialState
class lowerCAmelCase_ ( logging.LoggerAdapter ):
@staticmethod
def UpperCamelCase_ ( _A : Any ):
_UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ):
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCamelCase = kwargs.pop('''main_process_only''' , _A )
_UpperCamelCase = kwargs.pop('''in_order''' , _A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
elif in_order:
_UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
state.wait_for_everyone()
def _snake_case ( __snake_case , __snake_case = None ):
if log_level is None:
_UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case )
_UpperCamelCase = logging.getLogger(__snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__snake_case , {} )
| 10 | 0 |
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_lowerCamelCase : Tuple = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : str , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__)
requires_backends(self , '''decord''')
self.check_model_type(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=None) ->Dict:
'''simple docstring'''
A__ = {}
if frame_sampling_rate is not None:
A__ = frame_sampling_rate
if num_frames is not None:
A__ = num_frames
A__ = {}
if top_k is not None:
A__ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : str , UpperCAmelCase__ : Union[str, List[str]] , **UpperCAmelCase__ : Optional[int]) ->Dict:
'''simple docstring'''
return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=1) ->Any:
'''simple docstring'''
if num_frames is None:
A__ = self.model.config.num_frames
if video.startswith('''http://''') or video.startswith('''https://'''):
A__ = BytesIO(requests.get(UpperCAmelCase__).content)
A__ = VideoReader(UpperCAmelCase__)
videoreader.seek(0)
A__ = 0
A__ = num_frames * frame_sampling_rate - 1
A__ = np.linspace(UpperCAmelCase__ , UpperCAmelCase__ , num=UpperCAmelCase__ , dtype=np.intaa)
A__ = videoreader.get_batch(UpperCAmelCase__).asnumpy()
A__ = list(UpperCAmelCase__)
A__ = self.image_processor(UpperCAmelCase__ , return_tensors=self.framework)
return model_inputs
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Dict) ->int:
'''simple docstring'''
A__ = self.model(**UpperCAmelCase__)
return model_outputs
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=5) ->Optional[int]:
'''simple docstring'''
if top_k > self.model.config.num_labels:
A__ = self.model.config.num_labels
if self.framework == "pt":
A__ = model_outputs.logits.softmax(-1)[0]
A__ , A__ = probs.topk(UpperCAmelCase__)
else:
raise ValueError(f"""Unsupported framework: {self.framework}""")
A__ = scores.tolist()
A__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase__ , UpperCAmelCase__)]
| 87 | import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = "▁"
_lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = BertGenerationTokenizer
UpperCAmelCase = False
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[str] ):
super().setUp()
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''<s>'''
_UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(_A ) , 1002 )
def UpperCamelCase_ ( self : Dict ):
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def UpperCamelCase_ ( self : Union[str, Any] ):
return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''Hello World!'''
_UpperCamelCase = [1_8536, 2260, 101]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
_UpperCamelCase = [
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
3_4324,
497,
391,
408,
1_1342,
1244,
385,
100,
938,
985,
456,
574,
362,
1_2597,
3200,
3129,
1172,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def UpperCamelCase_ ( self : Dict ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10]
_UpperCamelCase = ''' '''.join(_A )
_UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = self.big_tokenizer.batch_encode_plus(
[sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = BertGenerationConfig()
_UpperCamelCase = BertGenerationEncoder(_A )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
| 10 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class lowercase__ :
def __init__( self , SCREAMING_SNAKE_CASE , ) -> Dict:
_lowerCamelCase : int = parent
_lowerCamelCase : Union[str, Any] = 13
_lowerCamelCase : List[str] = 7
_lowerCamelCase : Optional[int] = True
_lowerCamelCase : Dict = True
_lowerCamelCase : Any = False
_lowerCamelCase : List[Any] = True
_lowerCamelCase : Tuple = 99
_lowerCamelCase : Optional[Any] = 32
_lowerCamelCase : int = 2
_lowerCamelCase : Dict = 4
_lowerCamelCase : List[Any] = 37
_lowerCamelCase : Optional[int] = """gelu"""
_lowerCamelCase : str = 0.1
_lowerCamelCase : Optional[Any] = 0.1
_lowerCamelCase : int = 512
_lowerCamelCase : Optional[Any] = 16
_lowerCamelCase : Tuple = 2
_lowerCamelCase : str = 0.02
_lowerCamelCase : int = 3
_lowerCamelCase : Optional[int] = 4
_lowerCamelCase : Union[str, Any] = None
def UpperCamelCase_ ( self) -> Optional[Any]:
_lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_lowerCamelCase : List[str] = None
if self.use_input_mask:
_lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length])
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : Any = None
if self.use_labels:
_lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
_lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices)
_lowerCamelCase : Optional[int] = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]:
_lowerCamelCase : List[Any] = TFDistilBertModel(config=SCREAMING_SNAKE_CASE)
_lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
_lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE)
_lowerCamelCase : int = [input_ids, input_mask]
_lowerCamelCase : int = model(SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[Any]:
_lowerCamelCase : List[str] = TFDistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE)
_lowerCamelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
_lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> int:
_lowerCamelCase : str = TFDistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE)
_lowerCamelCase : Union[str, Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
}
_lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Optional[int]:
_lowerCamelCase : Optional[Any] = self.num_labels
_lowerCamelCase : Any = TFDistilBertForSequenceClassification(SCREAMING_SNAKE_CASE)
_lowerCamelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
_lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str:
_lowerCamelCase : Dict = self.num_choices
_lowerCamelCase : int = TFDistilBertForMultipleChoice(SCREAMING_SNAKE_CASE)
_lowerCamelCase : List[str] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1) , (1, self.num_choices, 1))
_lowerCamelCase : List[str] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1) , (1, self.num_choices, 1))
_lowerCamelCase : Tuple = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
}
_lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> int:
_lowerCamelCase : str = self.num_labels
_lowerCamelCase : int = TFDistilBertForTokenClassification(SCREAMING_SNAKE_CASE)
_lowerCamelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask}
_lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCamelCase_ ( self) -> List[str]:
_lowerCamelCase : int = self.prepare_config_and_inputs()
((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) : List[str] = config_and_inputs
_lowerCamelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowercase__ ( A_ ,A_ ,unittest.TestCase ):
__UpperCAmelCase = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__UpperCAmelCase = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
def UpperCamelCase_ ( self) -> List[str]:
_lowerCamelCase : str = TFDistilBertModelTester(self)
_lowerCamelCase : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , dim=37)
def UpperCamelCase_ ( self) -> List[Any]:
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self) -> str:
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> str:
_lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Dict:
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> int:
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Dict:
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> List[Any]:
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE)
@slow
def UpperCamelCase_ ( self) -> List[str]:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]):
_lowerCamelCase : Tuple = TFDistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE)
self.assertIsNotNone(SCREAMING_SNAKE_CASE)
@require_tf
class lowercase__ ( unittest.TestCase ):
@slow
def UpperCamelCase_ ( self) -> List[Any]:
_lowerCamelCase : Union[str, Any] = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""")
_lowerCamelCase : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]])
_lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE)[0]
_lowerCamelCase : str = [1, 6, 768]
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE)
_lowerCamelCase : List[str] = tf.constant(
[
[
[0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99],
[0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04],
[0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67],
]
])
tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)
| 88 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = StableUnCLIPPipeline
UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
UpperCAmelCase = False
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = 32
_UpperCamelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , )
torch.manual_seed(0 )
_UpperCamelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
_UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A )
_UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , )
torch.manual_seed(0 )
_UpperCamelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCamelCase = AutoencoderKL()
_UpperCamelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_A )
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_A )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
_UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' )
_UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_A , _A )
def UpperCamelCase_ ( self : Optional[Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
_UpperCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 10 | 0 |
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def UpperCamelCase_( lowerCamelCase_ ) -> Tuple:
if "cls_token" in name:
_lowercase : int = name.replace('cls_token' , 'vit.embeddings.cls_token' )
if "mask_token" in name:
_lowercase : List[str] = name.replace('mask_token' , 'decoder.mask_token' )
if "decoder_pos_embed" in name:
_lowercase : int = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' )
if "pos_embed" in name and "decoder" not in name:
_lowercase : int = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' )
if "patch_embed.proj" in name:
_lowercase : List[Any] = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
_lowercase : Optional[int] = name.replace('patch_embed.norm' , 'vit.embeddings.norm' )
if "decoder_blocks" in name:
_lowercase : Optional[Any] = name.replace('decoder_blocks' , 'decoder.decoder_layers' )
if "blocks" in name:
_lowercase : Optional[int] = name.replace('blocks' , 'vit.encoder.layer' )
if "attn.proj" in name:
_lowercase : Dict = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
_lowercase : Any = name.replace('attn' , 'attention.self' )
if "norm1" in name:
_lowercase : str = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
_lowercase : int = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : List[str] = name.replace('mlp.fc2' , 'output.dense' )
if "decoder_embed" in name:
_lowercase : Any = name.replace('decoder_embed' , 'decoder.decoder_embed' )
if "decoder_norm" in name:
_lowercase : Dict = name.replace('decoder_norm' , 'decoder.decoder_norm' )
if "decoder_pred" in name:
_lowercase : List[Any] = name.replace('decoder_pred' , 'decoder.decoder_pred' )
if "norm.weight" in name and "decoder" not in name:
_lowercase : str = name.replace('norm.weight' , 'vit.layernorm.weight' )
if "norm.bias" in name and "decoder" not in name:
_lowercase : Tuple = name.replace('norm.bias' , 'vit.layernorm.bias' )
return name
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]:
for key in orig_state_dict.copy().keys():
_lowercase : List[Any] = orig_state_dict.pop(lowerCamelCase_ )
if "qkv" in key:
_lowercase : Dict = key.split('.' )
_lowercase : Any = int(key_split[1] )
if "decoder_blocks" in key:
_lowercase : int = config.decoder_hidden_size
_lowercase : Any = 'decoder.decoder_layers.'
if "weight" in key:
_lowercase : str = val[:dim, :]
_lowercase : int = val[dim : dim * 2, :]
_lowercase : int = val[-dim:, :]
elif "bias" in key:
_lowercase : Optional[int] = val[:dim]
_lowercase : Union[str, Any] = val[dim : dim * 2]
_lowercase : str = val[-dim:]
else:
_lowercase : Any = config.hidden_size
_lowercase : Union[str, Any] = 'vit.encoder.layer.'
if "weight" in key:
_lowercase : Tuple = val[:dim, :]
_lowercase : Union[str, Any] = val[dim : dim * 2, :]
_lowercase : Dict = val[-dim:, :]
elif "bias" in key:
_lowercase : int = val[:dim]
_lowercase : Tuple = val[dim : dim * 2]
_lowercase : Tuple = val[-dim:]
else:
_lowercase : str = val
return orig_state_dict
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str:
_lowercase : str = ViTMAEConfig()
if "large" in checkpoint_url:
_lowercase : Dict = 1024
_lowercase : List[str] = 4096
_lowercase : str = 24
_lowercase : Optional[Any] = 16
elif "huge" in checkpoint_url:
_lowercase : int = 14
_lowercase : Union[str, Any] = 1280
_lowercase : Union[str, Any] = 5120
_lowercase : Tuple = 32
_lowercase : Optional[Any] = 16
_lowercase : Union[str, Any] = ViTMAEForPreTraining(lowerCamelCase_ )
_lowercase : Dict = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['model']
_lowercase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size )
_lowercase : Optional[Any] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
model.eval()
_lowercase : Optional[Any] = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg'
_lowercase : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw )
_lowercase : List[str] = ViTMAEImageProcessor(size=config.image_size )
_lowercase : str = image_processor(images=lowerCamelCase_ , return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
_lowercase : str = model(**lowerCamelCase_ )
_lowercase : Optional[int] = outputs.logits
if "large" in checkpoint_url:
_lowercase : Union[str, Any] = torch.tensor(
[[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] )
elif "huge" in checkpoint_url:
_lowercase : Any = torch.tensor(
[[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] )
else:
_lowercase : Optional[int] = torch.tensor(
[[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
SCREAMING_SNAKE_CASE : Dict = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 89 | from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _snake_case ( __snake_case , __snake_case ):
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) )
def _snake_case ( __snake_case , __snake_case ):
if dataset.ndim != value_array.ndim:
_UpperCamelCase = (
'''Wrong input data\'s dimensions... '''
f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(__snake_case )
try:
if dataset.shape[1] != value_array.shape[1]:
_UpperCamelCase = (
'''Wrong input data\'s shape... '''
f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(__snake_case )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
_UpperCamelCase = (
'''Input data have different datatype... '''
f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(__snake_case )
_UpperCamelCase = []
for value in value_array:
_UpperCamelCase = euclidean(__snake_case , dataset[0] )
_UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
_UpperCamelCase = euclidean(__snake_case , __snake_case )
if dist > temp_dist:
_UpperCamelCase = temp_dist
_UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _snake_case ( __snake_case , __snake_case ):
return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 0 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
__UpperCAmelCase = logging.getLogger()
def _snake_case ( ) -> int:
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('''-f''' )
lowerCAmelCase__ = parser.parse_args()
return args.f
def _snake_case ( A ) -> Tuple:
lowerCAmelCase__ = {}
lowerCAmelCase__ = os.path.join(A , '''all_results.json''' )
if os.path.exists(A ):
with open(A , '''r''' ) as f:
lowerCAmelCase__ = json.load(A )
else:
raise ValueError(F"""can't find {path}""" )
return results
def _snake_case ( ) -> Any:
lowerCAmelCase__ = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
__UpperCAmelCase = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class a__ ( a__ ):
'''simple docstring'''
@classmethod
def __SCREAMING_SNAKE_CASE ( cls ) -> Any:
# Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
lowerCAmelCase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def __SCREAMING_SNAKE_CASE ( cls ) -> Tuple:
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
self.assertLess(result['''perplexity'''] , 1_00 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> Any:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
lowerCAmelCase__ = 7 if get_gpu_count() > 1 else 2
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> int:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''translation_no_trainer''' ) ) )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
lowerCAmelCase__ = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCamelCase_ )
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
lowerCAmelCase__ = get_results(lowerCamelCase_ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''image_classification_no_trainer''' ) ) ) | 90 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = ShapEPipeline
UpperCAmelCase = ["prompt"]
UpperCAmelCase = ["prompt"]
UpperCAmelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
UpperCAmelCase = False
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
return 32
@property
def UpperCamelCase_ ( self : int ):
return 32
@property
def UpperCamelCase_ ( self : List[str] ):
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 8
@property
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def UpperCamelCase_ ( self : List[Any] ):
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(_A )
@property
def UpperCamelCase_ ( self : int ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
_UpperCamelCase = PriorTransformer(**_A )
return model
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
_UpperCamelCase = ShapERenderer(**_A )
return model
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.dummy_prior
_UpperCamelCase = self.dummy_text_encoder
_UpperCamelCase = self.dummy_tokenizer
_UpperCamelCase = self.dummy_renderer
_UpperCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , )
_UpperCamelCase = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = '''cpu'''
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) )
_UpperCamelCase = output.images[0]
_UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
_UpperCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase_ ( self : Any ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = torch_device == '''cpu'''
_UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_A , relax_max_difference=_A , )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = 1
_UpperCamelCase = 2
_UpperCamelCase = self.get_dummy_inputs(_A )
for key in inputs.keys():
if key in self.batch_params:
_UpperCamelCase = batch_size * [inputs[key]]
_UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
_UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 )
_UpperCamelCase = pipe(
'''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_A , _A )
| 10 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
_lowercase = logging.get_logger(__name__)
_lowercase = '''Hello, World!'''
_lowercase = '''en_XX'''
def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : bool ):
A = Path('data_bin' )
A = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(snake_case__ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(snake_case__ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(snake_case__ )
A = xmod.model.encoder.sentence_encoder
A = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
A = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , snake_case__ )
A = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ )
model.eval()
# Now let's copy all the weights.
# Embeddings
A = xmod_sent_encoder.embed_tokens.weight
A = xmod_sent_encoder.embed_positions.weight
A = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
A = xmod_sent_encoder.layernorm_embedding.weight
A = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
A = model.roberta.encoder.layer[i]
A = xmod_sent_encoder.layers[i]
# self attention
A = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
A = xmod_layer.self_attn.q_proj.weight
A = xmod_layer.self_attn.q_proj.bias
A = xmod_layer.self_attn.k_proj.weight
A = xmod_layer.self_attn.k_proj.bias
A = xmod_layer.self_attn.v_proj.weight
A = xmod_layer.self_attn.v_proj.bias
# self-attention output
A = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
A = xmod_layer.self_attn.out_proj.weight
A = xmod_layer.self_attn.out_proj.bias
A = xmod_layer.self_attn_layer_norm.weight
A = xmod_layer.self_attn_layer_norm.bias
# intermediate
A = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
A = xmod_layer.fca.weight
A = xmod_layer.fca.bias
# output
A = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
A = xmod_layer.fca.weight
A = xmod_layer.fca.bias
A = xmod_layer.final_layer_norm.weight
A = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
A = xmod_layer.adapter_layer_norm.weight
A = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
A = bert_output.adapter_modules[lang_code]
A = xmod_layer.adapter_modules[lang_code]
A = from_adapter.fca.weight
A = from_adapter.fca.bias
A = from_adapter.fca.weight
A = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
A = xmod_sent_encoder.layer_norm.weight
A = xmod_sent_encoder.layer_norm.bias
if classification_head:
A = xmod.model.classification_heads['mnli'].dense.weight
A = xmod.model.classification_heads['mnli'].dense.bias
A = xmod.model.classification_heads['mnli'].out_proj.weight
A = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
A = xmod.model.encoder.lm_head.dense.weight
A = xmod.model.encoder.lm_head.dense.bias
A = xmod.model.encoder.lm_head.layer_norm.weight
A = xmod.model.encoder.lm_head.layer_norm.bias
A = xmod.model.encoder.lm_head.weight
A = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
A = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(snake_case__ )
A = model(snake_case__ )[0]
if classification_head:
A = xmod.model.classification_heads['mnli'](xmod.extract_features(snake_case__ ) )
else:
A = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
A = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7
A = torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
_lowercase = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
) | 91 | import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_lowerCAmelCase = HfApi()
_lowerCAmelCase = {}
# fmt: off
_lowerCAmelCase = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
_lowerCAmelCase = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
_lowerCAmelCase = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
_lowerCAmelCase = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
_lowerCAmelCase = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
_lowerCAmelCase = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
_lowerCAmelCase = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
_lowerCAmelCase = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
_lowerCAmelCase = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
_lowerCAmelCase = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
_lowerCAmelCase = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
_lowerCAmelCase = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
_lowerCAmelCase = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
_lowerCAmelCase = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
_lowerCAmelCase = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
_lowerCAmelCase = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f'Started running {mod.modelId}!!!')
if mod.modelId.startswith("CompVis"):
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_lowerCAmelCase = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_lowerCAmelCase = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3
)
print(f'{mod.modelId} has passed successfully!!!')
| 10 | 0 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def _lowerCAmelCase ( __magic_name__ : str = "https://www.worldometers.info/coronavirus" ) -> dict:
lowercase : List[Any] =BeautifulSoup(requests.get(__magic_name__ ).text , '''html.parser''' )
lowercase : Tuple =soup.findAll('''h1''' )
lowercase : int =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} )
keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} )
values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} )
return {key.text.strip(): value.text.strip() for key, value in zip(__magic_name__ , __magic_name__ )}
if __name__ == "__main__":
print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""")
for key, value in world_covidaa_stats().items():
print(f'''{key}\n{value}\n''')
| 92 | from typing import List
from .keymap import KEYMAP, get_character
def _snake_case ( __snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += [key]
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
def _snake_case ( *__snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += keys
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
class lowerCAmelCase_ ( __lowercase ):
def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ):
_UpperCamelCase = super().__new__(cls , _A , _A , _A )
if not hasattr(_A , '''key_handler''' ):
setattr(_A , '''key_handler''' , {} )
setattr(_A , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCamelCase = getattr(_A , '''handle_key''' , [] )
for key in handled_keys:
_UpperCamelCase = value
return new_cls
@staticmethod
def UpperCamelCase_ ( cls : str ):
_UpperCamelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCamelCase = ord(_A )
_UpperCamelCase = cls.key_handler.get(_A )
if handler:
_UpperCamelCase = char
return handler(cls )
else:
return None
def _snake_case ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 10 | 0 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
__A = {"""UserAgent""": UserAgent().random}
def __A (_SCREAMING_SNAKE_CASE ) ->dict:
"""simple docstring"""
lowerCAmelCase__ :Dict = script.contents[0]
lowerCAmelCase__ :Optional[Any] = json.loads(data[data.find('{"config"' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = F"https://www.instagram.com/{username}/"
lowerCAmelCase__ :Dict = self.get_json()
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = requests.get(self.url , headers=__UpperCAmelCase ).text
lowerCAmelCase__ :Union[str, Any] = BeautifulSoup(__UpperCAmelCase , 'html.parser' ).find_all('script' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
'''simple docstring'''
return F"{self.__class__.__name__}('{self.username}')"
def __str__( self ):
'''simple docstring'''
return F"{self.fullname} ({self.username}) is {self.biography}"
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["username"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["full_name"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["biography"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["business_email"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["external_url"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["edge_followed_by"]["count"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["edge_follow"]["count"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["profile_pic_url_hd"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["is_verified"]
@property
def snake_case ( self ):
'''simple docstring'''
return self.user_data["is_private"]
def __A (_SCREAMING_SNAKE_CASE = "github" ) ->None:
"""simple docstring"""
import os
if os.environ.get('CI' ):
return # test failing on GitHub Actions
lowerCAmelCase__ :Dict = InstagramUser(_SCREAMING_SNAKE_CASE )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 12_0000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('https://instagram.' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = InstagramUser("""github""")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 93 | import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class lowerCAmelCase_ ( unittest.TestCase ):
UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
_A , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A )
self.assertEqual(
_A , [
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
] , )
_UpperCamelCase = text_generator.model.config.eos_token_id
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , )
self.assertEqual(
_A , [
[
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
],
[
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
],
] , )
@require_tf
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A )
self.assertEqual(
_A , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ):
_UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A )
return text_generator, ["This is a test", "Another test"]
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = '''Hello I believe in'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
_UpperCamelCase = text_generator(_A )
self.assertEqual(
_A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
_UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' )
self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] )
def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ):
_UpperCamelCase = text_generator.model
_UpperCamelCase = text_generator.tokenizer
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A )
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A )
self.assertEqual(
_A , [
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
] , )
if text_generator.tokenizer.pad_token is not None:
_UpperCamelCase = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A )
self.assertEqual(
_A , [
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
] , )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
_UpperCamelCase = text_generator('''''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
_UpperCamelCase = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
_UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_0000
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 500 , max_new_tokens=20 )
_UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(_A ):
text_generator(
'''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : Optional[int] ):
import torch
# Classic `model_kwargs`
_UpperCamelCase = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def UpperCamelCase_ ( self : Union[str, Any] ):
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : Optional[int] ):
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=_A , top_p=0.5 )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = '''Hello world'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
_UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' )
else:
_UpperCamelCase = logging.get_logger('''transformers.generation.utils''' )
_UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 )
self.assertIn(_A , cl.out )
# The user only sets one -> no warning
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_new_tokens=1 )
self.assertNotIn(_A , cl.out )
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_length=10 )
self.assertNotIn(_A , cl.out )
| 10 | 0 |
'''simple docstring'''
import os
from collections.abc import Iterator
def lowercase_ ( __A : str = "." ) -> Iterator[str]:
"""simple docstring"""
for dir_path, dir_names, filenames in os.walk(__A ):
lowercase : List[Any] =[d for d in dir_names if d != '''scripts''' and d[0] not in '''._''']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(__A )[1] in (".py", ".ipynb"):
yield os.path.join(__A , __A ).lstrip('''./''' )
def lowercase_ ( __A : Dict ) -> int:
"""simple docstring"""
return F'{i * " "}*' if i else "\n##"
def lowercase_ ( __A : str , __A : str ) -> str:
"""simple docstring"""
lowercase : Any =old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(__A ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(__A )} {new_part.replace("_" , " " ).title()}' )
return new_path
def lowercase_ ( __A : str = "." ) -> None:
"""simple docstring"""
lowercase : List[str] =''''''
for filepath in sorted(good_file_paths(__A ) ):
lowercase , lowercase : List[Any] =os.path.split(__A )
if filepath != old_path:
lowercase : List[str] =print_path(__A , __A )
lowercase : List[Any] =(filepath.count(os.sep ) + 1) if filepath else 0
lowercase : str =F'{filepath}/{filename}'.replace(''' ''' , '''%20''' )
lowercase : List[str] =os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0]
print(F'{md_prefix(__A )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md('.')
| 94 | def _snake_case ( __snake_case = 100 ):
_UpperCamelCase = (n * (n + 1) // 2) ** 2
_UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 0 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowerCamelCase_ = {
'''cola''': 2,
'''mnli''': 3,
'''mrpc''': 2,
'''sst-2''': 2,
'''sts-b''': 1,
'''qqp''': 2,
'''qnli''': 2,
'''rte''': 2,
'''wnli''': 2,
}
logging.set_verbosity_info()
def snake_case ( A__ ,A__ ,A__ ,A__=None ):
# Initialise PyTorch model
UpperCAmelCase_ : List[Any] = XLNetConfig.from_json_file(A__ )
UpperCAmelCase_ : str = finetuning_task.lower() if finetuning_task is not None else ""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
UpperCAmelCase_ : List[Any] = finetuning_task
UpperCAmelCase_ : Tuple = GLUE_TASKS_NUM_LABELS[finetuning_task]
UpperCAmelCase_ : List[Any] = XLNetForSequenceClassification(A__ )
elif "squad" in finetuning_task:
UpperCAmelCase_ : List[str] = finetuning_task
UpperCAmelCase_ : int = XLNetForQuestionAnswering(A__ )
else:
UpperCAmelCase_ : Union[str, Any] = XLNetLMHeadModel(A__ )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(A__ ,A__ ,A__ )
# Save pytorch-model
UpperCAmelCase_ : Dict = os.path.join(A__ ,A__ )
UpperCAmelCase_ : int = os.path.join(A__ ,A__ )
print(F"""Save PyTorch model to {os.path.abspath(A__ )}""" )
torch.save(model.state_dict() ,A__ )
print(F"""Save configuration file to {os.path.abspath(A__ )}""" )
with open(A__ ,"w" ,encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--xlnet_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained XLNet model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the folder to store the PyTorch model or dataset/vocab.''',
)
parser.add_argument(
'''--finetuning_task''',
default=None,
type=str,
help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''',
)
lowerCamelCase_ = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 95 | import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
_lowerCAmelCase = logging.get_logger(__name__)
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ):
def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ):
_UpperCamelCase = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
_UpperCamelCase = math.floor(val / multiple ) * multiple
if x < min_val:
_UpperCamelCase = math.ceil(val / multiple ) * multiple
return x
_UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size
_UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case )
_UpperCamelCase , _UpperCamelCase = output_size
# determine new height and width
_UpperCamelCase = output_height / input_height
_UpperCamelCase = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
_UpperCamelCase = scale_width
else:
# fit height
_UpperCamelCase = scale_height
_UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case )
_UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case )
return (new_height, new_width)
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = ["pixel_values"]
def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ):
super().__init__(**_A )
_UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384}
_UpperCamelCase = get_size_dict(_A )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = keep_aspect_ratio
_UpperCamelCase = ensure_multiple_of
_UpperCamelCase = resample
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
_UpperCamelCase = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(
_A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , )
return resize(_A , size=_A , resample=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ):
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(_A )
_UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
_UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(_A ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=_A , tensor_type=_A )
def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ):
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_A ) != len(_A ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(_A ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(_A ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_A )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 10 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__lowerCamelCase = {
'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'],
'tokenization_ctrl': ['CTRLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST',
'CTRLForSequenceClassification',
'CTRLLMHeadModel',
'CTRLModel',
'CTRLPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFCTRLForSequenceClassification',
'TFCTRLLMHeadModel',
'TFCTRLModel',
'TFCTRLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 96 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
_UpperCamelCase = self.diffusers_dir
shutil.copy(
os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ):
_UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_UpperCamelCase = black.format_str(_A , mode=_A )
_UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(_A , '''w''' , newline='''\n''' ) as f:
f.write(_A )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_A )
with open(_A , '''r''' ) as f:
self.assertTrue(f.read() , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
# Base copy consistency
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , )
# Copy consistency with a really long name
_UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
| 10 | 0 |
def a ( snake_case__: str , snake_case__: str = " " ):
'''simple docstring'''
lowercase_ = []
lowercase_ = 0
for index, char in enumerate(snake_case__ ):
if char == separator:
split_words.append(string[last_index:index] )
lowercase_ = index + 1
elif index + 1 == len(snake_case__ ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 97 | import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_lowerCAmelCase = True
from torch.cuda.amp import autocast
_lowerCAmelCase = logging.getLogger(__name__)
def _snake_case ( __snake_case=None , __snake_case=None ):
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} )
UpperCAmelCase = field(
default=0.1, metadata={
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."
}, )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, )
UpperCAmelCase = field(
default=0.0_5, metadata={
"help": (
"Propability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
)
}, )
UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
UpperCAmelCase = field(
default="train+validation", metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
}, )
UpperCAmelCase = list_field(
default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = 42
UpperCAmelCase = True
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ):
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
_UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features]
_UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features]
_UpperCamelCase = self.processor.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
_UpperCamelCase = self.processor.pad(
labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , )
# replace padding with -100 to ignore loss correctly
_UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 )
_UpperCamelCase = labels
return batch
class lowerCAmelCase_ ( __lowercase ):
def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ):
model.train()
_UpperCamelCase = self._prepare_inputs(_A )
if self.use_amp:
with autocast():
_UpperCamelCase = self.compute_loss(_A , _A )
else:
_UpperCamelCase = self.compute_loss(_A , _A )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
_UpperCamelCase = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
_UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum()
else:
raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" )
if self.args.gradient_accumulation_steps > 1:
_UpperCamelCase = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(_A ).backward()
elif self.use_apex:
with amp.scale_loss(_A , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(_A )
else:
loss.backward()
return loss.detach()
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
_UpperCamelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCamelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
_UpperCamelCase = datasets.load_dataset(
'''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name )
_UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' )
# Create and save tokenizer
_UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]"""
def remove_special_characters(__snake_case ):
_UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' '''
return batch
_UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] )
_UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] )
def extract_all_chars(__snake_case ):
_UpperCamelCase = ''' '''.join(batch['''text'''] )
_UpperCamelCase = list(set(__snake_case ) )
return {"vocab": [vocab], "all_text": [all_text]}
_UpperCamelCase = train_dataset.map(
__snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , )
_UpperCamelCase = train_dataset.map(
__snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , )
_UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) )
_UpperCamelCase = {v: k for k, v in enumerate(__snake_case )}
_UpperCamelCase = vocab_dict[''' ''']
del vocab_dict[" "]
_UpperCamelCase = len(__snake_case )
_UpperCamelCase = len(__snake_case )
with open('''vocab.json''' , '''w''' ) as vocab_file:
json.dump(__snake_case , __snake_case )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCamelCase = WavaVecaCTCTokenizer(
'''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , )
_UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case )
_UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case )
_UpperCamelCase = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
_UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples )
_UpperCamelCase = train_dataset.select(range(__snake_case ) )
if data_args.max_val_samples is not None:
_UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) )
_UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(__snake_case ):
_UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] )
_UpperCamelCase = resampler(__snake_case ).squeeze().numpy()
_UpperCamelCase = 16000
_UpperCamelCase = batch['''text''']
return batch
_UpperCamelCase = train_dataset.map(
__snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
_UpperCamelCase = eval_dataset.map(
__snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(__snake_case ):
# check that all files have the correct sampling rate
assert (
len(set(batch['''sampling_rate'''] ) ) == 1
), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."""
_UpperCamelCase = processor(
audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] )
batch.update(__snake_case )
return batch
_UpperCamelCase = train_dataset.map(
__snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , )
_UpperCamelCase = eval_dataset.map(
__snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , )
# Metric
_UpperCamelCase = datasets.load_metric('''wer''' )
def compute_metrics(__snake_case ):
_UpperCamelCase = pred.predictions
_UpperCamelCase = np.argmax(__snake_case , axis=-1 )
_UpperCamelCase = processor.tokenizer.pad_token_id
_UpperCamelCase = processor.batch_decode(__snake_case )
# we do not want to group tokens when computing the metrics
_UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case )
_UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
_UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case )
# Initialize our Trainer
_UpperCamelCase = CTCTrainer(
model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
_UpperCamelCase = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
_UpperCamelCase = model_args.model_name_or_path
else:
_UpperCamelCase = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
_UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case )
trainer.save_model()
_UpperCamelCase = train_result.metrics
_UpperCamelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case )
)
_UpperCamelCase = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('''train''' , __snake_case )
trainer.save_metrics('''train''' , __snake_case )
trainer.save_state()
# Evaluation
_UpperCamelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCamelCase = trainer.evaluate()
_UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case )
_UpperCamelCase = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('''eval''' , __snake_case )
trainer.save_metrics('''eval''' , __snake_case )
return results
if __name__ == "__main__":
main()
| 10 | 0 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
lowercase__ : Optional[Any] = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Optional[int] ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = [label.strip() for label in labels.split(''',''' ) if label.strip()]
return labels
def __call__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> List[Any]:
'''simple docstring'''
if len(lowerCAmelCase__ ) == 0 or len(lowerCAmelCase__ ) == 0:
raise ValueError('''You must include at least one label and at least one sequence.''' )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
'''The provided hypothesis_template "{}" was not able to be formatted with the target labels. '''
'''Make sure the passed template includes formatting syntax such as {{}} where the label should go.'''
).format(lowerCAmelCase__ ) )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = [sequences]
_UpperCamelCase = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCAmelCase__ )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : List[Any]=ZeroShotClassificationArgumentHandler() , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = args_parser
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
if self.entailment_id == -1:
logger.warning(
'''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to '''
'''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' )
@property
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith('''entail''' ):
return ind
return -1
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Optional[int]=TruncationStrategy.ONLY_FIRST , **lowerCAmelCase__ : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
'''Tokenizer was not supporting padding necessary for zero-shot, attempting to use '''
''' `pad_token=eos_token`''' )
_UpperCamelCase = self.tokenizer.eos_token
try:
_UpperCamelCase = self.tokenizer(
lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )
except Exception as e:
if "too short" in str(lowerCAmelCase__ ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
_UpperCamelCase = self.tokenizer(
lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def snake_case__ ( self : List[Any] , **lowerCAmelCase__ : Optional[int] ) -> List[str]:
'''simple docstring'''
if kwargs.get('''multi_class''' , lowerCAmelCase__ ) is not None:
_UpperCamelCase = kwargs['''multi_class''']
logger.warning(
'''The `multi_class` argument has been deprecated and renamed to `multi_label`. '''
'''`multi_class` will be removed in a future version of Transformers.''' )
_UpperCamelCase = {}
if "candidate_labels" in kwargs:
_UpperCamelCase = self._args_parser._parse_labels(kwargs['''candidate_labels'''] )
if "hypothesis_template" in kwargs:
_UpperCamelCase = kwargs['''hypothesis_template''']
_UpperCamelCase = {}
if "multi_label" in kwargs:
_UpperCamelCase = kwargs['''multi_label''']
return preprocess_params, {}, postprocess_params
def __call__( self : List[Any] , lowerCAmelCase__ : Union[str, List[str]] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Dict , ) -> Union[str, Any]:
'''simple docstring'''
if len(lowerCAmelCase__ ) == 0:
pass
elif len(lowerCAmelCase__ ) == 1 and "candidate_labels" not in kwargs:
_UpperCamelCase = args[0]
else:
raise ValueError(f"""Unable to understand extra arguments {args}""" )
return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[int]="This example is {}." ) -> Tuple:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self._args_parser(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ):
_UpperCamelCase = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(lowerCAmelCase__ ) - 1,
**model_input,
}
def snake_case__ ( self : str , lowerCAmelCase__ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = inputs['''candidate_label''']
_UpperCamelCase = inputs['''sequence''']
_UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names}
_UpperCamelCase = self.model(**lowerCAmelCase__ )
_UpperCamelCase = {
'''candidate_label''': candidate_label,
'''sequence''': sequence,
'''is_last''': inputs['''is_last'''],
**outputs,
}
return model_outputs
def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple=False ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = [outputs['''candidate_label'''] for outputs in model_outputs]
_UpperCamelCase = [outputs['''sequence'''] for outputs in model_outputs]
_UpperCamelCase = np.concatenate([output['''logits'''].numpy() for output in model_outputs] )
_UpperCamelCase = logits.shape[0]
_UpperCamelCase = len(lowerCAmelCase__ )
_UpperCamelCase = N // n
_UpperCamelCase = logits.reshape((num_sequences, n, -1) )
if multi_label or len(lowerCAmelCase__ ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
_UpperCamelCase = self.entailment_id
_UpperCamelCase = -1 if entailment_id == 0 else 0
_UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]]
_UpperCamelCase = np.exp(lowerCAmelCase__ ) / np.exp(lowerCAmelCase__ ).sum(-1 , keepdims=lowerCAmelCase__ )
_UpperCamelCase = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
_UpperCamelCase = reshaped_outputs[..., self.entailment_id]
_UpperCamelCase = np.exp(lowerCAmelCase__ ) / np.exp(lowerCAmelCase__ ).sum(-1 , keepdims=lowerCAmelCase__ )
_UpperCamelCase = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 98 | import math
class lowerCAmelCase_ :
def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1
_UpperCamelCase = n
_UpperCamelCase = [
[math.inf for j in range(0 , _A )] for i in range(0 , _A )
] # adjacency matrix for weight
_UpperCamelCase = [
[math.inf for j in range(0 , _A )] for i in range(0 , _A )
] # dp[i][j] stores minimum distance from i to j
def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ):
_UpperCamelCase = w
def UpperCamelCase_ ( self : Optional[int] ):
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
_UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ):
return self.dp[u][v]
if __name__ == "__main__":
_lowerCAmelCase = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 10 | 0 |
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __UpperCAmelCase :
"""simple docstring"""
@staticmethod
def snake_case_ ( *__A , **__A ):
pass
def a (lowerCAmelCase__ ):
__a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def a (lowerCAmelCase__ ):
__a = np.array(lowerCAmelCase__ )
__a = npimg.shape
return {"hash": hashimage(lowerCAmelCase__ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def snake_case_ ( self , __A , __A , __A ):
__a = MaskGenerationPipeline(model=__A , image_processor=__A )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def snake_case_ ( self , __A , __A ):
pass
@require_tf
@unittest.skip("""Image segmentation not implemented in TF""" )
def snake_case_ ( self ):
pass
@slow
@require_torch
def snake_case_ ( self ):
__a = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" )
__a = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 )
# Shortening by hashing
__a = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__A , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
{"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967},
{"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993},
{"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909},
{"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879},
{"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834},
{"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716},
{"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612},
{"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599},
{"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552},
{"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532},
{"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516},
{"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499},
{"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483},
{"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464},
{"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408},
{"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335},
{"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326},
{"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262},
{"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999},
{"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986},
{"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984},
{"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873},
{"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871}
] , )
# fmt: on
@require_torch
@slow
def snake_case_ ( self ):
__a = """facebook/sam-vit-huge"""
__a = pipeline("""mask-generation""" , model=__A )
__a = image_segmenter(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
__a = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__A , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
] , )
| 99 | import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
def _snake_case ( __snake_case=None , __snake_case=None ):
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = list_field(
default=[], metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
}, )
UpperCAmelCase = list_field(
default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
UpperCAmelCase = list_field(
default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
}, )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
}, )
UpperCAmelCase = field(
default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, )
UpperCAmelCase = field(
default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, )
UpperCAmelCase = field(
default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, )
UpperCAmelCase = field(
default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, )
UpperCAmelCase = field(
default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, )
UpperCAmelCase = field(
default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, )
UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
}, )
def UpperCamelCase_ ( self : Union[str, Any] ):
warnings.warn(
F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' , _A , )
def UpperCamelCase_ ( self : str ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def UpperCamelCase_ ( self : List[Any] ):
if len(self.models ) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' )
return self.models
@property
def UpperCamelCase_ ( self : Optional[int] ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''' )
return False
else:
return True
| 10 | 0 |
from __future__ import annotations
import requests
def __snake_case ( lowerCAmelCase_ ) -> dict:
SCREAMING_SNAKE_CASE__ = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(lowerCAmelCase_ ).json()
def __snake_case ( lowerCAmelCase_ = 1_0 ) -> list[dict]:
SCREAMING_SNAKE_CASE__ = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
SCREAMING_SNAKE_CASE__ = requests.get(lowerCAmelCase_ ).json()[:max_stories]
return [get_hackernews_story(lowerCAmelCase_ ) for story_id in story_ids]
def __snake_case ( lowerCAmelCase_ = 1_0 ) -> str:
SCREAMING_SNAKE_CASE__ = hackernews_top_stories(lowerCAmelCase_ )
return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase_ ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 100 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ):
from .. import __version__
_UpperCamelCase = take_from
_UpperCamelCase = ()
if not isinstance(args[0] , __snake_case ):
_UpperCamelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ):
raise ValueError(
f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
f""" version {__version__} is >= {version_name}""" )
_UpperCamelCase = None
if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__snake_case ),)
_UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(__snake_case , __snake_case ):
values += (getattr(__snake_case , __snake_case ),)
_UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
_UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
_UpperCamelCase = warning + ''' ''' if standard_warn else ''''''
warnings.warn(warning + message , __snake_case , stacklevel=__snake_case )
if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0:
_UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCamelCase = call_frame.filename
_UpperCamelCase = call_frame.lineno
_UpperCamelCase = call_frame.function
_UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(__snake_case ) == 0:
return
elif len(__snake_case ) == 1:
return values[0]
return values
| 10 | 0 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class __lowercase :
"""simple docstring"""
_UpperCAmelCase = 42
_UpperCAmelCase = None
_UpperCAmelCase = None
def a__ ( ):
SCREAMING_SNAKE_CASE_ : Dict = Node(1 )
SCREAMING_SNAKE_CASE_ : Tuple = Node(2 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(3 )
SCREAMING_SNAKE_CASE_ : int = Node(4 )
SCREAMING_SNAKE_CASE_ : Dict = Node(5 )
return tree
def a__ ( A__ ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def a__ ( A__ ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def a__ ( A__ ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def a__ ( A__ ):
return (max(height(root.left ), height(root.right ) ) + 1) if root else 0
def a__ ( A__ ):
SCREAMING_SNAKE_CASE_ : list[Any] = []
if root is None:
return output
SCREAMING_SNAKE_CASE_ : List[str] = deque([root] )
while process_queue:
SCREAMING_SNAKE_CASE_ : int = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def a__ ( A__, A__ ):
SCREAMING_SNAKE_CASE_ : list[Any] = []
def populate_output(A__, A__ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left, level - 1 )
populate_output(root.right, level - 1 )
populate_output(A__, A__ )
return output
def a__ ( A__, A__ ):
SCREAMING_SNAKE_CASE_ : list[Any] = []
def populate_output(A__, A__ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right, level - 1 )
populate_output(root.left, level - 1 )
populate_output(A__, A__ )
return output
def a__ ( A__ ):
if root is None:
return []
SCREAMING_SNAKE_CASE_ : list[Sequence[Node | None]] = []
SCREAMING_SNAKE_CASE_ : Optional[Any] = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = height(A__ )
for h in range(1, height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(A__, A__ ) )
SCREAMING_SNAKE_CASE_ : Optional[Any] = 1
else:
output.append(get_nodes_from_right_to_left(A__, A__ ) )
SCREAMING_SNAKE_CASE_ : List[Any] = 0
return output
def a__ ( ): # Main function for testing.
SCREAMING_SNAKE_CASE_ : Optional[int] = make_tree()
print(F'''In-order Traversal: {inorder(A__ )}''' )
print(F'''Pre-order Traversal: {preorder(A__ )}''' )
print(F'''Post-order Traversal: {postorder(A__ )}''', '\n' )
print(F'''Height of Tree: {height(A__ )}''', '\n' )
print('Complete Level Order Traversal: ' )
print(level_order(A__ ), '\n' )
print('Level-wise order Traversal: ' )
for level in range(1, height(A__ ) + 1 ):
print(F'''Level {level}:''', get_nodes_from_left_to_right(A__, level=A__ ) )
print('\nZigZag order Traversal: ' )
print(zigzag(A__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 101 | import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_lowerCAmelCase = logging.getLogger(__name__)
def _snake_case ( __snake_case , __snake_case ):
return (preds == labels).mean()
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} )
UpperCAmelCase = field(
default=128, metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} )
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed
set_seed(training_args.seed )
try:
_UpperCamelCase = processors[data_args.task_name]()
_UpperCamelCase = processor.get_labels()
_UpperCamelCase = len(__snake_case )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
_UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , )
# Get datasets
_UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(__snake_case ) -> Dict:
_UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(__snake_case , p.label_ids )}
# Data collator
_UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_UpperCamelCase = Trainer(
model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_UpperCamelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCamelCase = trainer.evaluate()
_UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(__snake_case , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __snake_case , __snake_case )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__snake_case )
return results
def _snake_case ( __snake_case ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 10 | 0 |
"""simple docstring"""
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
UpperCamelCase : Union[str, Any] = {
"""en""": """Machine learning is great, isn't it?""",
"""ru""": """Машинное обучение - это здорово, не так ли?""",
"""de""": """Maschinelles Lernen ist großartig, oder?""",
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
UpperCamelCase : Union[str, Any] = {
"""ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""],
"""en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""],
"""en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""],
"""de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""],
}
UpperCamelCase : List[Any] = f"""{src_lang}-{tgt_lang}"""
UpperCamelCase : str = f"""
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt19
- facebook
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
The abbreviation FSMT stands for FairSeqMachineTranslation
All four models are available:
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = \"{texts[src_lang]}\"
input_ids = tokenizer.encode(input, return_tensors=\"pt\")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
## Training data
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
## Eval results
pair | fairseq | transformers
-------|---------|----------
{pair} | {scores[pair][0]} | {scores[pair][1]}
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```bibtex
@inproceedings{{...,
year={{2020}},
title={{Facebook FAIR's WMT19 News Translation Task Submission}},
author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},
booktitle={{Proc. of WMT}},
}}
```
## TODO
- port model ensemble (fairseq uses 4 model checkpoints)
"""
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE , """README.md""" )
print(f"""Generating {path}""" )
with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f:
f.write(SCREAMING_SNAKE_CASE )
# make sure we are under the root of the project
__magic_name__ : Any = Path(__file__).resolve().parent.parent.parent
__magic_name__ : Optional[Any] = repo_dir / """model_cards"""
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = model_name.split("""-""")
__magic_name__ : Dict = model_cards_dir / """facebook""" / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 102 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = "trocr"
UpperCAmelCase = ["past_key_values"]
UpperCAmelCase = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ):
_UpperCamelCase = vocab_size
_UpperCamelCase = d_model
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = activation_function
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = init_std
_UpperCamelCase = decoder_layerdrop
_UpperCamelCase = use_cache
_UpperCamelCase = scale_embedding
_UpperCamelCase = use_learned_position_embeddings
_UpperCamelCase = layernorm_embedding
super().__init__(
pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
| 10 | 0 |
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
def __init__( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any=1_3 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[str]=9_9 , __lowerCamelCase : Optional[int]=3_2 , __lowerCamelCase : str=5 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : List[str]=3_7 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : int=5_1_2 , __lowerCamelCase : Tuple=1_6 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : Any=3 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Union[str, Any]=None , ):
"""simple docstring"""
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_input_mask
_snake_case = use_token_type_ids
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = num_labels
_snake_case = num_choices
_snake_case = scope
def __UpperCAmelCase ( self : str ):
"""simple docstring"""
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case = None
if self.use_input_mask:
_snake_case = random_attention_mask([self.batch_size, self.seq_length] )
_snake_case = None
if self.use_token_type_ids:
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_snake_case = None
_snake_case = None
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_snake_case = ids_tensor([self.batch_size] , self.num_choices )
_snake_case = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self : Any ):
"""simple docstring"""
return NystromformerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , )
def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ):
"""simple docstring"""
_snake_case = NystromformerModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
_snake_case = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
_snake_case = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : int ):
"""simple docstring"""
_snake_case = NystromformerForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ):
"""simple docstring"""
_snake_case = NystromformerForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_snake_case = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] ):
"""simple docstring"""
_snake_case = self.num_labels
_snake_case = NystromformerForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ):
"""simple docstring"""
_snake_case = self.num_labels
_snake_case = NystromformerForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ):
"""simple docstring"""
_snake_case = self.num_choices
_snake_case = NystromformerForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_snake_case = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) = config_and_inputs
_snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ):
A__ : Tuple = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
A__ : List[str] = (
{
'''feature-extraction''': NystromformerModel,
'''fill-mask''': NystromformerForMaskedLM,
'''question-answering''': NystromformerForQuestionAnswering,
'''text-classification''': NystromformerForSequenceClassification,
'''token-classification''': NystromformerForTokenClassification,
'''zero-shot''': NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ : Optional[int] = False
A__ : List[Any] = False
def __UpperCAmelCase ( self : int ):
"""simple docstring"""
_snake_case = NystromformerModelTester(self )
_snake_case = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 )
def __UpperCAmelCase ( self : int ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def __UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
_snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_snake_case = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
def __UpperCAmelCase ( self : Dict ):
"""simple docstring"""
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def __UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def __UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def __UpperCAmelCase ( self : str ):
"""simple docstring"""
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def __UpperCAmelCase ( self : Dict ):
"""simple docstring"""
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase )
@slow
def __UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = NystromformerModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
_snake_case = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' )
_snake_case = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
_snake_case = model(__lowerCamelCase )[0]
_snake_case = torch.Size((1, 6, 7_6_8) )
self.assertEqual(output.shape , __lowerCamelCase )
_snake_case = torch.tensor(
[[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self : Dict ):
"""simple docstring"""
_snake_case = '''the [MASK] of Belgium is Brussels'''
_snake_case = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' )
_snake_case = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' )
_snake_case = tokenizer(__lowerCamelCase , return_tensors='''pt''' )
with torch.no_grad():
_snake_case = model(encoding.input_ids ).logits
_snake_case = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(__lowerCamelCase ) , '''capital''' )
| 103 | import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_lengths
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = gelu_activation
_UpperCamelCase = sinusoidal_embeddings
_UpperCamelCase = causal
_UpperCamelCase = asm
_UpperCamelCase = n_langs
_UpperCamelCase = vocab_size
_UpperCamelCase = n_special
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_labels
_UpperCamelCase = num_choices
_UpperCamelCase = summary_type
_UpperCamelCase = use_proj
_UpperCamelCase = scope
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_input_lengths:
_UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float()
_UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCamelCase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase_ ( self : str ):
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ):
_UpperCamelCase = FlaubertModel(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , lengths=_A , langs=_A )
_UpperCamelCase = model(_A , langs=_A )
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ):
_UpperCamelCase = FlaubertWithLMHeadModel(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ):
_UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ):
_UpperCamelCase = FlaubertForQuestionAnswering(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ):
_UpperCamelCase = FlaubertForSequenceClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ):
_UpperCamelCase = self.num_labels
_UpperCamelCase = FlaubertForTokenClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , attention_mask=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ):
_UpperCamelCase = self.num_choices
_UpperCamelCase = FlaubertForMultipleChoice(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCAmelCase = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ):
_UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
return inputs_dict
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = FlaubertModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 )
def UpperCamelCase_ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_A )
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_A )
@slow
def UpperCamelCase_ ( self : str ):
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = FlaubertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@slow
@require_torch_gpu
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
_UpperCamelCase = True
_UpperCamelCase = model_class(config=_A )
_UpperCamelCase = self._prepare_for_class(_A , _A )
_UpperCamelCase = torch.jit.trace(
_A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) )
_UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A )
loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' )
_UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
_UpperCamelCase = model(_A )[0]
_UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _A )
_UpperCamelCase = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
| 10 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"""bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""",
}
class UpperCamelCase__ ( _lowerCAmelCase ):
"""simple docstring"""
A__ : Union[str, Any] = "gpt_bigcode"
A__ : Any = ["past_key_values"]
A__ : Dict = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , SCREAMING_SNAKE_CASE__=50257 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="gelu_pytorch_tanh" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=50256 , SCREAMING_SNAKE_CASE__=50256 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> Optional[int]:
A__ = vocab_size
A__ = n_positions
A__ = n_embd
A__ = n_layer
A__ = n_head
A__ = n_inner
A__ = activation_function
A__ = resid_pdrop
A__ = embd_pdrop
A__ = attn_pdrop
A__ = layer_norm_epsilon
A__ = initializer_range
A__ = scale_attn_weights
A__ = use_cache
A__ = attention_softmax_in_fpaa
A__ = scale_attention_softmax_in_fpaa
A__ = multi_query
A__ = bos_token_id
A__ = eos_token_id
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
| 104 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = projection_dim
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
_UpperCamelCase = bos_token_id
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
_UpperCamelCase = input_mask.numpy()
_UpperCamelCase , _UpperCamelCase = input_mask.shape
_UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_A ):
_UpperCamelCase = 1
_UpperCamelCase = 0
_UpperCamelCase = self.get_config()
return config, input_ids, tf.convert_to_tensor(_A )
def UpperCamelCase_ ( self : str ):
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ):
_UpperCamelCase = TFBlipTextModel(config=_A )
_UpperCamelCase = model(_A , attention_mask=_A , training=_A )
_UpperCamelCase = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else ()
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = BlipTextModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 )
def UpperCamelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : List[str] ):
pass
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = TFBlipTextModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase_ ( self : int , _A : Optional[int]=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
| 10 | 0 |
from math import factorial
def __UpperCAmelCase ( lowerCamelCase_ : int = 1_00 ) -> int:
"""simple docstring"""
return sum(int(lowerCamelCase_ ) for x in str(factorial(lowerCamelCase_ ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 105 | from __future__ import annotations
_lowerCAmelCase = [True] * 1_000_001
_lowerCAmelCase = 2
while i * i <= 1_000_000:
if seive[i]:
for j in range(i * i, 1_000_001, i):
_lowerCAmelCase = False
i += 1
def _snake_case ( __snake_case ):
return seive[n]
def _snake_case ( __snake_case ):
return any(digit in '''02468''' for digit in str(__snake_case ) )
def _snake_case ( __snake_case = 1000000 ):
_UpperCamelCase = [2] # result already includes the number 2.
for num in range(3 , limit + 1 , 2 ):
if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ):
_UpperCamelCase = str(__snake_case )
_UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )]
if all(is_prime(__snake_case ) for i in list_nums ):
result.append(__snake_case )
return result
def _snake_case ( ):
return len(find_circular_primes() )
if __name__ == "__main__":
print(f'{len(find_circular_primes()) = }')
| 10 | 0 |
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class lowerCAmelCase__ :
def __init__( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : int=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : str=True , __UpperCamelCase : Optional[Any]=99 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : int=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : List[str]=512 , __UpperCamelCase : Any=16 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : int=3 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : List[str]=None , ) -> List[Any]:
A = parent
A = batch_size
A = seq_length
A = is_training
A = use_input_mask
A = use_token_type_ids
A = use_labels
A = vocab_size
A = hidden_size
A = embedding_size
A = num_hidden_layers
A = num_attention_heads
A = intermediate_size
A = hidden_act
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = max_position_embeddings
A = type_vocab_size
A = type_sequence_label_size
A = initializer_range
A = num_labels
A = num_choices
A = scope
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A = None
if self.use_input_mask:
A = random_attention_mask([self.batch_size, self.seq_length] )
A = None
if self.use_token_type_ids:
A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A = None
A = None
A = None
if self.use_labels:
A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A = ids_tensor([self.batch_size] , self.num_choices )
A = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self : List[Any] ) -> List[Any]:
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> Optional[int]:
A = MegatronBertModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )
A = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )
A = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ) -> Union[str, Any]:
A = MegatronBertForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ) -> int:
A = MegatronBertForCausalLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> Any:
A = MegatronBertForNextSentencePrediction(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(
__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) -> Optional[Any]:
A = MegatronBertForPreTraining(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(
__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ) -> Union[str, Any]:
A = MegatronBertForQuestionAnswering(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(
__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> List[str]:
A = self.num_labels
A = MegatronBertForSequenceClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ) -> Tuple:
A = self.num_labels
A = MegatronBertForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ) -> List[Any]:
A = self.num_choices
A = MegatronBertForMultipleChoice(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A = model(
__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
A = self.prepare_config_and_inputs()
(
(
A
) , (
A
) , (
A
) , (
A
) , (
A
) , (
A
) , (
A
) ,
) = config_and_inputs
A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ):
A_ : Dict = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
A_ : Optional[Any] = (
{
'feature-extraction': MegatronBertModel,
'fill-mask': MegatronBertForMaskedLM,
'question-answering': MegatronBertForQuestionAnswering,
'text-classification': MegatronBertForSequenceClassification,
'text-generation': MegatronBertForCausalLM,
'token-classification': MegatronBertForTokenClassification,
'zero-shot': MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ : Optional[int] = True
# test_resize_embeddings = False
A_ : Union[str, Any] = False
def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Tuple=False ) -> Any:
A = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase )
A = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase )
return inputs_dict
def __UpperCamelCase ( self : str ) -> str:
A = MegatronBertModelTester(self )
A = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 )
def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : int ) -> List[str]:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*__UpperCamelCase )
def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__UpperCamelCase )
def __UpperCamelCase ( self : Optional[Any] ) -> str:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__UpperCamelCase )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__UpperCamelCase )
def __UpperCamelCase ( self : List[str] ) -> Tuple:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*__UpperCamelCase )
def __UpperCamelCase ( self : Any ) -> Dict:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*__UpperCamelCase )
def __UpperCamelCase ( self : Dict ) -> List[Any]:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__UpperCamelCase )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*__UpperCamelCase )
def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return torch.tensor(
lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , )
__snake_case :Optional[Any] =1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
@unittest.skip('Model is not available.' )
def __UpperCamelCase ( self : Optional[int] ) -> str:
A = 'nvidia/megatron-bert-uncased-345m'
if "MYDIR" in os.environ:
A = os.path.join(os.environ['MYDIR'] , __UpperCamelCase )
A = MegatronBertModel.from_pretrained(__UpperCamelCase )
model.to(__UpperCamelCase )
model.half()
A = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] )
with torch.no_grad():
A = model(__UpperCamelCase )[0]
A = torch.Size((1, 9, 1_024) )
self.assertEqual(output.shape , __UpperCamelCase )
A = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8]
for ii in range(3 ):
for jj in range(3 ):
A = output[0, ii, jj]
A = expected[3 * ii + jj]
A = 'ii={} jj={} a={} b={}'.format(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
self.assertTrue(math.isclose(__UpperCamelCase , __UpperCamelCase , rel_tol=__UpperCamelCase , abs_tol=__UpperCamelCase ) , msg=__UpperCamelCase ) | 106 | import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = DebertaVaTokenizer
UpperCAmelCase = DebertaVaTokenizerFast
UpperCAmelCase = True
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ):
_UpperCamelCase = '''this is a test'''
_UpperCamelCase = '''this is a test'''
return input_text, output_text
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(_A ) , 3_0001 )
def UpperCamelCase_ ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 )
def UpperCamelCase_ ( self : List[str] ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[Any] ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : int ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Tuple ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = tokenizer.encode(_A )
_UpperCamelCase = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''This is a test'''
_UpperCamelCase = [13, 1, 4398, 25, 21, 1289]
_UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
_UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = DebertaVaTokenizer(_A )
_UpperCamelCase = tokenizer.encode('''sequence builders''' )
_UpperCamelCase = tokenizer.encode('''multi-sequence build''' )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 10 | 0 |
'''simple docstring'''
import os
import pytest
from attr import dataclass
_UpperCAmelCase : Optional[Any] = '''us-east-1''' # defaults region
@dataclass
class lowercase_ :
"""simple docstring"""
__lowerCAmelCase = 42
__lowerCAmelCase = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
__lowerCAmelCase = {
"task_name": "mnli",
"per_device_train_batch_size": 1_6,
"per_device_eval_batch_size": 1_6,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 5_0_0,
"save_steps": 5_5_0_0,
}
__lowerCAmelCase = {**hyperparameters, "max_steps": 1_0_0_0}
@property
def __UpperCAmelCase ( self : List[Any] ) -> str:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def __UpperCAmelCase ( self : List[str] ) -> str:
return f'{self.framework}-transfromers-test'
@property
def __UpperCAmelCase ( self : Any ) -> str:
return f'./tests/sagemaker/scripts/{self.framework}'
@property
def __UpperCAmelCase ( self : Optional[int] ) -> str:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def _SCREAMING_SNAKE_CASE ( __snake_case : Any ):
_A = SageMakerTestEnvironment(framework=request.cls.framework )
| 107 | import sys
from collections import defaultdict
class lowerCAmelCase_ :
def __init__( self : Optional[int] ):
_UpperCamelCase = []
def UpperCamelCase_ ( self : Any , _A : str ):
return self.node_position[vertex]
def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ):
_UpperCamelCase = pos
def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_UpperCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_UpperCamelCase = 2 * start + 1
else:
_UpperCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
_UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child]
_UpperCamelCase , _UpperCamelCase = (
heap[start],
positions[start],
)
_UpperCamelCase , _UpperCamelCase = temp, tempa
_UpperCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _A )
self.top_to_bottom(_A , _A , _A , _A )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ):
_UpperCamelCase = position[index]
while index != 0:
_UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_UpperCamelCase = heap[parent]
_UpperCamelCase = position[parent]
self.set_position(position[parent] , _A )
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , _A )
break
_UpperCamelCase = parent
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , 0 )
def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ):
_UpperCamelCase = len(_A ) // 2 - 1
for i in range(_A , -1 , -1 ):
self.top_to_bottom(_A , _A , len(_A ) , _A )
def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ):
_UpperCamelCase = positions[0]
_UpperCamelCase = sys.maxsize
self.top_to_bottom(_A , 0 , len(_A ) , _A )
return temp
def _snake_case ( __snake_case ):
_UpperCamelCase = Heap()
_UpperCamelCase = [0] * len(__snake_case )
_UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
_UpperCamelCase = []
for vertex in range(len(__snake_case ) ):
distance_tv.append(sys.maxsize )
positions.append(__snake_case )
heap.node_position.append(__snake_case )
_UpperCamelCase = []
_UpperCamelCase = 1
_UpperCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_UpperCamelCase = 0
_UpperCamelCase = distance
heap.heapify(__snake_case , __snake_case )
for _ in range(1 , len(__snake_case ) ):
_UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_UpperCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__snake_case )]
):
_UpperCamelCase = distance
heap.bottom_to_top(
__snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case )
_UpperCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
_lowerCAmelCase = int(input("Enter number of edges: ").strip())
_lowerCAmelCase = defaultdict(list)
for _ in range(edges_number):
_lowerCAmelCase = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 10 | 0 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ):
'''simple docstring'''
@staticmethod
@abstractmethod
def lowerCamelCase ( lowerCamelCase : ArgumentParser ) -> Union[str, Any]:
"""simple docstring"""
raise NotImplementedError()
@abstractmethod
def lowerCamelCase ( self : str ) -> Dict:
"""simple docstring"""
raise NotImplementedError() | 108 | import logging
import os
from .state import PartialState
class lowerCAmelCase_ ( logging.LoggerAdapter ):
@staticmethod
def UpperCamelCase_ ( _A : Any ):
_UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ):
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCamelCase = kwargs.pop('''main_process_only''' , _A )
_UpperCamelCase = kwargs.pop('''in_order''' , _A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
elif in_order:
_UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
state.wait_for_everyone()
def _snake_case ( __snake_case , __snake_case = None ):
if log_level is None:
_UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case )
_UpperCamelCase = logging.getLogger(__snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__snake_case , {} )
| 10 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import (
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
)
class __a ( unittest.TestCase ):
def __init__( self : List[Any] ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any]=13 ,lowerCamelCase : List[str]=7 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : List[str]=True ,lowerCamelCase : int=True ,lowerCamelCase : Any=True ,lowerCamelCase : List[str]=99 ,lowerCamelCase : List[str]=32 ,lowerCamelCase : str=5 ,lowerCamelCase : int=4 ,lowerCamelCase : Any=37 ,lowerCamelCase : List[Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : str=0.1 ,lowerCamelCase : str=512 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[str]=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : int=4 ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_attention_mask
__SCREAMING_SNAKE_CASE = use_token_type_ids
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = num_choices
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__SCREAMING_SNAKE_CASE = None
if self.use_attention_mask:
__SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] )
__SCREAMING_SNAKE_CASE = None
if self.use_token_type_ids:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__SCREAMING_SNAKE_CASE = BertConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,)
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Dict = True
__UpperCamelCase : List[Any] = (
(
FlaxBertModel,
FlaxBertForPreTraining,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForQuestionAnswering,
FlaxBertForNextSentencePrediction,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxBertModelTester(self )
@slow
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""bert-base-cased""" )
__SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase )
| 109 | import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = "▁"
_lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = BertGenerationTokenizer
UpperCAmelCase = False
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[str] ):
super().setUp()
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''<s>'''
_UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(_A ) , 1002 )
def UpperCamelCase_ ( self : Dict ):
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def UpperCamelCase_ ( self : Union[str, Any] ):
return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''Hello World!'''
_UpperCamelCase = [1_8536, 2260, 101]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
_UpperCamelCase = [
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
3_4324,
497,
391,
408,
1_1342,
1244,
385,
100,
938,
985,
456,
574,
362,
1_2597,
3200,
3129,
1172,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def UpperCamelCase_ ( self : Dict ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10]
_UpperCamelCase = ''' '''.join(_A )
_UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = self.big_tokenizer.batch_encode_plus(
[sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = BertGenerationConfig()
_UpperCamelCase = BertGenerationEncoder(_A )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
| 10 | 0 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ = logging.get_logger(__name__)
# TODO Update this
UpperCamelCase__ = {
'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class a ( lowercase ):
UpperCamelCase : str = """esm"""
def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3_072 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1_026 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ , ):
super().__init__(pad_token_id=UpperCamelCase_ , mask_token_id=UpperCamelCase_ , **UpperCamelCase_ )
UpperCAmelCase__ : Optional[int] = vocab_size
UpperCAmelCase__ : Dict = hidden_size
UpperCAmelCase__ : List[Any] = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : Union[str, Any] = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob
UpperCAmelCase__ : List[str] = attention_probs_dropout_prob
UpperCAmelCase__ : Dict = max_position_embeddings
UpperCAmelCase__ : Dict = initializer_range
UpperCAmelCase__ : Any = layer_norm_eps
UpperCAmelCase__ : Optional[int] = position_embedding_type
UpperCAmelCase__ : Union[str, Any] = use_cache
UpperCAmelCase__ : str = emb_layer_norm_before
UpperCAmelCase__ : List[str] = token_dropout
UpperCAmelCase__ : List[Any] = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
UpperCAmelCase__ : str = EsmFoldConfig()
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
UpperCAmelCase__ : Dict = EsmFoldConfig(**UpperCamelCase_ )
UpperCAmelCase__ : Any = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
UpperCAmelCase__ : Dict = get_default_vocab_list()
else:
UpperCAmelCase__ : Optional[int] = vocab_list
else:
UpperCAmelCase__ : str = None
UpperCAmelCase__ : str = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , UpperCamelCase_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def __snake_case ( self ):
UpperCAmelCase__ : Optional[int] = super().to_dict()
if isinstance(self.esmfold_config , UpperCamelCase_ ):
UpperCAmelCase__ : Optional[int] = self.esmfold_config.to_dict()
return output
@dataclass
class a :
UpperCamelCase : str = None
UpperCamelCase : bool = True
UpperCamelCase : bool = False
UpperCamelCase : bool = False
UpperCamelCase : bool = False
UpperCamelCase : float = 0
UpperCamelCase : bool = True
UpperCamelCase : bool = False
UpperCamelCase : int = 1_2_8
UpperCamelCase : "TrunkConfig" = None
def __snake_case ( self ):
if self.trunk is None:
UpperCAmelCase__ : Dict = TrunkConfig()
elif isinstance(self.trunk , UpperCamelCase_ ):
UpperCAmelCase__ : Any = TrunkConfig(**self.trunk )
def __snake_case ( self ):
UpperCAmelCase__ : Dict = asdict(self )
UpperCAmelCase__ : Union[str, Any] = self.trunk.to_dict()
return output
@dataclass
class a :
UpperCamelCase : int = 4_8
UpperCamelCase : int = 1_0_2_4
UpperCamelCase : int = 1_2_8
UpperCamelCase : int = 3_2
UpperCamelCase : int = 3_2
UpperCamelCase : int = 3_2
UpperCamelCase : float = 0
UpperCamelCase : float = 0
UpperCamelCase : bool = False
UpperCamelCase : int = 4
UpperCamelCase : Optional[int] = 1_2_8
UpperCamelCase : "StructureModuleConfig" = None
def __snake_case ( self ):
if self.structure_module is None:
UpperCAmelCase__ : Optional[Any] = StructureModuleConfig()
elif isinstance(self.structure_module , UpperCamelCase_ ):
UpperCAmelCase__ : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
UpperCAmelCase__ : Optional[int] = self.sequence_state_dim // self.sequence_head_width
UpperCAmelCase__ : List[str] = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def __snake_case ( self ):
UpperCAmelCase__ : str = asdict(self )
UpperCAmelCase__ : Union[str, Any] = self.structure_module.to_dict()
return output
@dataclass
class a :
UpperCamelCase : int = 3_8_4
UpperCamelCase : int = 1_2_8
UpperCamelCase : int = 1_6
UpperCamelCase : int = 1_2_8
UpperCamelCase : int = 1_2
UpperCamelCase : int = 4
UpperCamelCase : int = 8
UpperCamelCase : float = 0.1
UpperCamelCase : int = 8
UpperCamelCase : int = 1
UpperCamelCase : int = 2
UpperCamelCase : int = 7
UpperCamelCase : int = 1_0
UpperCamelCase : float = 1E-8
UpperCamelCase : float = 1E5
def __snake_case ( self ):
return asdict(self )
def lowerCamelCase ( ):
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 110 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = StableUnCLIPPipeline
UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
UpperCAmelCase = False
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = 32
_UpperCamelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , )
torch.manual_seed(0 )
_UpperCamelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
_UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A )
_UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , )
torch.manual_seed(0 )
_UpperCamelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCamelCase = AutoencoderKL()
_UpperCamelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_A )
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_A )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
_UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' )
_UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_A , _A )
def UpperCamelCase_ ( self : Optional[Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
_UpperCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 10 | 0 |
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
_lowerCamelCase = {
'cola': 2,
'mnli': 3,
'mrpc': 2,
'sst-2': 2,
'sts-b': 1,
'qqp': 2,
'qnli': 2,
'rte': 2,
'wnli': 2,
}
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: int , UpperCamelCase__: str=None ):
# Initialise PyTorch model
SCREAMING_SNAKE_CASE__ = XLNetConfig.from_json_file(__snake_case )
SCREAMING_SNAKE_CASE__ = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' )
SCREAMING_SNAKE_CASE__ = finetuning_task
SCREAMING_SNAKE_CASE__ = GLUE_TASKS_NUM_LABELS[finetuning_task]
SCREAMING_SNAKE_CASE__ = XLNetForSequenceClassification(__snake_case )
elif "squad" in finetuning_task:
SCREAMING_SNAKE_CASE__ = finetuning_task
SCREAMING_SNAKE_CASE__ = XLNetForQuestionAnswering(__snake_case )
else:
SCREAMING_SNAKE_CASE__ = XLNetLMHeadModel(__snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
SCREAMING_SNAKE_CASE__ = os.path.join(__snake_case , __snake_case )
SCREAMING_SNAKE_CASE__ = os.path.join(__snake_case , __snake_case )
print(f'''Save PyTorch model to {os.path.abspath(__snake_case )}''' )
torch.save(model.state_dict() , __snake_case )
print(f'''Save configuration file to {os.path.abspath(__snake_case )}''' )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--xlnet_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained XLNet model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--finetuning_task',
default=None,
type=str,
help='Name of a task on which the XLNet TensorFlow model was fine-tuned',
)
_lowerCamelCase = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
) | 6 | from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _snake_case ( __snake_case , __snake_case ):
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) )
def _snake_case ( __snake_case , __snake_case ):
if dataset.ndim != value_array.ndim:
_UpperCamelCase = (
'''Wrong input data\'s dimensions... '''
f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(__snake_case )
try:
if dataset.shape[1] != value_array.shape[1]:
_UpperCamelCase = (
'''Wrong input data\'s shape... '''
f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(__snake_case )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
_UpperCamelCase = (
'''Input data have different datatype... '''
f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(__snake_case )
_UpperCamelCase = []
for value in value_array:
_UpperCamelCase = euclidean(__snake_case , dataset[0] )
_UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
_UpperCamelCase = euclidean(__snake_case , __snake_case )
if dist > temp_dist:
_UpperCamelCase = temp_dist
_UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _snake_case ( __snake_case , __snake_case ):
return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 0 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any:
def get_masked_lm_array(snake_case__ ):
lowerCAmelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
lowerCAmelCase = tf.train.load_variable(__snake_case , __snake_case )
if "kernel" in name:
lowerCAmelCase = array.transpose()
return torch.from_numpy(__snake_case )
def get_encoder_array(snake_case__ ):
lowerCAmelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
lowerCAmelCase = tf.train.load_variable(__snake_case , __snake_case )
if "kernel" in name:
lowerCAmelCase = array.transpose()
return torch.from_numpy(__snake_case )
def get_encoder_layer_array(snake_case__ , snake_case__ ):
lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
lowerCAmelCase = tf.train.load_variable(__snake_case , __snake_case )
if "kernel" in name:
lowerCAmelCase = array.transpose()
return torch.from_numpy(__snake_case )
def get_encoder_attention_layer_array(snake_case__ , snake_case__ , snake_case__ ):
lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
lowerCAmelCase = tf.train.load_variable(__snake_case , __snake_case )
lowerCAmelCase = array.reshape(__snake_case )
if "kernel" in name:
lowerCAmelCase = array.transpose()
return torch.from_numpy(__snake_case )
print(f"Loading model based on config from {config_path}..." )
lowerCAmelCase = BertConfig.from_json_file(__snake_case )
lowerCAmelCase = BertForMaskedLM(__snake_case )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
lowerCAmelCase = model.bert.encoder.layer[layer_index]
# Self-attention
lowerCAmelCase = layer.attention.self
lowerCAmelCase = get_encoder_attention_layer_array(
__snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape )
lowerCAmelCase = get_encoder_attention_layer_array(
__snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape )
lowerCAmelCase = get_encoder_attention_layer_array(
__snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape )
lowerCAmelCase = get_encoder_attention_layer_array(
__snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape )
lowerCAmelCase = get_encoder_attention_layer_array(
__snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape )
lowerCAmelCase = get_encoder_attention_layer_array(
__snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape )
# Self-attention Output
lowerCAmelCase = layer.attention.output
lowerCAmelCase = get_encoder_attention_layer_array(
__snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape )
lowerCAmelCase = get_encoder_attention_layer_array(
__snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape )
lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/gamma''' )
lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/beta''' )
# Intermediate
lowerCAmelCase = layer.intermediate
lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/kernel''' )
lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/bias''' )
# Output
lowerCAmelCase = layer.output
lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_output_dense/kernel''' )
lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_output_dense/bias''' )
lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/gamma''' )
lowerCAmelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/beta''' )
# Embeddings
lowerCAmelCase = get_encoder_array('''_position_embedding_layer/embeddings''' )
lowerCAmelCase = get_encoder_array('''_type_embedding_layer/embeddings''' )
lowerCAmelCase = get_encoder_array('''_embedding_norm_layer/gamma''' )
lowerCAmelCase = get_encoder_array('''_embedding_norm_layer/beta''' )
# LM Head
lowerCAmelCase = model.cls.predictions.transform
lowerCAmelCase = get_masked_lm_array('''dense/kernel''' )
lowerCAmelCase = get_masked_lm_array('''dense/bias''' )
lowerCAmelCase = get_masked_lm_array('''layer_norm/gamma''' )
lowerCAmelCase = get_masked_lm_array('''layer_norm/beta''' )
lowerCAmelCase = get_masked_lm_array('''embedding_table''' )
# Pooling
lowerCAmelCase = BertPooler(config=__snake_case )
lowerCAmelCase = get_encoder_array('''_pooler_layer/kernel''' )
lowerCAmelCase = get_encoder_array('''_pooler_layer/bias''' )
# Export final model
model.save_pretrained(__snake_case )
# Integration test - should load without any errors ;)
lowerCAmelCase = BertForMaskedLM.from_pretrained(__snake_case )
print(new_model.eval() )
print('''Model conversion was done sucessfully!''' )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
type=str,
required=True,
help='''The config json file corresponding to the BERT model. This specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''',
type=str,
required=True,
help='''Path to the output PyTorch model.''',
)
lowercase__ : List[Any] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 312 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = ShapEPipeline
UpperCAmelCase = ["prompt"]
UpperCAmelCase = ["prompt"]
UpperCAmelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
UpperCAmelCase = False
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
return 32
@property
def UpperCamelCase_ ( self : int ):
return 32
@property
def UpperCamelCase_ ( self : List[str] ):
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 8
@property
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def UpperCamelCase_ ( self : List[Any] ):
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(_A )
@property
def UpperCamelCase_ ( self : int ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
_UpperCamelCase = PriorTransformer(**_A )
return model
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
_UpperCamelCase = ShapERenderer(**_A )
return model
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.dummy_prior
_UpperCamelCase = self.dummy_text_encoder
_UpperCamelCase = self.dummy_tokenizer
_UpperCamelCase = self.dummy_renderer
_UpperCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , )
_UpperCamelCase = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = '''cpu'''
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) )
_UpperCamelCase = output.images[0]
_UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
_UpperCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase_ ( self : Any ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = torch_device == '''cpu'''
_UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_A , relax_max_difference=_A , )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = 1
_UpperCamelCase = 2
_UpperCamelCase = self.get_dummy_inputs(_A )
for key in inputs.keys():
if key in self.batch_params:
_UpperCamelCase = batch_size * [inputs[key]]
_UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
_UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 )
_UpperCamelCase = pipe(
'''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_A , _A )
| 10 | 0 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class UpperCAmelCase_ :
def __init__( self : Union[str, Any] , A : Optional[int] ):
_UpperCAmelCase : int = str(id_ )
_UpperCAmelCase : Union[str, Any] = None
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : str = {} # {vertex:distance}
def __lt__( self : Optional[Any] , A : Optional[Any] ):
return self.key < other.key
def __repr__( self : Optional[int] ):
return self.id
def snake_case_ ( self : int , A : List[str] ):
self.neighbors.append(_A )
def snake_case_ ( self : List[str] , A : Tuple , A : int ):
_UpperCAmelCase : int = weight
def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , __snake_case )
graph[b - 1].add_edge(graph[a - 1] , __snake_case )
def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> str:
'''simple docstring'''
_UpperCAmelCase : str = []
for u in graph:
_UpperCAmelCase : Tuple = math.inf
_UpperCAmelCase : Tuple = None
_UpperCAmelCase : List[str] = 0
_UpperCAmelCase : List[Any] = graph[:]
while q:
_UpperCAmelCase : int = min(__snake_case )
q.remove(__snake_case )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
_UpperCAmelCase : Dict = u
_UpperCAmelCase : Union[str, Any] = u.edges[v.id]
for i in range(1 , len(__snake_case ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Any:
'''simple docstring'''
for u in graph:
_UpperCAmelCase : Any = math.inf
_UpperCAmelCase : str = None
_UpperCAmelCase : Optional[int] = 0
_UpperCAmelCase : Dict = list(__snake_case )
hq.heapify(__snake_case )
while h:
_UpperCAmelCase : List[Any] = hq.heappop(__snake_case )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
_UpperCAmelCase : str = u
_UpperCAmelCase : Optional[Any] = u.edges[v.id]
hq.heapify(__snake_case )
for i in range(1 , len(__snake_case ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def __snake_case ( ) -> List[Any]:
'''simple docstring'''
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 289 | import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_lowerCAmelCase = HfApi()
_lowerCAmelCase = {}
# fmt: off
_lowerCAmelCase = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
_lowerCAmelCase = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
_lowerCAmelCase = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
_lowerCAmelCase = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
_lowerCAmelCase = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
_lowerCAmelCase = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
_lowerCAmelCase = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
_lowerCAmelCase = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
_lowerCAmelCase = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
_lowerCAmelCase = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
_lowerCAmelCase = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
_lowerCAmelCase = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
_lowerCAmelCase = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
_lowerCAmelCase = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
_lowerCAmelCase = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
_lowerCAmelCase = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f'Started running {mod.modelId}!!!')
if mod.modelId.startswith("CompVis"):
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_lowerCAmelCase = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_lowerCAmelCase = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3
)
print(f'{mod.modelId} has passed successfully!!!')
| 10 | 0 |
from collections.abc import Callable
class snake_case__ :
"""simple docstring"""
def __init__( self , __lowercase = None ) -> Any:
"""simple docstring"""
a__ : str = []
# Stores indexes of each item for supporting updates and deletion.
a__ : int = {}
# Stores current size of heap.
a__ : List[Any] = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
a__ : int = key or (lambda __lowercase : x)
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int:
"""simple docstring"""
return int((i - 1) / 2 ) if i > 0 else None
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any:
"""simple docstring"""
a__ : List[Any] = int(2 * i + 1 )
return left if 0 < left < self.size else None
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[int]:
"""simple docstring"""
a__ : Tuple = int(2 * i + 2 )
return right if 0 < right < self.size else None
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> List[str]:
"""simple docstring"""
a__ , a__ : int = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
a__ , a__ : Union[str, Any] = self.arr[j], self.arr[i]
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Tuple:
"""simple docstring"""
return self.arr[i][1] < self.arr[j][1]
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int:
"""simple docstring"""
a__ : Optional[Any] = self._left(_A )
a__ : List[Any] = self._right(_A )
a__ : int = i
if left is not None and not self._cmp(_A , _A ):
a__ : Optional[Any] = left
if right is not None and not self._cmp(_A , _A ):
a__ : Union[str, Any] = right
return valid_parent
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]:
"""simple docstring"""
a__ : str = self._parent(_A )
while parent is not None and not self._cmp(_A , _A ):
self._swap(_A , _A )
a__ , a__ : List[str] = parent, self._parent(_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any:
"""simple docstring"""
a__ : Union[str, Any] = self._get_valid_parent(_A )
while valid_parent != index:
self._swap(_A , _A )
a__ , a__ : str = valid_parent, self._get_valid_parent(_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Optional[Any]:
"""simple docstring"""
if item not in self.pos_map:
return
a__ : Union[str, Any] = self.pos_map[item]
a__ : List[Any] = [item, self.key(_A )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(_A )
self._heapify_down(_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]:
"""simple docstring"""
if item not in self.pos_map:
return
a__ : Any = self.pos_map[item]
del self.pos_map[item]
a__ : Any = self.arr[self.size - 1]
a__ : Optional[int] = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(_A )
self._heapify_down(_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Optional[Any]:
"""simple docstring"""
a__ : str = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(_A )] )
else:
a__ : int = [item, self.key(_A )]
a__ : int = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def SCREAMING_SNAKE_CASE__( self ) -> Tuple:
"""simple docstring"""
return self.arr[0] if self.size else None
def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]:
"""simple docstring"""
a__ : Tuple = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def lowerCAmelCase_ ( ) -> Any:
"""simple docstring"""
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 136 | from typing import List
from .keymap import KEYMAP, get_character
def _snake_case ( __snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += [key]
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
def _snake_case ( *__snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += keys
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
class lowerCAmelCase_ ( __lowercase ):
def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ):
_UpperCamelCase = super().__new__(cls , _A , _A , _A )
if not hasattr(_A , '''key_handler''' ):
setattr(_A , '''key_handler''' , {} )
setattr(_A , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCamelCase = getattr(_A , '''handle_key''' , [] )
for key in handled_keys:
_UpperCamelCase = value
return new_cls
@staticmethod
def UpperCamelCase_ ( cls : str ):
_UpperCamelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCamelCase = ord(_A )
_UpperCamelCase = cls.key_handler.get(_A )
if handler:
_UpperCamelCase = char
return handler(cls )
else:
return None
def _snake_case ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 10 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""",
}
class lowercase_ ( __lowercase ):
__lowerCamelCase = "instructblip_vision_model"
def __init__( self , __A=1_408 , __A=6_144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=1e-6 , __A=0.0 , __A=1e-1_0 , __A=True , **__A , ) -> Optional[int]:
super().__init__(**_A )
SCREAMING_SNAKE_CASE_ : int =hidden_size
SCREAMING_SNAKE_CASE_ : str =intermediate_size
SCREAMING_SNAKE_CASE_ : Tuple =num_hidden_layers
SCREAMING_SNAKE_CASE_ : Tuple =num_attention_heads
SCREAMING_SNAKE_CASE_ : Dict =patch_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] =image_size
SCREAMING_SNAKE_CASE_ : Optional[Any] =initializer_range
SCREAMING_SNAKE_CASE_ : List[str] =attention_dropout
SCREAMING_SNAKE_CASE_ : Tuple =layer_norm_eps
SCREAMING_SNAKE_CASE_ : Tuple =hidden_act
SCREAMING_SNAKE_CASE_ : int =qkv_bias
@classmethod
def _snake_case ( cls , __A , **__A ) -> int:
cls._set_token_in_kwargs(_A )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =cls.get_config_dict(_A , **_A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('''model_type''' ) == "instructblip":
SCREAMING_SNAKE_CASE_ : Optional[Any] =config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_A , **_A )
class lowercase_ ( __lowercase ):
__lowerCamelCase = "instructblip_qformer"
def __init__( self , __A=30_522 , __A=768 , __A=12 , __A=12 , __A=3_072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1e-1_2 , __A=0 , __A="absolute" , __A=2 , __A=1_408 , **__A , ) -> Optional[Any]:
super().__init__(pad_token_id=_A , **_A )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =vocab_size
SCREAMING_SNAKE_CASE_ : int =hidden_size
SCREAMING_SNAKE_CASE_ : Optional[int] =num_hidden_layers
SCREAMING_SNAKE_CASE_ : Union[str, Any] =num_attention_heads
SCREAMING_SNAKE_CASE_ : Optional[Any] =hidden_act
SCREAMING_SNAKE_CASE_ : str =intermediate_size
SCREAMING_SNAKE_CASE_ : Dict =hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : str =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : Tuple =max_position_embeddings
SCREAMING_SNAKE_CASE_ : List[str] =initializer_range
SCREAMING_SNAKE_CASE_ : Optional[Any] =layer_norm_eps
SCREAMING_SNAKE_CASE_ : List[str] =position_embedding_type
SCREAMING_SNAKE_CASE_ : Union[str, Any] =cross_attention_frequency
SCREAMING_SNAKE_CASE_ : List[Any] =encoder_hidden_size
@classmethod
def _snake_case ( cls , __A , **__A ) -> str:
cls._set_token_in_kwargs(_A )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =cls.get_config_dict(_A , **_A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('''model_type''' ) == "instructblip":
SCREAMING_SNAKE_CASE_ : Dict =config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_A , **_A )
class lowercase_ ( __lowercase ):
__lowerCamelCase = "instructblip"
__lowerCamelCase = True
def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> List[Any]:
super().__init__(**_A )
if vision_config is None:
SCREAMING_SNAKE_CASE_ : Optional[int] ={}
logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' )
if qformer_config is None:
SCREAMING_SNAKE_CASE_ : str ={}
logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' )
if text_config is None:
SCREAMING_SNAKE_CASE_ : Tuple ={}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' )
SCREAMING_SNAKE_CASE_ : Any =InstructBlipVisionConfig(**_A )
SCREAMING_SNAKE_CASE_ : Optional[Any] =InstructBlipQFormerConfig(**_A )
SCREAMING_SNAKE_CASE_ : Tuple =text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
SCREAMING_SNAKE_CASE_ : Tuple =CONFIG_MAPPING[text_model_type](**_A )
SCREAMING_SNAKE_CASE_ : Dict =self.text_config.tie_word_embeddings
SCREAMING_SNAKE_CASE_ : Optional[Any] =self.text_config.is_encoder_decoder
SCREAMING_SNAKE_CASE_ : Optional[int] =num_query_tokens
SCREAMING_SNAKE_CASE_ : Optional[int] =self.vision_config.hidden_size
SCREAMING_SNAKE_CASE_ : str =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
SCREAMING_SNAKE_CASE_ : str =1.0
SCREAMING_SNAKE_CASE_ : Union[str, Any] =0.02
@classmethod
def _snake_case ( cls , __A , __A , __A , **__A , ) -> Optional[int]:
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , )
def _snake_case ( self ) -> List[str]:
SCREAMING_SNAKE_CASE_ : Dict =copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] =self.vision_config.to_dict()
SCREAMING_SNAKE_CASE_ : Tuple =self.qformer_config.to_dict()
SCREAMING_SNAKE_CASE_ : Optional[Any] =self.text_config.to_dict()
SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.__class__.model_type
return output
| 443 | import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class lowerCAmelCase_ ( unittest.TestCase ):
UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
_A , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A )
self.assertEqual(
_A , [
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
] , )
_UpperCamelCase = text_generator.model.config.eos_token_id
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , )
self.assertEqual(
_A , [
[
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
],
[
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
],
] , )
@require_tf
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A )
self.assertEqual(
_A , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ):
_UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A )
return text_generator, ["This is a test", "Another test"]
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = '''Hello I believe in'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
_UpperCamelCase = text_generator(_A )
self.assertEqual(
_A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
_UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' )
self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] )
def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ):
_UpperCamelCase = text_generator.model
_UpperCamelCase = text_generator.tokenizer
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A )
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A )
self.assertEqual(
_A , [
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
] , )
if text_generator.tokenizer.pad_token is not None:
_UpperCamelCase = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A )
self.assertEqual(
_A , [
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
] , )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
_UpperCamelCase = text_generator('''''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
_UpperCamelCase = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
_UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_0000
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 500 , max_new_tokens=20 )
_UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(_A ):
text_generator(
'''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : Optional[int] ):
import torch
# Classic `model_kwargs`
_UpperCamelCase = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def UpperCamelCase_ ( self : Union[str, Any] ):
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : Optional[int] ):
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=_A , top_p=0.5 )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = '''Hello world'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
_UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' )
else:
_UpperCamelCase = logging.get_logger('''transformers.generation.utils''' )
_UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 )
self.assertIn(_A , cl.out )
# The user only sets one -> no warning
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_new_tokens=1 )
self.assertNotIn(_A , cl.out )
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_length=10 )
self.assertNotIn(_A , cl.out )
| 10 | 0 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 0
def UpperCAmelCase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(_A , _A )
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json"""
__SCREAMING_SNAKE_CASE = Path(_A ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_A , """w""" ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json"""
__SCREAMING_SNAKE_CASE = Path(_A ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_A , """w""" ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json"""
__SCREAMING_SNAKE_CASE = Path(_A ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_A , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A ).to_dict()
config_dict.pop("""image_processor_type""" )
__SCREAMING_SNAKE_CASE = CLIPImageProcessor(**_A )
# save in new folder
model_config.save_pretrained(_A )
config.save_pretrained(_A )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A )
# make sure private variable is not incorrectly saved
__SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(_A , _A )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def UpperCAmelCase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
with self.assertRaisesRegex(
_A , """clip-base is not a local folder and is not a valid model identifier""" ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""clip-base""" )
def UpperCAmelCase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
with self.assertRaisesRegex(
_A , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A , revision="""aaaaaa""" )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
with self.assertRaisesRegex(
_A , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def UpperCAmelCase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_A ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_A ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_A )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_A )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
try:
AutoConfig.register("""custom""" , _A )
AutoImageProcessor.register(_A , _A )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_A ):
AutoImageProcessor.register(_A , _A )
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(_A ) / """preprocessor_config.json"""
__SCREAMING_SNAKE_CASE = Path(_A ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_A , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_A , """w""" ) )
__SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(_A )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_A )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
class lowerCAmelCase__ ( __lowercase ):
"""simple docstring"""
lowerCAmelCase__ = True
try:
AutoConfig.register("""custom""" , _A )
AutoImageProcessor.register(_A , _A )
# If remote code is not set, the default is to use local
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(_A , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 627 | def _snake_case ( __snake_case = 100 ):
_UpperCamelCase = (n * (n + 1) // 2) ** 2
_UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 0 |
"""simple docstring"""
def lowerCAmelCase_ () -> Optional[int]:
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase = generate_large_matrix()
UpperCamelCase = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Union[str, Any]:
assert all(row == sorted(__snake_case , reverse=__snake_case ) for row in grid )
assert all(list(__snake_case ) == sorted(__snake_case , reverse=__snake_case ) for col in zip(*__snake_case ) )
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> Any:
a_ : Tuple = 0
a_ : int = len(__snake_case ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
a_ : str = (left + right) // 2
a_ : Union[str, Any] = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
a_ : int = mid + 1
else:
a_ : str = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__snake_case )
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] ) -> List[str]:
a_ : List[str] = 0
a_ : str = len(grid[0] )
for i in range(len(__snake_case ) ):
a_ : Optional[Any] = find_negative_index(grid[i][:bound] )
total += bound
return (len(__snake_case ) * len(grid[0] )) - total
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> Optional[Any]:
return len([number for row in grid for number in row if number < 0] )
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> Union[str, Any]:
a_ : int = 0
for row in grid:
for i, number in enumerate(__snake_case ):
if number < 0:
total += len(__snake_case ) - i
break
return total
def lowerCAmelCase_ () -> Optional[int]:
from timeit import timeit
print("Running benchmarks" )
a_ : List[str] = (
"from __main__ import count_negatives_binary_search, "
"count_negatives_brute_force, count_negatives_brute_force_with_break, grid"
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
a_ : Tuple = timeit(F'''{func}(grid=grid)''' , setup=__snake_case , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 473 | import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
_lowerCAmelCase = logging.get_logger(__name__)
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ):
def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ):
_UpperCamelCase = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
_UpperCamelCase = math.floor(val / multiple ) * multiple
if x < min_val:
_UpperCamelCase = math.ceil(val / multiple ) * multiple
return x
_UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size
_UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case )
_UpperCamelCase , _UpperCamelCase = output_size
# determine new height and width
_UpperCamelCase = output_height / input_height
_UpperCamelCase = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
_UpperCamelCase = scale_width
else:
# fit height
_UpperCamelCase = scale_height
_UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case )
_UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case )
return (new_height, new_width)
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = ["pixel_values"]
def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ):
super().__init__(**_A )
_UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384}
_UpperCamelCase = get_size_dict(_A )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = keep_aspect_ratio
_UpperCamelCase = ensure_multiple_of
_UpperCamelCase = resample
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
_UpperCamelCase = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(
_A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , )
return resize(_A , size=_A , resample=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ):
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(_A )
_UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
_UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(_A ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=_A , tensor_type=_A )
def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ):
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_A ) != len(_A ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(_A ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(_A ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_A )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 10 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase = {
"""configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""],
"""processing_git""": ["""GitProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase = [
"""GIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GitForCausalLM""",
"""GitModel""",
"""GitPreTrainedModel""",
"""GitVisionModel""",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
_UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 558 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
_UpperCamelCase = self.diffusers_dir
shutil.copy(
os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ):
_UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_UpperCamelCase = black.format_str(_A , mode=_A )
_UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(_A , '''w''' , newline='''\n''' ) as f:
f.write(_A )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_A )
with open(_A , '''r''' ) as f:
self.assertTrue(f.read() , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
# Base copy consistency
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , )
# Copy consistency with a really long name
_UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
| 10 | 0 |
"""simple docstring"""
from string import ascii_lowercase, ascii_uppercase
def __UpperCAmelCase ( __UpperCamelCase ):
if not sentence:
return ""
__lowercase : List[Any] = dict(zip(__snake_case , __snake_case ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 76 | import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_lowerCAmelCase = True
from torch.cuda.amp import autocast
_lowerCAmelCase = logging.getLogger(__name__)
def _snake_case ( __snake_case=None , __snake_case=None ):
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} )
UpperCAmelCase = field(
default=0.1, metadata={
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."
}, )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, )
UpperCAmelCase = field(
default=0.0_5, metadata={
"help": (
"Propability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
)
}, )
UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
UpperCAmelCase = field(
default="train+validation", metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
}, )
UpperCAmelCase = list_field(
default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = 42
UpperCAmelCase = True
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ):
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
_UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features]
_UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features]
_UpperCamelCase = self.processor.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
_UpperCamelCase = self.processor.pad(
labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , )
# replace padding with -100 to ignore loss correctly
_UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 )
_UpperCamelCase = labels
return batch
class lowerCAmelCase_ ( __lowercase ):
def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ):
model.train()
_UpperCamelCase = self._prepare_inputs(_A )
if self.use_amp:
with autocast():
_UpperCamelCase = self.compute_loss(_A , _A )
else:
_UpperCamelCase = self.compute_loss(_A , _A )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
_UpperCamelCase = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
_UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum()
else:
raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" )
if self.args.gradient_accumulation_steps > 1:
_UpperCamelCase = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(_A ).backward()
elif self.use_apex:
with amp.scale_loss(_A , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(_A )
else:
loss.backward()
return loss.detach()
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
_UpperCamelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCamelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
_UpperCamelCase = datasets.load_dataset(
'''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name )
_UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' )
# Create and save tokenizer
_UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]"""
def remove_special_characters(__snake_case ):
_UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' '''
return batch
_UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] )
_UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] )
def extract_all_chars(__snake_case ):
_UpperCamelCase = ''' '''.join(batch['''text'''] )
_UpperCamelCase = list(set(__snake_case ) )
return {"vocab": [vocab], "all_text": [all_text]}
_UpperCamelCase = train_dataset.map(
__snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , )
_UpperCamelCase = train_dataset.map(
__snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , )
_UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) )
_UpperCamelCase = {v: k for k, v in enumerate(__snake_case )}
_UpperCamelCase = vocab_dict[''' ''']
del vocab_dict[" "]
_UpperCamelCase = len(__snake_case )
_UpperCamelCase = len(__snake_case )
with open('''vocab.json''' , '''w''' ) as vocab_file:
json.dump(__snake_case , __snake_case )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCamelCase = WavaVecaCTCTokenizer(
'''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , )
_UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case )
_UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case )
_UpperCamelCase = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
_UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples )
_UpperCamelCase = train_dataset.select(range(__snake_case ) )
if data_args.max_val_samples is not None:
_UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) )
_UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(__snake_case ):
_UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] )
_UpperCamelCase = resampler(__snake_case ).squeeze().numpy()
_UpperCamelCase = 16000
_UpperCamelCase = batch['''text''']
return batch
_UpperCamelCase = train_dataset.map(
__snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
_UpperCamelCase = eval_dataset.map(
__snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(__snake_case ):
# check that all files have the correct sampling rate
assert (
len(set(batch['''sampling_rate'''] ) ) == 1
), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."""
_UpperCamelCase = processor(
audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] )
batch.update(__snake_case )
return batch
_UpperCamelCase = train_dataset.map(
__snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , )
_UpperCamelCase = eval_dataset.map(
__snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , )
# Metric
_UpperCamelCase = datasets.load_metric('''wer''' )
def compute_metrics(__snake_case ):
_UpperCamelCase = pred.predictions
_UpperCamelCase = np.argmax(__snake_case , axis=-1 )
_UpperCamelCase = processor.tokenizer.pad_token_id
_UpperCamelCase = processor.batch_decode(__snake_case )
# we do not want to group tokens when computing the metrics
_UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case )
_UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
_UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case )
# Initialize our Trainer
_UpperCamelCase = CTCTrainer(
model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
_UpperCamelCase = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
_UpperCamelCase = model_args.model_name_or_path
else:
_UpperCamelCase = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
_UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case )
trainer.save_model()
_UpperCamelCase = train_result.metrics
_UpperCamelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case )
)
_UpperCamelCase = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('''train''' , __snake_case )
trainer.save_metrics('''train''' , __snake_case )
trainer.save_state()
# Evaluation
_UpperCamelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCamelCase = trainer.evaluate()
_UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case )
_UpperCamelCase = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('''eval''' , __snake_case )
trainer.save_metrics('''eval''' , __snake_case )
return results
if __name__ == "__main__":
main()
| 10 | 0 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def lowerCamelCase__ ( ):
__snake_case = HfArgumentParser(__snake_case )
__snake_case = parser.parse_args_into_dataclasses()[0]
__snake_case = TensorFlowBenchmark(args=__snake_case )
try:
__snake_case = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
__snake_case = 'Arg --no_{0} is no longer used, please use --no-{0} instead.'
__snake_case = ' '.join(str(__snake_case ).split(' ' )[:-1] )
__snake_case = ''
__snake_case = eval(str(__snake_case ).split(' ' )[-1] )
__snake_case = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(__snake_case )
if len(__snake_case ) > 0:
__snake_case = full_error_msg + begin_error_msg + str(__snake_case )
raise ValueError(__snake_case )
benchmark.run()
if __name__ == "__main__":
main()
| 356 | import math
class lowerCAmelCase_ :
def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1
_UpperCamelCase = n
_UpperCamelCase = [
[math.inf for j in range(0 , _A )] for i in range(0 , _A )
] # adjacency matrix for weight
_UpperCamelCase = [
[math.inf for j in range(0 , _A )] for i in range(0 , _A )
] # dp[i][j] stores minimum distance from i to j
def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ):
_UpperCamelCase = w
def UpperCamelCase_ ( self : Optional[int] ):
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
_UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ):
return self.dp[u][v]
if __name__ == "__main__":
_lowerCAmelCase = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 10 | 0 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
A_ : Tuple =logging.get_logger(__name__)
class __UpperCAmelCase ( __lowercase ):
__A : Optional[int] = ['pixel_values']
def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = IMAGENET_DEFAULT_MEAN , _lowerCamelCase = IMAGENET_DEFAULT_STD , **_lowerCamelCase , ):
super().__init__(**_A )
lowerCAmelCase_ = size if size is not None else {'''shortest_edge''': 224}
lowerCAmelCase_ = get_size_dict(_A , default_to_square=_A )
lowerCAmelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowerCAmelCase_ = get_size_dict(_A , param_name='''crop_size''' )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = resample
lowerCAmelCase_ = do_center_crop
lowerCAmelCase_ = crop_size
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ):
lowerCAmelCase_ = get_size_dict(_A , default_to_square=_A )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
lowerCAmelCase_ = int((256 / 224) * size['''shortest_edge'''] )
lowerCAmelCase_ = get_resize_output_image_size(_A , size=_A , default_to_square=_A )
lowerCAmelCase_ = {'''height''': output_size[0], '''width''': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
_A , size=(size_dict['''height'''], size_dict['''width''']) , resample=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ):
lowerCAmelCase_ = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ):
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ):
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ):
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ = image_std if image_std is not None else self.image_std
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(_A , default_to_square=_A )
lowerCAmelCase_ = crop_size if crop_size is not None else self.crop_size
lowerCAmelCase_ = get_size_dict(_A , param_name='''crop_size''' )
lowerCAmelCase_ = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(_A ) for image in images]
if do_resize:
lowerCAmelCase_ = [self.resize(_A , _A , _A ) for image in images]
if do_center_crop:
lowerCAmelCase_ = [self.center_crop(_A , _A ) for image in images]
if do_rescale:
lowerCAmelCase_ = [self.rescale(_A , _A ) for image in images]
if do_normalize:
lowerCAmelCase_ = [self.normalize(_A , _A , _A ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(_A , _A ) for image in images]
lowerCAmelCase_ = {'''pixel_values''': images}
return BatchFeature(data=_A , tensor_type=_A )
| 274 | import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
def _snake_case ( __snake_case=None , __snake_case=None ):
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = list_field(
default=[], metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
}, )
UpperCAmelCase = list_field(
default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
UpperCAmelCase = list_field(
default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
}, )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
}, )
UpperCAmelCase = field(
default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, )
UpperCAmelCase = field(
default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, )
UpperCAmelCase = field(
default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, )
UpperCAmelCase = field(
default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, )
UpperCAmelCase = field(
default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, )
UpperCAmelCase = field(
default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, )
UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
}, )
def UpperCamelCase_ ( self : Union[str, Any] ):
warnings.warn(
F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' , _A , )
def UpperCamelCase_ ( self : str ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def UpperCamelCase_ ( self : List[Any] ):
if len(self.models ) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' )
return self.models
@property
def UpperCamelCase_ ( self : Optional[int] ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''' )
return False
else:
return True
| 10 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_lowerCamelCase = {
'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'],
'tokenization_ctrl': ['CTRLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = [
'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST',
'CTRLForSequenceClassification',
'CTRLLMHeadModel',
'CTRLModel',
'CTRLPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = [
'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFCTRLForSequenceClassification',
'TFCTRLLMHeadModel',
'TFCTRLModel',
'TFCTRLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 6 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ):
from .. import __version__
_UpperCamelCase = take_from
_UpperCamelCase = ()
if not isinstance(args[0] , __snake_case ):
_UpperCamelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ):
raise ValueError(
f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
f""" version {__version__} is >= {version_name}""" )
_UpperCamelCase = None
if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__snake_case ),)
_UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(__snake_case , __snake_case ):
values += (getattr(__snake_case , __snake_case ),)
_UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
_UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
_UpperCamelCase = warning + ''' ''' if standard_warn else ''''''
warnings.warn(warning + message , __snake_case , stacklevel=__snake_case )
if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0:
_UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCamelCase = call_frame.filename
_UpperCamelCase = call_frame.lineno
_UpperCamelCase = call_frame.function
_UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(__snake_case ) == 0:
return
elif len(__snake_case ) == 1:
return values[0]
return values
| 10 | 0 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]:
return str(__snake_case ) == str(__snake_case )[::-1]
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
return int(__snake_case ) + int(str(__snake_case )[::-1] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0 ) -> List[str]:
lowerCAmelCase = []
for num in range(1 , __snake_case ):
lowerCAmelCase = 0
lowerCAmelCase = num
while iterations < 5_0:
lowerCAmelCase = sum_reverse(__snake_case )
iterations += 1
if is_palindrome(__snake_case ):
break
else:
lychrel_nums.append(__snake_case )
return len(__snake_case )
if __name__ == "__main__":
print(f'{solution() = }')
| 312 | import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_lowerCAmelCase = logging.getLogger(__name__)
def _snake_case ( __snake_case , __snake_case ):
return (preds == labels).mean()
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} )
UpperCAmelCase = field(
default=128, metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} )
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed
set_seed(training_args.seed )
try:
_UpperCamelCase = processors[data_args.task_name]()
_UpperCamelCase = processor.get_labels()
_UpperCamelCase = len(__snake_case )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
_UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , )
# Get datasets
_UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(__snake_case ) -> Dict:
_UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(__snake_case , p.label_ids )}
# Data collator
_UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_UpperCamelCase = Trainer(
model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_UpperCamelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCamelCase = trainer.evaluate()
_UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(__snake_case , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __snake_case , __snake_case )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__snake_case )
return results
def _snake_case ( __snake_case ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 10 | 0 |
"""simple docstring"""
from __future__ import annotations
from typing import TypedDict
class UpperCAmelCase_ ( __lowercase ):
__SCREAMING_SNAKE_CASE : Optional[int] = 4_2
__SCREAMING_SNAKE_CASE : str = 4_2
def __snake_case ( SCREAMING_SNAKE_CASE__ : Any ) -> int:
'''simple docstring'''
if not isinstance(__snake_case , __snake_case ):
raise TypeError("The parameter s type must be str." )
return [s[i:] + s[:i] for i in range(len(__snake_case ) )]
def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> str:
'''simple docstring'''
if not isinstance(__snake_case , __snake_case ):
raise TypeError("The parameter s type must be str." )
if not s:
raise ValueError("The parameter s must not be empty." )
_UpperCAmelCase : int = all_rotations(__snake_case )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
_UpperCAmelCase : List[str] = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(__snake_case ),
}
return response
def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]:
'''simple docstring'''
if not isinstance(__snake_case , __snake_case ):
raise TypeError("The parameter bwt_string type must be str." )
if not bwt_string:
raise ValueError("The parameter bwt_string must not be empty." )
try:
_UpperCAmelCase : List[Any] = int(__snake_case )
except ValueError:
raise TypeError(
"The parameter idx_original_string type must be int or passive"
" of cast to int." )
if idx_original_string < 0:
raise ValueError("The parameter idx_original_string must not be lower than 0." )
if idx_original_string >= len(__snake_case ):
raise ValueError(
"The parameter idx_original_string must be lower than" " len(bwt_string)." )
_UpperCAmelCase : List[Any] = [""] * len(__snake_case )
for _ in range(len(__snake_case ) ):
for i in range(len(__snake_case ) ):
_UpperCAmelCase : Optional[int] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
_lowerCAmelCase : Dict = "Provide a string that I will generate its BWT transform: "
_lowerCAmelCase : Dict = input(entry_msg).strip()
_lowerCAmelCase : Optional[int] = bwt_transform(s)
print(
F"Burrows Wheeler transform for string \'{s}\' results "
F"in \'{result['bwt_string']}\'"
)
_lowerCAmelCase : Optional[Any] = reverse_bwt(result["bwt_string"], result["idx_original_string"])
print(
F"Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' "
F"we get original string \'{original_string}\'"
)
| 289 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = "trocr"
UpperCAmelCase = ["past_key_values"]
UpperCAmelCase = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ):
_UpperCamelCase = vocab_size
_UpperCamelCase = d_model
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = activation_function
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = init_std
_UpperCamelCase = decoder_layerdrop
_UpperCamelCase = use_cache
_UpperCamelCase = scale_embedding
_UpperCamelCase = use_learned_position_embeddings
_UpperCamelCase = layernorm_embedding
super().__init__(
pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
| 10 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : List[Any] ={
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] =[
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
_lowercase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 136 | import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_lengths
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = gelu_activation
_UpperCamelCase = sinusoidal_embeddings
_UpperCamelCase = causal
_UpperCamelCase = asm
_UpperCamelCase = n_langs
_UpperCamelCase = vocab_size
_UpperCamelCase = n_special
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_labels
_UpperCamelCase = num_choices
_UpperCamelCase = summary_type
_UpperCamelCase = use_proj
_UpperCamelCase = scope
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_input_lengths:
_UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float()
_UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCamelCase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase_ ( self : str ):
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ):
_UpperCamelCase = FlaubertModel(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , lengths=_A , langs=_A )
_UpperCamelCase = model(_A , langs=_A )
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ):
_UpperCamelCase = FlaubertWithLMHeadModel(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ):
_UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ):
_UpperCamelCase = FlaubertForQuestionAnswering(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ):
_UpperCamelCase = FlaubertForSequenceClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ):
_UpperCamelCase = self.num_labels
_UpperCamelCase = FlaubertForTokenClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , attention_mask=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ):
_UpperCamelCase = self.num_choices
_UpperCamelCase = FlaubertForMultipleChoice(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCAmelCase = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ):
_UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
return inputs_dict
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = FlaubertModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 )
def UpperCamelCase_ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_A )
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_A )
@slow
def UpperCamelCase_ ( self : str ):
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = FlaubertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@slow
@require_torch_gpu
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
_UpperCamelCase = True
_UpperCamelCase = model_class(config=_A )
_UpperCamelCase = self._prepare_for_class(_A , _A )
_UpperCamelCase = torch.jit.trace(
_A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) )
_UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A )
loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' )
_UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
_UpperCamelCase = model(_A )[0]
_UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _A )
_UpperCamelCase = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
| 10 | 0 |
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_lowercase = """src/diffusers"""
_lowercase = """."""
# This is to make sure the diffusers module imported is the one in the repo.
_lowercase = importlib.util.spec_from_file_location(
"""diffusers""",
os.path.join(DIFFUSERS_PATH, """__init__.py"""),
submodule_search_locations=[DIFFUSERS_PATH],
)
_lowercase = spec.loader.load_module()
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> Union[str, Any]:
return line.startswith(__snake_case ) or len(__snake_case ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , __snake_case ) is not None
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] ) -> int:
SCREAMING_SNAKE_CASE_ : Any =object_name.split('''.''' )
SCREAMING_SNAKE_CASE_ : List[Any] =0
# First let's find the module where our object lives.
SCREAMING_SNAKE_CASE_ : Optional[Any] =parts[i]
while i < len(__snake_case ) and not os.path.isfile(os.path.join(__snake_case , f'{module}.py' ) ):
i += 1
if i < len(__snake_case ):
SCREAMING_SNAKE_CASE_ : Optional[Any] =os.path.join(__snake_case , parts[i] )
if i >= len(__snake_case ):
raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(__snake_case , f'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =f.readlines()
# Now let's find the class / func in the code!
SCREAMING_SNAKE_CASE_ : Union[str, Any] =''''''
SCREAMING_SNAKE_CASE_ : int =0
for name in parts[i + 1 :]:
while (
line_index < len(__snake_case ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(__snake_case ):
raise ValueError(f' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
SCREAMING_SNAKE_CASE_ : List[str] =line_index
while line_index < len(__snake_case ) and _should_continue(lines[line_index] , __snake_case ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
SCREAMING_SNAKE_CASE_ : Optional[Any] =lines[start_index:line_index]
return "".join(__snake_case )
_lowercase = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""")
_lowercase = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""")
_lowercase = re.compile(R"""<FILL\s+[^>]*>""")
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> List[Any]:
SCREAMING_SNAKE_CASE_ : Tuple =code.split('''\n''' )
SCREAMING_SNAKE_CASE_ : Dict =0
while idx < len(__snake_case ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(__snake_case ):
return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0]
return ""
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> List[Any]:
SCREAMING_SNAKE_CASE_ : Any =len(get_indent(__snake_case ) ) > 0
if has_indent:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =f'class Bla:\n{code}'
SCREAMING_SNAKE_CASE_ : List[Any] =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__snake_case )
SCREAMING_SNAKE_CASE_ : Optional[int] =black.format_str(__snake_case , mode=__snake_case )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =style_docstrings_in_code(__snake_case )
return result[len('''class Bla:\n''' ) :] if has_indent else result
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=False ) -> int:
with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =f.readlines()
SCREAMING_SNAKE_CASE_ : int =[]
SCREAMING_SNAKE_CASE_ : Dict =0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(__snake_case ):
SCREAMING_SNAKE_CASE_ : List[Any] =_re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =search.groups()
SCREAMING_SNAKE_CASE_ : Dict =find_code_in_diffusers(__snake_case )
SCREAMING_SNAKE_CASE_ : Any =get_indent(__snake_case )
SCREAMING_SNAKE_CASE_ : List[str] =line_index + 1 if indent == theoretical_indent else line_index + 2
SCREAMING_SNAKE_CASE_ : Dict =theoretical_indent
SCREAMING_SNAKE_CASE_ : List[Any] =start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
SCREAMING_SNAKE_CASE_ : Optional[Any] =True
while line_index < len(__snake_case ) and should_continue:
line_index += 1
if line_index >= len(__snake_case ):
break
SCREAMING_SNAKE_CASE_ : Optional[int] =lines[line_index]
SCREAMING_SNAKE_CASE_ : int =_should_continue(__snake_case , __snake_case ) and re.search(f'^{indent}# End copy' , __snake_case ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
SCREAMING_SNAKE_CASE_ : Tuple =lines[start_index:line_index]
SCREAMING_SNAKE_CASE_ : int =''''''.join(__snake_case )
# Remove any nested `Copied from` comments to avoid circular copies
SCREAMING_SNAKE_CASE_ : str =[line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__snake_case ) is None]
SCREAMING_SNAKE_CASE_ : int ='''\n'''.join(__snake_case )
# Before comparing, use the `replace_pattern` on the original code.
if len(__snake_case ) > 0:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =replace_pattern.replace('''with''' , '''''' ).split(''',''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] =[_re_replace_pattern.search(__snake_case ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =pattern.groups()
SCREAMING_SNAKE_CASE_ : str =re.sub(__snake_case , __snake_case , __snake_case )
if option.strip() == "all-casing":
SCREAMING_SNAKE_CASE_ : Any =re.sub(obja.lower() , obja.lower() , __snake_case )
SCREAMING_SNAKE_CASE_ : Dict =re.sub(obja.upper() , obja.upper() , __snake_case )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
SCREAMING_SNAKE_CASE_ : List[str] =blackify(lines[start_index - 1] + theoretical_code )
SCREAMING_SNAKE_CASE_ : int =theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
SCREAMING_SNAKE_CASE_ : Tuple =lines[:start_index] + [theoretical_code] + lines[line_index:]
SCREAMING_SNAKE_CASE_ : int =start_index + 1
if overwrite and len(__snake_case ) > 0:
# Warn the user a file has been modified.
print(f'Detected changes, rewriting {filename}.' )
with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(__snake_case )
return diffs
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] = False ) -> Dict:
SCREAMING_SNAKE_CASE_ : List[str] =glob.glob(os.path.join(__snake_case , '''**/*.py''' ) , recursive=__snake_case )
SCREAMING_SNAKE_CASE_ : Optional[int] =[]
for filename in all_files:
SCREAMING_SNAKE_CASE_ : str =is_copy_consistent(__snake_case , __snake_case )
diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(__snake_case ) > 0:
SCREAMING_SNAKE_CASE_ : Optional[int] ='''\n'''.join(__snake_case )
raise Exception(
'''Found the following copy inconsistencies:\n'''
+ diff
+ '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
_lowercase = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 443 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = projection_dim
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
_UpperCamelCase = bos_token_id
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
_UpperCamelCase = input_mask.numpy()
_UpperCamelCase , _UpperCamelCase = input_mask.shape
_UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_A ):
_UpperCamelCase = 1
_UpperCamelCase = 0
_UpperCamelCase = self.get_config()
return config, input_ids, tf.convert_to_tensor(_A )
def UpperCamelCase_ ( self : str ):
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ):
_UpperCamelCase = TFBlipTextModel(config=_A )
_UpperCamelCase = model(_A , attention_mask=_A , training=_A )
_UpperCamelCase = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else ()
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = BlipTextModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 )
def UpperCamelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : List[str] ):
pass
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = TFBlipTextModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase_ ( self : int , _A : Optional[int]=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
| 10 | 0 |
'''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase : str = {
'vocab_file': {
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json',
},
'merges_file': {
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt',
},
'tokenizer_file': {
'Salesforce/codegen-350M-mono': (
'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json'
),
},
}
UpperCAmelCase : Any = {
'Salesforce/codegen-350M-mono': 2_0_4_8,
}
class lowerCAmelCase__ ( __lowercase ):
"""simple docstring"""
lowerCAmelCase__ = VOCAB_FILES_NAMES
lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ = ["input_ids", "attention_mask"]
lowerCAmelCase__ = CodeGenTokenizer
def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]="<|endoftext|>" , __SCREAMING_SNAKE_CASE : Any="<|endoftext|>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<|endoftext|>" , __SCREAMING_SNAKE_CASE : List[Any]=False , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> int:
"""simple docstring"""
super().__init__(
_A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , )
if kwargs.pop("""add_bos_token""" , _A ):
__SCREAMING_SNAKE_CASE = kwargs.pop("""name_or_path""" , """""" )
raise ValueError(
"""Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token."""
"""Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n"""
f'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n'
f'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n'
"""This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."""
""" so that the fast tokenizer works correctly.""" )
__SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , _A ) != add_prefix_space:
__SCREAMING_SNAKE_CASE = getattr(_A , pre_tok_state.pop("""type""" ) )
__SCREAMING_SNAKE_CASE = add_prefix_space
__SCREAMING_SNAKE_CASE = pre_tok_class(**_A )
__SCREAMING_SNAKE_CASE = add_prefix_space
def UpperCAmelCase__ ( self : int , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Any ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , _A )
assert self.add_prefix_space or not is_split_into_words, (
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*_A , **_A )
def UpperCAmelCase__ ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , _A )
assert self.add_prefix_space or not is_split_into_words, (
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*_A , **_A )
def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = super().decode(
token_ids=_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , **_A , )
if truncate_before_pattern is not None and len(_A ) > 0:
__SCREAMING_SNAKE_CASE = self.truncate(_A , _A )
return decoded_text
def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict ) -> Tuple:
"""simple docstring"""
def find_re(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ):
__SCREAMING_SNAKE_CASE = pattern.search(_A , _A )
return m.start() if m else -1
__SCREAMING_SNAKE_CASE = [re.compile(_A , re.MULTILINE ) for pattern in truncate_before_pattern]
__SCREAMING_SNAKE_CASE = list(re.finditer("""^print""" , _A , re.MULTILINE ) )
if len(_A ) > 1:
__SCREAMING_SNAKE_CASE = completion[: prints[1].start()]
__SCREAMING_SNAKE_CASE = list(re.finditer("""^def""" , _A , re.MULTILINE ) )
if len(_A ) > 1:
__SCREAMING_SNAKE_CASE = completion[: defs[1].start()]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = [
pos for pos in [find_re(_A , _A , _A ) for terminal in terminals] if pos != -1
]
if len(_A ) > 0:
return completion[: min(_A )]
else:
return completion
| 627 | from __future__ import annotations
_lowerCAmelCase = [True] * 1_000_001
_lowerCAmelCase = 2
while i * i <= 1_000_000:
if seive[i]:
for j in range(i * i, 1_000_001, i):
_lowerCAmelCase = False
i += 1
def _snake_case ( __snake_case ):
return seive[n]
def _snake_case ( __snake_case ):
return any(digit in '''02468''' for digit in str(__snake_case ) )
def _snake_case ( __snake_case = 1000000 ):
_UpperCamelCase = [2] # result already includes the number 2.
for num in range(3 , limit + 1 , 2 ):
if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ):
_UpperCamelCase = str(__snake_case )
_UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )]
if all(is_prime(__snake_case ) for i in list_nums ):
result.append(__snake_case )
return result
def _snake_case ( ):
return len(find_circular_primes() )
if __name__ == "__main__":
print(f'{len(find_circular_primes()) = }')
| 10 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FocalNetForImageClassification',
'FocalNetForMaskedImageModeling',
'FocalNetBackbone',
'FocalNetModel',
'FocalNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 473 | import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = DebertaVaTokenizer
UpperCAmelCase = DebertaVaTokenizerFast
UpperCAmelCase = True
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ):
_UpperCamelCase = '''this is a test'''
_UpperCamelCase = '''this is a test'''
return input_text, output_text
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(_A ) , 3_0001 )
def UpperCamelCase_ ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 )
def UpperCamelCase_ ( self : List[str] ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[Any] ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : int ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Tuple ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = tokenizer.encode(_A )
_UpperCamelCase = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''This is a test'''
_UpperCamelCase = [13, 1, 4398, 25, 21, 1289]
_UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
_UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = DebertaVaTokenizer(_A )
_UpperCamelCase = tokenizer.encode('''sequence builders''' )
_UpperCamelCase = tokenizer.encode('''multi-sequence build''' )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 10 | 0 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
_UpperCAmelCase = {
"""iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""",
"""iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""",
"""iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""",
"""mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""",
"""mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""",
"""mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""",
"""mask_downscaling.0""": """mask_embed.conv1""",
"""mask_downscaling.1""": """mask_embed.layer_norm1""",
"""mask_downscaling.3""": """mask_embed.conv2""",
"""mask_downscaling.4""": """mask_embed.layer_norm2""",
"""mask_downscaling.6""": """mask_embed.conv3""",
"""point_embeddings""": """point_embed""",
"""pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""",
"""image_encoder""": """vision_encoder""",
"""neck.0""": """neck.conv1""",
"""neck.1""": """neck.layer_norm1""",
"""neck.2""": """neck.conv2""",
"""neck.3""": """neck.layer_norm2""",
"""patch_embed.proj""": """patch_embed.projection""",
""".norm""": """.layer_norm""",
"""blocks""": """layers""",
}
def UpperCamelCase ( __lowercase : Optional[int] ):
'''simple docstring'''
A_ : List[str] = {}
state_dict.pop('pixel_mean' ,__snake_case )
state_dict.pop('pixel_std' ,__snake_case )
A_ : Optional[int] = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A_ : List[Any] = key.replace(__snake_case ,__snake_case )
if re.match(__snake_case ,__snake_case ):
A_ : str = int(re.match(__snake_case ,__snake_case ).group(2 ) )
if layer_nb == 0:
A_ : List[Any] = key.replace('layers.0' ,'proj_in' )
elif layer_nb == 1:
A_ : Dict = key.replace('layers.1' ,'layers.0' )
elif layer_nb == 2:
A_ : str = key.replace('layers.2' ,'proj_out' )
A_ : Dict = value
A_ : str = model_state_dict[
'prompt_encoder.shared_embedding.positional_embedding'
]
return model_state_dict
def UpperCamelCase ( __lowercase : str ,__lowercase : Any ,__lowercase : int ,__lowercase : Optional[Any]="ybelkada/segment-anything" ):
'''simple docstring'''
A_ : Optional[int] = hf_hub_download(__snake_case ,f'''checkpoints/{model_name}.pth''' )
if "sam_vit_b" in model_name:
A_ : Optional[int] = SamConfig()
elif "sam_vit_l" in model_name:
A_ : List[Any] = SamVisionConfig(
hidden_size=10_24 ,num_hidden_layers=24 ,num_attention_heads=16 ,global_attn_indexes=[5, 11, 17, 23] ,)
A_ : Optional[int] = SamConfig(
vision_config=__snake_case ,)
elif "sam_vit_h" in model_name:
A_ : Tuple = SamVisionConfig(
hidden_size=12_80 ,num_hidden_layers=32 ,num_attention_heads=16 ,global_attn_indexes=[7, 15, 23, 31] ,)
A_ : List[Any] = SamConfig(
vision_config=__snake_case ,)
A_ : List[Any] = torch.load(__snake_case ,map_location='cpu' )
A_ : List[Any] = replace_keys(__snake_case )
A_ : List[Any] = SamImageProcessor()
A_ : Optional[int] = SamProcessor(image_processor=__snake_case )
A_ : Tuple = SamModel(__snake_case )
hf_model.load_state_dict(__snake_case )
A_ : Union[str, Any] = hf_model.to('cuda' )
A_ : List[Any] = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'
A_ : int = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ).convert('RGB' )
A_ : int = [[[4_00, 6_50]]]
A_ : Optional[Any] = [[1]]
A_ : Optional[int] = processor(images=np.array(__snake_case ) ,return_tensors='pt' ).to('cuda' )
with torch.no_grad():
A_ : Any = hf_model(**__snake_case )
A_ : List[str] = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.5_79_89_02_51_15_96_68
A_ : List[Any] = processor(
images=np.array(__snake_case ) ,input_points=__snake_case ,input_labels=__snake_case ,return_tensors='pt' ).to('cuda' )
with torch.no_grad():
A_ : int = hf_model(**__snake_case )
A_ : List[str] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.97_12_60_30_92_19_36_04
A_ : int = ((75, 2_75, 17_25, 8_50),)
A_ : Optional[int] = processor(images=np.array(__snake_case ) ,input_boxes=__snake_case ,return_tensors='pt' ).to('cuda' )
with torch.no_grad():
A_ : Tuple = hf_model(**__snake_case )
A_ : Any = output.iou_scores.squeeze()
assert scores[-1].item() == 0.86_86_01_56_05_92_65_14
# Test with 2 points and 1 image.
A_ : List[str] = [[[4_00, 6_50], [8_00, 6_50]]]
A_ : Any = [[1, 1]]
A_ : Dict = processor(
images=np.array(__snake_case ) ,input_points=__snake_case ,input_labels=__snake_case ,return_tensors='pt' ).to('cuda' )
with torch.no_grad():
A_ : str = hf_model(**__snake_case )
A_ : int = output.iou_scores.squeeze()
assert scores[-1].item() == 0.99_36_04_77_92_43_46_92
if __name__ == "__main__":
_UpperCAmelCase = argparse.ArgumentParser()
_UpperCAmelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""]
parser.add_argument(
"""--model_name""",
default="""sam_vit_h_4b8939""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
parser.add_argument(
"""--model_hub_id""",
default="""ybelkada/segment-anything""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
_UpperCAmelCase = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 558 | import sys
from collections import defaultdict
class lowerCAmelCase_ :
def __init__( self : Optional[int] ):
_UpperCamelCase = []
def UpperCamelCase_ ( self : Any , _A : str ):
return self.node_position[vertex]
def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ):
_UpperCamelCase = pos
def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_UpperCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_UpperCamelCase = 2 * start + 1
else:
_UpperCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
_UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child]
_UpperCamelCase , _UpperCamelCase = (
heap[start],
positions[start],
)
_UpperCamelCase , _UpperCamelCase = temp, tempa
_UpperCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _A )
self.top_to_bottom(_A , _A , _A , _A )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ):
_UpperCamelCase = position[index]
while index != 0:
_UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_UpperCamelCase = heap[parent]
_UpperCamelCase = position[parent]
self.set_position(position[parent] , _A )
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , _A )
break
_UpperCamelCase = parent
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , 0 )
def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ):
_UpperCamelCase = len(_A ) // 2 - 1
for i in range(_A , -1 , -1 ):
self.top_to_bottom(_A , _A , len(_A ) , _A )
def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ):
_UpperCamelCase = positions[0]
_UpperCamelCase = sys.maxsize
self.top_to_bottom(_A , 0 , len(_A ) , _A )
return temp
def _snake_case ( __snake_case ):
_UpperCamelCase = Heap()
_UpperCamelCase = [0] * len(__snake_case )
_UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
_UpperCamelCase = []
for vertex in range(len(__snake_case ) ):
distance_tv.append(sys.maxsize )
positions.append(__snake_case )
heap.node_position.append(__snake_case )
_UpperCamelCase = []
_UpperCamelCase = 1
_UpperCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_UpperCamelCase = 0
_UpperCamelCase = distance
heap.heapify(__snake_case , __snake_case )
for _ in range(1 , len(__snake_case ) ):
_UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_UpperCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__snake_case )]
):
_UpperCamelCase = distance
heap.bottom_to_top(
__snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case )
_UpperCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
_lowerCAmelCase = int(input("Enter number of edges: ").strip())
_lowerCAmelCase = defaultdict(list)
for _ in range(edges_number):
_lowerCAmelCase = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 10 | 0 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCAmelCase_ :
def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=30 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=None , ) -> Optional[Any]:
__lowercase : Any = parent
__lowercase : Any = batch_size
__lowercase : str = image_size
__lowercase : Union[str, Any] = patch_size
__lowercase : Optional[int] = num_channels
__lowercase : Any = is_training
__lowercase : int = use_labels
__lowercase : Optional[int] = hidden_size
__lowercase : Any = num_hidden_layers
__lowercase : Any = num_attention_heads
__lowercase : List[str] = intermediate_size
__lowercase : Optional[int] = hidden_act
__lowercase : List[str] = hidden_dropout_prob
__lowercase : List[Any] = attention_probs_dropout_prob
__lowercase : Union[str, Any] = type_sequence_label_size
__lowercase : Any = initializer_range
__lowercase : Optional[int] = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase : List[str] = (image_size // patch_size) ** 2
__lowercase : Optional[Any] = num_patches + 1
def _lowerCamelCase ( self ) -> str:
__lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase : Any = None
if self.use_labels:
__lowercase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase : str = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self ) -> Optional[int]:
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]:
__lowercase : Optional[int] = TFViTModel(config=_A )
__lowercase : str = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
__lowercase : Tuple = self.image_size // 2
__lowercase : Optional[Any] = pixel_values[:, :, :image_size, :image_size]
__lowercase : List[str] = model(_A , interpolate_pos_encoding=_A , training=_A )
__lowercase : Dict = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple:
__lowercase : List[str] = self.type_sequence_label_size
__lowercase : str = TFViTForImageClassification(_A )
__lowercase : Any = model(_A , labels=_A , training=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
__lowercase : List[Any] = self.image_size // 2
__lowercase : str = pixel_values[:, :, :image_size, :image_size]
__lowercase : int = model(_A , interpolate_pos_encoding=_A , training=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase : str = 1
__lowercase : Dict = TFViTForImageClassification(_A )
__lowercase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase : int = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _lowerCamelCase ( self ) -> Any:
__lowercase : List[Any] = self.prepare_config_and_inputs()
__lowercase ,__lowercase ,__lowercase : List[str] = config_and_inputs
__lowercase : List[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ):
UpperCamelCase =(TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
UpperCamelCase =(
{"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification}
if is_tf_available()
else {}
)
UpperCamelCase =False
UpperCamelCase =False
UpperCamelCase =False
def _lowerCamelCase ( self ) -> Union[str, Any]:
__lowercase : Optional[Any] = TFViTModelTester(self )
__lowercase : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def _lowerCamelCase ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def _lowerCamelCase ( self ) -> List[str]:
pass
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def _lowerCamelCase ( self ) -> Tuple:
pass
def _lowerCamelCase ( self ) -> Union[str, Any]:
__lowercase ,__lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase : int = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
__lowercase : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) )
def _lowerCamelCase ( self ) -> Union[str, Any]:
__lowercase ,__lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase : str = model_class(_A )
__lowercase : Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase : str = [*signature.parameters.keys()]
__lowercase : List[str] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _A )
def _lowerCamelCase ( self ) -> Dict:
__lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def _lowerCamelCase ( self ) -> Optional[int]:
__lowercase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@slow
def _lowerCamelCase ( self ) -> Union[str, Any]:
__lowercase : str = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(_A )
def __UpperCAmelCase ( ):
__lowercase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self ) -> Optional[Any]:
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self ) -> Any:
__lowercase : List[Any] = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' )
__lowercase : Optional[Any] = self.default_image_processor
__lowercase : str = prepare_img()
__lowercase : str = image_processor(images=_A , return_tensors='''tf''' )
# forward pass
__lowercase : Optional[Any] = model(**_A )
# verify the logits
__lowercase : int = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , _A )
__lowercase : Optional[Any] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] )
tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1E-4 )
| 76 | import logging
import os
from .state import PartialState
class lowerCAmelCase_ ( logging.LoggerAdapter ):
@staticmethod
def UpperCamelCase_ ( _A : Any ):
_UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ):
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCamelCase = kwargs.pop('''main_process_only''' , _A )
_UpperCamelCase = kwargs.pop('''in_order''' , _A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
elif in_order:
_UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
state.wait_for_everyone()
def _snake_case ( __snake_case , __snake_case = None ):
if log_level is None:
_UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case )
_UpperCamelCase = logging.getLogger(__snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__snake_case , {} )
| 10 | 0 |
'''simple docstring'''
import os
def lowerCamelCase__ ( ):
__snake_case = os.path.join(os.path.dirname(__snake_case ) , 'num.txt' )
with open(__snake_case ) as file_hand:
return str(sum(int(__snake_case ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 356 | import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = "▁"
_lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = BertGenerationTokenizer
UpperCAmelCase = False
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[str] ):
super().setUp()
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''<s>'''
_UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(_A ) , 1002 )
def UpperCamelCase_ ( self : Dict ):
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def UpperCamelCase_ ( self : Union[str, Any] ):
return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''Hello World!'''
_UpperCamelCase = [1_8536, 2260, 101]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
_UpperCamelCase = [
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
3_4324,
497,
391,
408,
1_1342,
1244,
385,
100,
938,
985,
456,
574,
362,
1_2597,
3200,
3129,
1172,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def UpperCamelCase_ ( self : Dict ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10]
_UpperCamelCase = ''' '''.join(_A )
_UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = self.big_tokenizer.batch_encode_plus(
[sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = BertGenerationConfig()
_UpperCamelCase = BertGenerationEncoder(_A )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
| 10 | 0 |
'''simple docstring'''
def snake_case_ ( __snake_case : Union[str, Any]) -> Union[str, Any]:
if not isinstance(__snake_case , __snake_case):
lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(__snake_case)
if number < 1:
lowerCAmelCase_ = F'''Input value of [number={number}] must be > 0'''
raise ValueError(__snake_case)
lowerCAmelCase_ = 1
for i in range(1 , __snake_case):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 274 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = StableUnCLIPPipeline
UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
UpperCAmelCase = False
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = 32
_UpperCamelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , )
torch.manual_seed(0 )
_UpperCamelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
_UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A )
_UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , )
torch.manual_seed(0 )
_UpperCamelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCamelCase = AutoencoderKL()
_UpperCamelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_A )
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_A )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
_UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' )
_UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_A , _A )
def UpperCamelCase_ ( self : Optional[Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
_UpperCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 10 | 0 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Any , __A :str ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 3
SCREAMING_SNAKE_CASE__ = 250
SCREAMING_SNAKE_CASE__ = ids_tensor((batch_size, length) , _A )
SCREAMING_SNAKE_CASE__ = torch.ones((batch_size, length) , device=_A , dtype=torch.float ) / length
return input_ids, scores
def _snake_case ( self :Any ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(5 )
SCREAMING_SNAKE_CASE__ = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(_A , _A ) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(9 )
self.assertFalse(criteria(_A , _A ) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(10 )
self.assertTrue(criteria(_A , _A ) )
def _snake_case ( self :List[str] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MaxLengthCriteria(max_length=10 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(5 )
self.assertFalse(criteria(_A , _A ) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(9 )
self.assertFalse(criteria(_A , _A ) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(10 )
self.assertTrue(criteria(_A , _A ) )
def _snake_case ( self :Optional[int] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(5 )
self.assertFalse(criteria(_A , _A ) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(9 )
self.assertFalse(criteria(_A , _A ) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(10 )
self.assertTrue(criteria(_A , _A ) )
SCREAMING_SNAKE_CASE__ = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def _snake_case ( self :Any ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_tensors(5 )
SCREAMING_SNAKE_CASE__ = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(_A , _A ) )
SCREAMING_SNAKE_CASE__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(_A , _A ) )
def _snake_case ( self :Any ) -> List[Any]:
"""simple docstring"""
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(_A ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
SCREAMING_SNAKE_CASE__ = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(_A ) , 1 ) | 6 | from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _snake_case ( __snake_case , __snake_case ):
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) )
def _snake_case ( __snake_case , __snake_case ):
if dataset.ndim != value_array.ndim:
_UpperCamelCase = (
'''Wrong input data\'s dimensions... '''
f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(__snake_case )
try:
if dataset.shape[1] != value_array.shape[1]:
_UpperCamelCase = (
'''Wrong input data\'s shape... '''
f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(__snake_case )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
_UpperCamelCase = (
'''Input data have different datatype... '''
f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(__snake_case )
_UpperCamelCase = []
for value in value_array:
_UpperCamelCase = euclidean(__snake_case , dataset[0] )
_UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
_UpperCamelCase = euclidean(__snake_case , __snake_case )
if dist > temp_dist:
_UpperCamelCase = temp_dist
_UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _snake_case ( __snake_case , __snake_case ):
return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 0 |
import math
class lowercase_ :
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Dict:
lowerCAmelCase = 0.0
lowerCAmelCase = 0.0
for i in range(len(_A ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->int:
for i in range(len(_A ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
# Training Examples ( m, n )
lowerCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
lowerCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
lowerCAmelCase = SelfOrganizingMap()
lowerCAmelCase = 3
lowerCAmelCase = 0.5
for _ in range(__snake_case ):
for j in range(len(__snake_case ) ):
# training sample
lowerCAmelCase = training_samples[j]
# Compute the winning vector
lowerCAmelCase = self_organizing_map.get_winner(__snake_case , __snake_case )
# Update the winning vector
lowerCAmelCase = self_organizing_map.update(__snake_case , __snake_case , __snake_case , __snake_case )
# classify test sample
lowerCAmelCase = [0, 0, 0, 1]
lowerCAmelCase = self_organizing_map.get_winner(__snake_case , __snake_case )
# results
print(f"Clusters that the test sample belongs to : {winner}" )
print(f"Weights that have been trained : {weights}" )
# running the main() function
if __name__ == "__main__":
main()
| 312 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = ShapEPipeline
UpperCAmelCase = ["prompt"]
UpperCAmelCase = ["prompt"]
UpperCAmelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
UpperCAmelCase = False
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
return 32
@property
def UpperCamelCase_ ( self : int ):
return 32
@property
def UpperCamelCase_ ( self : List[str] ):
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 8
@property
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def UpperCamelCase_ ( self : List[Any] ):
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(_A )
@property
def UpperCamelCase_ ( self : int ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
_UpperCamelCase = PriorTransformer(**_A )
return model
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
_UpperCamelCase = ShapERenderer(**_A )
return model
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.dummy_prior
_UpperCamelCase = self.dummy_text_encoder
_UpperCamelCase = self.dummy_tokenizer
_UpperCamelCase = self.dummy_renderer
_UpperCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , )
_UpperCamelCase = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = '''cpu'''
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) )
_UpperCamelCase = output.images[0]
_UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
_UpperCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase_ ( self : Any ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = torch_device == '''cpu'''
_UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_A , relax_max_difference=_A , )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = 1
_UpperCamelCase = 2
_UpperCamelCase = self.get_dummy_inputs(_A )
for key in inputs.keys():
if key in self.batch_params:
_UpperCamelCase = batch_size * [inputs[key]]
_UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
_UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 )
_UpperCamelCase = pipe(
'''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_A , _A )
| 10 | 0 |
"""simple docstring"""
import math
def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( SCREAMING_SNAKE_CASE__ : str = 10_001 ) -> Tuple:
'''simple docstring'''
try:
_UpperCAmelCase : List[str] = int(__snake_case )
except (TypeError, ValueError):
raise TypeError("Parameter nth must be int or castable to int." ) from None
if nth <= 0:
raise ValueError("Parameter nth must be greater than or equal to one." )
_UpperCAmelCase : Any = []
_UpperCAmelCase : str = 2
while len(__snake_case ) < nth:
if is_prime(__snake_case ):
primes.append(__snake_case )
num += 1
else:
num += 1
return primes[len(__snake_case ) - 1]
if __name__ == "__main__":
print(F"{solution() = }")
| 289 | import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_lowerCAmelCase = HfApi()
_lowerCAmelCase = {}
# fmt: off
_lowerCAmelCase = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
_lowerCAmelCase = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
_lowerCAmelCase = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
_lowerCAmelCase = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
_lowerCAmelCase = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
_lowerCAmelCase = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
_lowerCAmelCase = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
_lowerCAmelCase = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
_lowerCAmelCase = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
_lowerCAmelCase = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
_lowerCAmelCase = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
_lowerCAmelCase = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
_lowerCAmelCase = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
_lowerCAmelCase = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
_lowerCAmelCase = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
_lowerCAmelCase = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f'Started running {mod.modelId}!!!')
if mod.modelId.startswith("CompVis"):
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_lowerCAmelCase = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_lowerCAmelCase = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3
)
print(f'{mod.modelId} has passed successfully!!!')
| 10 | 0 |
class snake_case__ :
"""simple docstring"""
def __init__( self , __lowercase ) -> str:
"""simple docstring"""
a__ : Any = set_counts
a__ : int = max(_A )
a__ : Optional[Any] = len(_A )
a__ : Optional[int] = [1] * num_sets
a__ : str = list(range(_A ) )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Union[str, Any]:
"""simple docstring"""
a__ : List[str] = self.get_parent(_A )
a__ : Tuple = self.get_parent(_A )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
a__ : Union[str, Any] = 0
a__ : List[str] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
a__ : str = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
a__ : int = 0
a__ : Optional[Any] = src_parent
a__ : Union[str, Any] = self.set_counts[src_parent]
a__ : Tuple = max(self.max_set , _A )
return True
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int:
"""simple docstring"""
if self.parents[disj_set] == disj_set:
return disj_set
a__ : Optional[int] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 136 | from typing import List
from .keymap import KEYMAP, get_character
def _snake_case ( __snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += [key]
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
def _snake_case ( *__snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += keys
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
class lowerCAmelCase_ ( __lowercase ):
def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ):
_UpperCamelCase = super().__new__(cls , _A , _A , _A )
if not hasattr(_A , '''key_handler''' ):
setattr(_A , '''key_handler''' , {} )
setattr(_A , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCamelCase = getattr(_A , '''handle_key''' , [] )
for key in handled_keys:
_UpperCamelCase = value
return new_cls
@staticmethod
def UpperCamelCase_ ( cls : str ):
_UpperCamelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCamelCase = ord(_A )
_UpperCamelCase = cls.key_handler.get(_A )
if handler:
_UpperCamelCase = char
return handler(cls )
else:
return None
def _snake_case ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 10 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase = {
"""configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""]
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = ["""RemBertTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = ["""RemBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RemBertForCausalLM""",
"""RemBertForMaskedLM""",
"""RemBertForMultipleChoice""",
"""RemBertForQuestionAnswering""",
"""RemBertForSequenceClassification""",
"""RemBertForTokenClassification""",
"""RemBertLayer""",
"""RemBertModel""",
"""RemBertPreTrainedModel""",
"""load_tf_weights_in_rembert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRemBertForCausalLM""",
"""TFRemBertForMaskedLM""",
"""TFRemBertForMultipleChoice""",
"""TFRemBertForQuestionAnswering""",
"""TFRemBertForSequenceClassification""",
"""TFRemBertForTokenClassification""",
"""TFRemBertLayer""",
"""TFRemBertModel""",
"""TFRemBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
_lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 443 | import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class lowerCAmelCase_ ( unittest.TestCase ):
UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
_A , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A )
self.assertEqual(
_A , [
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
] , )
_UpperCamelCase = text_generator.model.config.eos_token_id
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , )
self.assertEqual(
_A , [
[
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
],
[
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
],
] , )
@require_tf
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A )
self.assertEqual(
_A , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ):
_UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A )
return text_generator, ["This is a test", "Another test"]
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = '''Hello I believe in'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
_UpperCamelCase = text_generator(_A )
self.assertEqual(
_A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
_UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' )
self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] )
def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ):
_UpperCamelCase = text_generator.model
_UpperCamelCase = text_generator.tokenizer
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A )
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A )
self.assertEqual(
_A , [
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
] , )
if text_generator.tokenizer.pad_token is not None:
_UpperCamelCase = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A )
self.assertEqual(
_A , [
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
] , )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
_UpperCamelCase = text_generator('''''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
_UpperCamelCase = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
_UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_0000
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 500 , max_new_tokens=20 )
_UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(_A ):
text_generator(
'''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : Optional[int] ):
import torch
# Classic `model_kwargs`
_UpperCamelCase = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def UpperCamelCase_ ( self : Union[str, Any] ):
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : Optional[int] ):
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=_A , top_p=0.5 )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = '''Hello world'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
_UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' )
else:
_UpperCamelCase = logging.get_logger('''transformers.generation.utils''' )
_UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 )
self.assertIn(_A , cl.out )
# The user only sets one -> no warning
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_new_tokens=1 )
self.assertNotIn(_A , cl.out )
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_length=10 )
self.assertNotIn(_A , cl.out )
| 10 | 0 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def a__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = tau * frequency / samplerate
__SCREAMING_SNAKE_CASE = sin(__snake_case )
__SCREAMING_SNAKE_CASE = cos(__snake_case )
__SCREAMING_SNAKE_CASE = _sin / (2 * q_factor)
__SCREAMING_SNAKE_CASE = (1 - _cos) / 2
__SCREAMING_SNAKE_CASE = 1 - _cos
__SCREAMING_SNAKE_CASE = 1 + alpha
__SCREAMING_SNAKE_CASE = -2 * _cos
__SCREAMING_SNAKE_CASE = 1 - alpha
__SCREAMING_SNAKE_CASE = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = tau * frequency / samplerate
__SCREAMING_SNAKE_CASE = sin(__snake_case )
__SCREAMING_SNAKE_CASE = cos(__snake_case )
__SCREAMING_SNAKE_CASE = _sin / (2 * q_factor)
__SCREAMING_SNAKE_CASE = (1 + _cos) / 2
__SCREAMING_SNAKE_CASE = -1 - _cos
__SCREAMING_SNAKE_CASE = 1 + alpha
__SCREAMING_SNAKE_CASE = -2 * _cos
__SCREAMING_SNAKE_CASE = 1 - alpha
__SCREAMING_SNAKE_CASE = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = tau * frequency / samplerate
__SCREAMING_SNAKE_CASE = sin(__snake_case )
__SCREAMING_SNAKE_CASE = cos(__snake_case )
__SCREAMING_SNAKE_CASE = _sin / (2 * q_factor)
__SCREAMING_SNAKE_CASE = _sin / 2
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = -ba
__SCREAMING_SNAKE_CASE = 1 + alpha
__SCREAMING_SNAKE_CASE = -2 * _cos
__SCREAMING_SNAKE_CASE = 1 - alpha
__SCREAMING_SNAKE_CASE = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = tau * frequency / samplerate
__SCREAMING_SNAKE_CASE = sin(__snake_case )
__SCREAMING_SNAKE_CASE = cos(__snake_case )
__SCREAMING_SNAKE_CASE = _sin / (2 * q_factor)
__SCREAMING_SNAKE_CASE = 1 - alpha
__SCREAMING_SNAKE_CASE = -2 * _cos
__SCREAMING_SNAKE_CASE = 1 + alpha
__SCREAMING_SNAKE_CASE = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def a__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = tau * frequency / samplerate
__SCREAMING_SNAKE_CASE = sin(__snake_case )
__SCREAMING_SNAKE_CASE = cos(__snake_case )
__SCREAMING_SNAKE_CASE = _sin / (2 * q_factor)
__SCREAMING_SNAKE_CASE = 10 ** (gain_db / 40)
__SCREAMING_SNAKE_CASE = 1 + alpha * big_a
__SCREAMING_SNAKE_CASE = -2 * _cos
__SCREAMING_SNAKE_CASE = 1 - alpha * big_a
__SCREAMING_SNAKE_CASE = 1 + alpha / big_a
__SCREAMING_SNAKE_CASE = -2 * _cos
__SCREAMING_SNAKE_CASE = 1 - alpha / big_a
__SCREAMING_SNAKE_CASE = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = tau * frequency / samplerate
__SCREAMING_SNAKE_CASE = sin(__snake_case )
__SCREAMING_SNAKE_CASE = cos(__snake_case )
__SCREAMING_SNAKE_CASE = _sin / (2 * q_factor)
__SCREAMING_SNAKE_CASE = 10 ** (gain_db / 40)
__SCREAMING_SNAKE_CASE = (big_a + 1) - (big_a - 1) * _cos
__SCREAMING_SNAKE_CASE = (big_a + 1) + (big_a - 1) * _cos
__SCREAMING_SNAKE_CASE = (big_a - 1) - (big_a + 1) * _cos
__SCREAMING_SNAKE_CASE = (big_a - 1) + (big_a + 1) * _cos
__SCREAMING_SNAKE_CASE = 2 * sqrt(__snake_case ) * alpha
__SCREAMING_SNAKE_CASE = big_a * (pmc + aaa)
__SCREAMING_SNAKE_CASE = 2 * big_a * mpc
__SCREAMING_SNAKE_CASE = big_a * (pmc - aaa)
__SCREAMING_SNAKE_CASE = ppmc + aaa
__SCREAMING_SNAKE_CASE = -2 * pmpc
__SCREAMING_SNAKE_CASE = ppmc - aaa
__SCREAMING_SNAKE_CASE = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = tau * frequency / samplerate
__SCREAMING_SNAKE_CASE = sin(__snake_case )
__SCREAMING_SNAKE_CASE = cos(__snake_case )
__SCREAMING_SNAKE_CASE = _sin / (2 * q_factor)
__SCREAMING_SNAKE_CASE = 10 ** (gain_db / 40)
__SCREAMING_SNAKE_CASE = (big_a + 1) - (big_a - 1) * _cos
__SCREAMING_SNAKE_CASE = (big_a + 1) + (big_a - 1) * _cos
__SCREAMING_SNAKE_CASE = (big_a - 1) - (big_a + 1) * _cos
__SCREAMING_SNAKE_CASE = (big_a - 1) + (big_a + 1) * _cos
__SCREAMING_SNAKE_CASE = 2 * sqrt(__snake_case ) * alpha
__SCREAMING_SNAKE_CASE = big_a * (ppmc + aaa)
__SCREAMING_SNAKE_CASE = -2 * big_a * pmpc
__SCREAMING_SNAKE_CASE = big_a * (ppmc - aaa)
__SCREAMING_SNAKE_CASE = pmc + aaa
__SCREAMING_SNAKE_CASE = 2 * mpc
__SCREAMING_SNAKE_CASE = pmc - aaa
__SCREAMING_SNAKE_CASE = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 627 | def _snake_case ( __snake_case = 100 ):
_UpperCamelCase = (n * (n + 1) // 2) ** 2
_UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 0 |
"""simple docstring"""
import logging
import os
from .state import PartialState
class UpperCAmelCase__ ( logging.LoggerAdapter ):
"""simple docstring"""
@staticmethod
def A ( _SCREAMING_SNAKE_CASE ) -> Tuple:
a_ : Dict = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]:
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
a_ : str = kwargs.pop("main_process_only" , _A )
a_ : List[Any] = kwargs.pop("in_order" , _A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
a_ , a_ : Tuple = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
elif in_order:
a_ : Optional[Any] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
a_ , a_ : Dict = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
state.wait_for_everyone()
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :Optional[int] = None ) -> str:
if log_level is None:
a_ : Optional[Any] = os.environ.get("ACCELERATE_LOG_LEVEL" , __snake_case )
a_ : Optional[Any] = logging.getLogger(__snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__snake_case , {} )
| 473 | import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
_lowerCAmelCase = logging.get_logger(__name__)
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ):
def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ):
_UpperCamelCase = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
_UpperCamelCase = math.floor(val / multiple ) * multiple
if x < min_val:
_UpperCamelCase = math.ceil(val / multiple ) * multiple
return x
_UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size
_UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case )
_UpperCamelCase , _UpperCamelCase = output_size
# determine new height and width
_UpperCamelCase = output_height / input_height
_UpperCamelCase = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
_UpperCamelCase = scale_width
else:
# fit height
_UpperCamelCase = scale_height
_UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case )
_UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case )
return (new_height, new_width)
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = ["pixel_values"]
def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ):
super().__init__(**_A )
_UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384}
_UpperCamelCase = get_size_dict(_A )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = keep_aspect_ratio
_UpperCamelCase = ensure_multiple_of
_UpperCamelCase = resample
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
_UpperCamelCase = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(
_A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , )
return resize(_A , size=_A , resample=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ):
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(_A )
_UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
_UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(_A ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=_A , tensor_type=_A )
def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ):
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_A ) != len(_A ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(_A ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(_A ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_A )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 10 | 0 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {
"""nvidia/segformer-b0-finetuned-ade-512-512""": (
"""https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"""
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class UpperCAmelCase ( __lowercase ):
'''simple docstring'''
lowerCamelCase_ = '''segformer'''
def __init__( self , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[3_2, 6_4, 1_6_0, 2_5_6] , lowercase=[7, 3, 3, 3] , lowercase=[4, 2, 2, 2] , lowercase=[1, 2, 5, 8] , lowercase=[4, 4, 4, 4] , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase=0.02 , lowercase=0.1 , lowercase=1E-6 , lowercase=2_5_6 , lowercase=2_5_5 , **lowercase , ):
"""simple docstring"""
super().__init__(**_A )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , _A , )
A_ : Union[str, Any] = num_channels
A_ : Any = num_encoder_blocks
A_ : int = depths
A_ : List[str] = sr_ratios
A_ : int = hidden_sizes
A_ : str = patch_sizes
A_ : List[str] = strides
A_ : Any = mlp_ratios
A_ : str = num_attention_heads
A_ : int = hidden_act
A_ : Optional[int] = hidden_dropout_prob
A_ : Optional[int] = attention_probs_dropout_prob
A_ : Tuple = classifier_dropout_prob
A_ : int = initializer_range
A_ : Dict = drop_path_rate
A_ : Optional[Any] = layer_norm_eps
A_ : Tuple = decoder_hidden_size
A_ : List[str] = kwargs.get('reshape_last_stage' , _A )
A_ : int = semantic_loss_ignore_index
class UpperCAmelCase ( __lowercase ):
'''simple docstring'''
lowerCamelCase_ = version.parse('''1.11''' )
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
return 1E-4
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
return 1_2
| 558 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
_UpperCamelCase = self.diffusers_dir
shutil.copy(
os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ):
_UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_UpperCamelCase = black.format_str(_A , mode=_A )
_UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(_A , '''w''' , newline='''\n''' ) as f:
f.write(_A )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_A )
with open(_A , '''r''' ) as f:
self.assertTrue(f.read() , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
# Base copy consistency
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , )
# Copy consistency with a really long name
_UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
| 10 | 0 |
"""simple docstring"""
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
a_ = datasets.load_iris()
a_ = np.array(data['data'])
a_ = np.array(data['target'])
a_ = data['target_names']
a_ , a_ , a_ , a_ = train_test_split(X, y)
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) )
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=5 ):
__lowercase : List[str] = zip(__snake_case , __snake_case )
# List of distances of all points from the point to be classified
__lowercase : Any = []
for data_point in data:
__lowercase : str = euclidean_distance(data_point[0] , __snake_case )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__lowercase : int = [i[1] for i in sorted(__snake_case )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__lowercase : Optional[Any] = Counter(__snake_case ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 76 | import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_lowerCAmelCase = True
from torch.cuda.amp import autocast
_lowerCAmelCase = logging.getLogger(__name__)
def _snake_case ( __snake_case=None , __snake_case=None ):
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} )
UpperCAmelCase = field(
default=0.1, metadata={
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."
}, )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, )
UpperCAmelCase = field(
default=0.0_5, metadata={
"help": (
"Propability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
)
}, )
UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
UpperCAmelCase = field(
default="train+validation", metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
}, )
UpperCAmelCase = list_field(
default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = 42
UpperCAmelCase = True
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ):
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
_UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features]
_UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features]
_UpperCamelCase = self.processor.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
_UpperCamelCase = self.processor.pad(
labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , )
# replace padding with -100 to ignore loss correctly
_UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 )
_UpperCamelCase = labels
return batch
class lowerCAmelCase_ ( __lowercase ):
def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ):
model.train()
_UpperCamelCase = self._prepare_inputs(_A )
if self.use_amp:
with autocast():
_UpperCamelCase = self.compute_loss(_A , _A )
else:
_UpperCamelCase = self.compute_loss(_A , _A )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
_UpperCamelCase = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
_UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum()
else:
raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" )
if self.args.gradient_accumulation_steps > 1:
_UpperCamelCase = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(_A ).backward()
elif self.use_apex:
with amp.scale_loss(_A , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(_A )
else:
loss.backward()
return loss.detach()
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
_UpperCamelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCamelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
_UpperCamelCase = datasets.load_dataset(
'''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name )
_UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' )
# Create and save tokenizer
_UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]"""
def remove_special_characters(__snake_case ):
_UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' '''
return batch
_UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] )
_UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] )
def extract_all_chars(__snake_case ):
_UpperCamelCase = ''' '''.join(batch['''text'''] )
_UpperCamelCase = list(set(__snake_case ) )
return {"vocab": [vocab], "all_text": [all_text]}
_UpperCamelCase = train_dataset.map(
__snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , )
_UpperCamelCase = train_dataset.map(
__snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , )
_UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) )
_UpperCamelCase = {v: k for k, v in enumerate(__snake_case )}
_UpperCamelCase = vocab_dict[''' ''']
del vocab_dict[" "]
_UpperCamelCase = len(__snake_case )
_UpperCamelCase = len(__snake_case )
with open('''vocab.json''' , '''w''' ) as vocab_file:
json.dump(__snake_case , __snake_case )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCamelCase = WavaVecaCTCTokenizer(
'''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , )
_UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case )
_UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case )
_UpperCamelCase = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
_UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples )
_UpperCamelCase = train_dataset.select(range(__snake_case ) )
if data_args.max_val_samples is not None:
_UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) )
_UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(__snake_case ):
_UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] )
_UpperCamelCase = resampler(__snake_case ).squeeze().numpy()
_UpperCamelCase = 16000
_UpperCamelCase = batch['''text''']
return batch
_UpperCamelCase = train_dataset.map(
__snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
_UpperCamelCase = eval_dataset.map(
__snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(__snake_case ):
# check that all files have the correct sampling rate
assert (
len(set(batch['''sampling_rate'''] ) ) == 1
), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."""
_UpperCamelCase = processor(
audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] )
batch.update(__snake_case )
return batch
_UpperCamelCase = train_dataset.map(
__snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , )
_UpperCamelCase = eval_dataset.map(
__snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , )
# Metric
_UpperCamelCase = datasets.load_metric('''wer''' )
def compute_metrics(__snake_case ):
_UpperCamelCase = pred.predictions
_UpperCamelCase = np.argmax(__snake_case , axis=-1 )
_UpperCamelCase = processor.tokenizer.pad_token_id
_UpperCamelCase = processor.batch_decode(__snake_case )
# we do not want to group tokens when computing the metrics
_UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case )
_UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
_UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case )
# Initialize our Trainer
_UpperCamelCase = CTCTrainer(
model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
_UpperCamelCase = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
_UpperCamelCase = model_args.model_name_or_path
else:
_UpperCamelCase = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
_UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case )
trainer.save_model()
_UpperCamelCase = train_result.metrics
_UpperCamelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case )
)
_UpperCamelCase = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('''train''' , __snake_case )
trainer.save_metrics('''train''' , __snake_case )
trainer.save_state()
# Evaluation
_UpperCamelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCamelCase = trainer.evaluate()
_UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case )
_UpperCamelCase = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('''eval''' , __snake_case )
trainer.save_metrics('''eval''' , __snake_case )
return results
if __name__ == "__main__":
main()
| 10 | 0 |
'''simple docstring'''
import math
def lowerCamelCase__ ( a = 100 ):
__snake_case = sum(i * i for i in range(1 , n + 1 ) )
__snake_case = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f'''{solution() = }''')
| 356 | import math
class lowerCAmelCase_ :
def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1
_UpperCamelCase = n
_UpperCamelCase = [
[math.inf for j in range(0 , _A )] for i in range(0 , _A )
] # adjacency matrix for weight
_UpperCamelCase = [
[math.inf for j in range(0 , _A )] for i in range(0 , _A )
] # dp[i][j] stores minimum distance from i to j
def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ):
_UpperCamelCase = w
def UpperCamelCase_ ( self : Optional[int] ):
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
_UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ):
return self.dp[u][v]
if __name__ == "__main__":
_lowerCAmelCase = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 10 | 0 |
'''simple docstring'''
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
A_ : List[Any] ='''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: ''')))
print('''Googling.....''')
A_ : Tuple =f'''https://www.google.com/search?q={query}&num=100'''
A_ : List[Any] =requests.get(
url,
headers={'''User-Agent''': str(UserAgent().random)},
)
try:
A_ : Optional[Any] =(
BeautifulSoup(res.text, '''html.parser''')
.find('''div''', attrs={'''class''': '''yuRUbf'''})
.find('''a''')
.get('''href''')
)
except AttributeError:
A_ : List[Any] =parse_qs(
BeautifulSoup(res.text, '''html.parser''')
.find('''div''', attrs={'''class''': '''kCrYT'''})
.find('''a''')
.get('''href''')
)['''url'''][0]
webbrowser.open(link)
| 274 | import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
def _snake_case ( __snake_case=None , __snake_case=None ):
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = list_field(
default=[], metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
}, )
UpperCAmelCase = list_field(
default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
UpperCAmelCase = list_field(
default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
}, )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
}, )
UpperCAmelCase = field(
default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, )
UpperCAmelCase = field(
default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, )
UpperCAmelCase = field(
default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, )
UpperCAmelCase = field(
default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, )
UpperCAmelCase = field(
default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, )
UpperCAmelCase = field(
default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, )
UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
}, )
def UpperCamelCase_ ( self : Union[str, Any] ):
warnings.warn(
F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' , _A , )
def UpperCamelCase_ ( self : str ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def UpperCamelCase_ ( self : List[Any] ):
if len(self.models ) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' )
return self.models
@property
def UpperCamelCase_ ( self : Optional[int] ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''' )
return False
else:
return True
| 10 | 0 |
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( __lowercase ):
lowerCamelCase_ = (UnCLIPScheduler,)
def _snake_case ( self :Any , **__A :int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {
"""num_train_timesteps""": 1000,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**_A )
return config
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def _snake_case ( self :int ) -> Optional[Any]:
"""simple docstring"""
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_A )
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_A )
def _snake_case ( self :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_A )
def _snake_case ( self :Union[str, Any] ) -> Tuple:
"""simple docstring"""
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_A )
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_A , prev_timestep=_A )
def _snake_case ( self :Optional[Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type="""fixed_small_log""" )
SCREAMING_SNAKE_CASE__ = scheduler_class(**_A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1E-5
def _snake_case ( self :List[str] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type="""learned_range""" )
SCREAMING_SNAKE_CASE__ = scheduler_class(**_A )
SCREAMING_SNAKE_CASE__ = 0.5
assert scheduler._get_variance(1 , predicted_variance=_A ) - -1_0.1_7_1_2_7_9_0 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=_A ) - -5.7_9_9_8_0_5_2 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=_A ) - -0.0_0_1_0_0_1_1 < 1E-5
def _snake_case ( self :str ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ = scheduler_class(**_A )
SCREAMING_SNAKE_CASE__ = scheduler.timesteps
SCREAMING_SNAKE_CASE__ = self.dummy_model()
SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
for i, t in enumerate(_A ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ = model(_A , _A )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ = scheduler.step(_A , _A , _A , generator=_A ).prev_sample
SCREAMING_SNAKE_CASE__ = pred_prev_sample
SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(_A ) )
SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2
assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1E-3
def _snake_case ( self :List[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ = scheduler_class(**_A )
scheduler.set_timesteps(25 )
SCREAMING_SNAKE_CASE__ = scheduler.timesteps
SCREAMING_SNAKE_CASE__ = self.dummy_model()
SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
for i, t in enumerate(_A ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ = model(_A , _A )
if i + 1 == timesteps.shape[0]:
SCREAMING_SNAKE_CASE__ = None
else:
SCREAMING_SNAKE_CASE__ = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ = scheduler.step(
_A , _A , _A , prev_timestep=_A , generator=_A ).prev_sample
SCREAMING_SNAKE_CASE__ = pred_prev_sample
SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(_A ) )
SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(_A ) )
assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2
assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1E-3
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
pass
def _snake_case ( self :Dict ) -> List[str]:
"""simple docstring"""
pass | 6 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ):
from .. import __version__
_UpperCamelCase = take_from
_UpperCamelCase = ()
if not isinstance(args[0] , __snake_case ):
_UpperCamelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ):
raise ValueError(
f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
f""" version {__version__} is >= {version_name}""" )
_UpperCamelCase = None
if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__snake_case ),)
_UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(__snake_case , __snake_case ):
values += (getattr(__snake_case , __snake_case ),)
_UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
_UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
_UpperCamelCase = warning + ''' ''' if standard_warn else ''''''
warnings.warn(warning + message , __snake_case , stacklevel=__snake_case )
if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0:
_UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCamelCase = call_frame.filename
_UpperCamelCase = call_frame.lineno
_UpperCamelCase = call_frame.function
_UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(__snake_case ) == 0:
return
elif len(__snake_case ) == 1:
return values[0]
return values
| 10 | 0 |
from torch import nn
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Dict:
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f"Unsupported activation function: {act_fn}" )
| 312 | import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_lowerCAmelCase = logging.getLogger(__name__)
def _snake_case ( __snake_case , __snake_case ):
return (preds == labels).mean()
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} )
UpperCAmelCase = field(
default=128, metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} )
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed
set_seed(training_args.seed )
try:
_UpperCamelCase = processors[data_args.task_name]()
_UpperCamelCase = processor.get_labels()
_UpperCamelCase = len(__snake_case )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
_UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , )
# Get datasets
_UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(__snake_case ) -> Dict:
_UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(__snake_case , p.label_ids )}
# Data collator
_UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_UpperCamelCase = Trainer(
model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_UpperCamelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCamelCase = trainer.evaluate()
_UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(__snake_case , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __snake_case , __snake_case )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__snake_case )
return results
def _snake_case ( __snake_case ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 10 | 0 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCAmelCase_ :
@staticmethod
def snake_case_ ( *A : Optional[int] , **A : Optional[Any] ):
pass
@is_pipeline_test
@require_vision
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def snake_case_ ( self : Optional[Any] , A : List[Any] , A : Optional[Any] , A : List[str] ):
_UpperCAmelCase : Optional[int] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
_UpperCAmelCase : str = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def snake_case_ ( self : Dict , A : Tuple , A : str ):
_UpperCAmelCase : List[str] = object_detector(examples[0] , threshold=0.0 )
_UpperCAmelCase : Dict = len(_A )
self.assertGreater(_A , 0 )
self.assertEqual(
_A , [
{
"score": ANY(_A ),
"label": ANY(_A ),
"box": {"xmin": ANY(_A ), "ymin": ANY(_A ), "xmax": ANY(_A ), "ymax": ANY(_A )},
}
for i in range(_A )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def snake_case_ ( self : List[Any] ):
pass
@require_torch
def snake_case_ ( self : Optional[int] ):
_UpperCAmelCase : Tuple = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
_UpperCAmelCase : Any = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , )
self.assertEqual(
nested_simplify(_A , decimals=4 ) , [
{"score": 0.7_235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7_218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7_184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6_748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6_656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6_614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6_456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6_419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
] , )
_UpperCAmelCase : Optional[Any] = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(_A , decimals=4 ) , [
[
{"score": 0.7_235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7_218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7_184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6_748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6_656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6_614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6_456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6_419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
]
] , )
@require_torch
@slow
def snake_case_ ( self : Dict ):
_UpperCAmelCase : List[str] = pipeline("zero-shot-object-detection" )
_UpperCAmelCase : List[Any] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(_A , decimals=4 ) , [
{"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
] , )
_UpperCAmelCase : int = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(_A , decimals=4 ) , [
[
{"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
[
{"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def snake_case_ ( self : List[Any] ):
pass
@require_torch
@slow
def snake_case_ ( self : List[str] ):
_UpperCAmelCase : List[Any] = 0.2
_UpperCAmelCase : List[str] = pipeline("zero-shot-object-detection" )
_UpperCAmelCase : Tuple = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=_A , )
self.assertEqual(
nested_simplify(_A , decimals=4 ) , [
{"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
] , )
@require_torch
@slow
def snake_case_ ( self : Any ):
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Optional[int] = pipeline("zero-shot-object-detection" )
_UpperCAmelCase : Dict = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=_A , )
self.assertEqual(
nested_simplify(_A , decimals=4 ) , [
{"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
] , )
| 289 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = "trocr"
UpperCAmelCase = ["past_key_values"]
UpperCAmelCase = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ):
_UpperCamelCase = vocab_size
_UpperCamelCase = d_model
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = activation_function
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = init_std
_UpperCamelCase = decoder_layerdrop
_UpperCamelCase = use_cache
_UpperCamelCase = scale_embedding
_UpperCamelCase = use_learned_position_embeddings
_UpperCamelCase = layernorm_embedding
super().__init__(
pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
| 10 | 0 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( _lowercase : List[Any]) -> Tuple:
"""simple docstring"""
# A local function to see if a dot lands in the circle.
def is_in_circle(_lowercase : Any , _lowercase : List[Any]) -> bool:
a__ : Optional[Any] = sqrt((x**2) + (y**2))
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
a__ : Union[str, Any] = mean(
int(is_in_circle(uniform(-1.0 , 1.0) , uniform(-1.0 , 1.0)))
for _ in range(__snake_case))
# The ratio of the area for circle to square is pi/4.
a__ : int = proportion * 4
print(F'''The estimated value of pi is {pi_estimate}''')
print(F'''The numpy value of pi is {pi}''')
print(F'''The total error is {abs(pi - pi_estimate)}''')
def lowerCAmelCase_ ( _lowercase : str , _lowercase : Tuple , _lowercase : List[Any] = 0.0 , _lowercase : str = 1.0 , ) -> Tuple:
"""simple docstring"""
return mean(
function_to_integrate(uniform(__snake_case , __snake_case)) for _ in range(__snake_case)) * (max_value - min_value)
def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Any = 0.0 , _lowercase : int = 1.0) -> Union[str, Any]:
"""simple docstring"""
def identity_function(_lowercase : Tuple) -> float:
return x
a__ : Tuple = area_under_curve_estimator(
__snake_case , __snake_case , __snake_case , __snake_case)
a__ : str = (max_value * max_value - min_value * min_value) / 2
print("""******************""")
print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''')
print(F'''Estimated value is {estimated_value}''')
print(F'''Expected value is {expected_value}''')
print(F'''Total error is {abs(estimated_value - expected_value)}''')
print("""******************""")
def lowerCAmelCase_ ( _lowercase : Any) -> int:
"""simple docstring"""
def function_to_integrate(_lowercase : Union[str, Any]) -> float:
return sqrt(4.0 - x * x)
a__ : Dict = area_under_curve_estimator(
__snake_case , __snake_case , 0.0 , 2.0)
print("""******************""")
print("""Estimating pi using area_under_curve_estimator""")
print(F'''Estimated value is {estimated_value}''')
print(F'''Expected value is {pi}''')
print(F'''Total error is {abs(estimated_value - pi)}''')
print("""******************""")
if __name__ == "__main__":
import doctest
doctest.testmod()
| 136 | import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_lengths
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = gelu_activation
_UpperCamelCase = sinusoidal_embeddings
_UpperCamelCase = causal
_UpperCamelCase = asm
_UpperCamelCase = n_langs
_UpperCamelCase = vocab_size
_UpperCamelCase = n_special
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_labels
_UpperCamelCase = num_choices
_UpperCamelCase = summary_type
_UpperCamelCase = use_proj
_UpperCamelCase = scope
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_input_lengths:
_UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float()
_UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCamelCase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase_ ( self : str ):
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ):
_UpperCamelCase = FlaubertModel(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , lengths=_A , langs=_A )
_UpperCamelCase = model(_A , langs=_A )
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ):
_UpperCamelCase = FlaubertWithLMHeadModel(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ):
_UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ):
_UpperCamelCase = FlaubertForQuestionAnswering(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ):
_UpperCamelCase = FlaubertForSequenceClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ):
_UpperCamelCase = self.num_labels
_UpperCamelCase = FlaubertForTokenClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , attention_mask=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ):
_UpperCamelCase = self.num_choices
_UpperCamelCase = FlaubertForMultipleChoice(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCAmelCase = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ):
_UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
return inputs_dict
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = FlaubertModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 )
def UpperCamelCase_ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_A )
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_A )
@slow
def UpperCamelCase_ ( self : str ):
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = FlaubertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@slow
@require_torch_gpu
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
_UpperCamelCase = True
_UpperCamelCase = model_class(config=_A )
_UpperCamelCase = self._prepare_for_class(_A , _A )
_UpperCamelCase = torch.jit.trace(
_A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) )
_UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A )
loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' )
_UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
_UpperCamelCase = model(_A )[0]
_UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _A )
_UpperCamelCase = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
| 10 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int ) -> List[Any]:
SCREAMING_SNAKE_CASE_ : List[str] =[tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class lowercase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
__lowerCamelCase = StableDiffusionLatentUpscalePipeline
__lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
__lowerCamelCase = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
__lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__lowerCamelCase = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__lowerCamelCase = frozenset([] )
__lowerCamelCase = True
@property
def _snake_case ( self ) -> Tuple:
SCREAMING_SNAKE_CASE_ : Optional[Any] =1
SCREAMING_SNAKE_CASE_ : Optional[Any] =4
SCREAMING_SNAKE_CASE_ : int =(16, 16)
SCREAMING_SNAKE_CASE_ : Any =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_A )
return image
def _snake_case ( self ) -> Optional[int]:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : Optional[Any] =UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_A , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=_A , only_cross_attention=_A , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
SCREAMING_SNAKE_CASE_ : List[str] =AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
SCREAMING_SNAKE_CASE_ : Optional[Any] =EulerDiscreteScheduler(prediction_type='''sample''' )
SCREAMING_SNAKE_CASE_ : Tuple =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''quick_gelu''' , projection_dim=512 , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =CLIPTextModel(_A )
SCREAMING_SNAKE_CASE_ : str =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE_ : List[Any] ={
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def _snake_case ( self , __A , __A=0 ) -> Dict:
if str(_A ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE_ : Optional[int] =torch.manual_seed(_A )
else:
SCREAMING_SNAKE_CASE_ : List[Any] =torch.Generator(device=_A ).manual_seed(_A )
SCREAMING_SNAKE_CASE_ : Any ={
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def _snake_case ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ : Tuple ='''cpu'''
SCREAMING_SNAKE_CASE_ : Dict =self.get_dummy_components()
SCREAMING_SNAKE_CASE_ : Optional[Any] =self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
SCREAMING_SNAKE_CASE_ : Optional[int] =self.get_dummy_inputs(_A )
SCREAMING_SNAKE_CASE_ : str =pipe(**_A ).images
SCREAMING_SNAKE_CASE_ : Tuple =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 256, 256, 3) )
SCREAMING_SNAKE_CASE_ : List[str] =np.array(
[0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] )
SCREAMING_SNAKE_CASE_ : Any =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A , 1e-3 )
def _snake_case ( self ) -> Tuple:
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def _snake_case ( self ) -> List[Any]:
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def _snake_case ( self ) -> Optional[Any]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def _snake_case ( self ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def _snake_case ( self ) -> List[Any]:
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def _snake_case ( self ) -> Optional[int]:
super().test_save_load_local(expected_max_difference=3e-3 )
def _snake_case ( self ) -> Optional[Any]:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def _snake_case ( self ) -> Optional[int]:
SCREAMING_SNAKE_CASE_ : List[str] =[
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
SCREAMING_SNAKE_CASE_ : List[Any] =self.get_dummy_components()
SCREAMING_SNAKE_CASE_ : Dict =self.pipeline_class(**_A )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
SCREAMING_SNAKE_CASE_ : Dict =self.get_dummy_inputs(_A )
SCREAMING_SNAKE_CASE_ : Optional[int] =2
SCREAMING_SNAKE_CASE_ : int =[]
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
SCREAMING_SNAKE_CASE_ : List[Any] =getattr(_A , scheduler_enum.name )
SCREAMING_SNAKE_CASE_ : Any =scheduler_cls.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE_ : Optional[int] =pipe(**_A )[0]
outputs.append(_A )
assert check_same_shape(_A )
@require_torch_gpu
@slow
class lowercase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ) -> Any:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.manual_seed(33 )
SCREAMING_SNAKE_CASE_ : List[Any] =StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
SCREAMING_SNAKE_CASE_ : str ='''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
SCREAMING_SNAKE_CASE_ : Tuple =pipe(_A , generator=_A , output_type='''latent''' ).images
SCREAMING_SNAKE_CASE_ : Tuple =upscaler(
prompt=_A , image=_A , num_inference_steps=20 , guidance_scale=0 , generator=_A , output_type='''np''' , ).images[0]
SCREAMING_SNAKE_CASE_ : str =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def _snake_case ( self ) -> Dict:
SCREAMING_SNAKE_CASE_ : str =torch.manual_seed(33 )
SCREAMING_SNAKE_CASE_ : Dict =StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
SCREAMING_SNAKE_CASE_ : List[str] ='''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
SCREAMING_SNAKE_CASE_ : Dict =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
SCREAMING_SNAKE_CASE_ : Optional[int] =upscaler(
prompt=_A , image=_A , num_inference_steps=20 , guidance_scale=0 , generator=_A , output_type='''np''' , ).images[0]
SCREAMING_SNAKE_CASE_ : int =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 443 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = projection_dim
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
_UpperCamelCase = bos_token_id
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
_UpperCamelCase = input_mask.numpy()
_UpperCamelCase , _UpperCamelCase = input_mask.shape
_UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_A ):
_UpperCamelCase = 1
_UpperCamelCase = 0
_UpperCamelCase = self.get_config()
return config, input_ids, tf.convert_to_tensor(_A )
def UpperCamelCase_ ( self : str ):
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ):
_UpperCamelCase = TFBlipTextModel(config=_A )
_UpperCamelCase = model(_A , attention_mask=_A , training=_A )
_UpperCamelCase = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else ()
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = BlipTextModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 )
def UpperCamelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : List[str] ):
pass
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = TFBlipTextModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase_ ( self : int , _A : Optional[int]=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
| 10 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Optional[Any] = {
'configuration_informer': [
'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[str] = [
'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'InformerForPrediction',
'InformerModel',
'InformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 627 | from __future__ import annotations
_lowerCAmelCase = [True] * 1_000_001
_lowerCAmelCase = 2
while i * i <= 1_000_000:
if seive[i]:
for j in range(i * i, 1_000_001, i):
_lowerCAmelCase = False
i += 1
def _snake_case ( __snake_case ):
return seive[n]
def _snake_case ( __snake_case ):
return any(digit in '''02468''' for digit in str(__snake_case ) )
def _snake_case ( __snake_case = 1000000 ):
_UpperCamelCase = [2] # result already includes the number 2.
for num in range(3 , limit + 1 , 2 ):
if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ):
_UpperCamelCase = str(__snake_case )
_UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )]
if all(is_prime(__snake_case ) for i in list_nums ):
result.append(__snake_case )
return result
def _snake_case ( ):
return len(find_circular_primes() )
if __name__ == "__main__":
print(f'{len(find_circular_primes()) = }')
| 10 | 0 |
"""simple docstring"""
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[str]:
a_ : int = prime_factors(__snake_case )
if is_square_free(__snake_case ):
return -1 if len(__snake_case ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 473 | import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = DebertaVaTokenizer
UpperCAmelCase = DebertaVaTokenizerFast
UpperCAmelCase = True
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ):
_UpperCamelCase = '''this is a test'''
_UpperCamelCase = '''this is a test'''
return input_text, output_text
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(_A ) , 3_0001 )
def UpperCamelCase_ ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 )
def UpperCamelCase_ ( self : List[str] ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[Any] ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : int ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Tuple ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = tokenizer.encode(_A )
_UpperCamelCase = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''This is a test'''
_UpperCamelCase = [13, 1, 4398, 25, 21, 1289]
_UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
_UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = DebertaVaTokenizer(_A )
_UpperCamelCase = tokenizer.encode('''sequence builders''' )
_UpperCamelCase = tokenizer.encode('''multi-sequence build''' )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 10 | 0 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class UpperCAmelCase ( ctypes.Structure ):
'''simple docstring'''
lowerCamelCase_ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def UpperCamelCase ( ):
'''simple docstring'''
if os.name == "nt":
A_ : Union[str, Any] = CursorInfo()
A_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__snake_case ,ctypes.byref(__snake_case ) )
A_ : Optional[int] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(__snake_case ,ctypes.byref(__snake_case ) )
elif os.name == "posix":
sys.stdout.write('\033[?25l' )
sys.stdout.flush()
def UpperCamelCase ( ):
'''simple docstring'''
if os.name == "nt":
A_ : Any = CursorInfo()
A_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__snake_case ,ctypes.byref(__snake_case ) )
A_ : Union[str, Any] = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(__snake_case ,ctypes.byref(__snake_case ) )
elif os.name == "posix":
sys.stdout.write('\033[?25h' )
sys.stdout.flush()
@contextmanager
def UpperCamelCase ( ):
'''simple docstring'''
try:
hide_cursor()
yield
finally:
show_cursor()
| 558 | import sys
from collections import defaultdict
class lowerCAmelCase_ :
def __init__( self : Optional[int] ):
_UpperCamelCase = []
def UpperCamelCase_ ( self : Any , _A : str ):
return self.node_position[vertex]
def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ):
_UpperCamelCase = pos
def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_UpperCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_UpperCamelCase = 2 * start + 1
else:
_UpperCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
_UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child]
_UpperCamelCase , _UpperCamelCase = (
heap[start],
positions[start],
)
_UpperCamelCase , _UpperCamelCase = temp, tempa
_UpperCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _A )
self.top_to_bottom(_A , _A , _A , _A )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ):
_UpperCamelCase = position[index]
while index != 0:
_UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_UpperCamelCase = heap[parent]
_UpperCamelCase = position[parent]
self.set_position(position[parent] , _A )
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , _A )
break
_UpperCamelCase = parent
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , 0 )
def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ):
_UpperCamelCase = len(_A ) // 2 - 1
for i in range(_A , -1 , -1 ):
self.top_to_bottom(_A , _A , len(_A ) , _A )
def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ):
_UpperCamelCase = positions[0]
_UpperCamelCase = sys.maxsize
self.top_to_bottom(_A , 0 , len(_A ) , _A )
return temp
def _snake_case ( __snake_case ):
_UpperCamelCase = Heap()
_UpperCamelCase = [0] * len(__snake_case )
_UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
_UpperCamelCase = []
for vertex in range(len(__snake_case ) ):
distance_tv.append(sys.maxsize )
positions.append(__snake_case )
heap.node_position.append(__snake_case )
_UpperCamelCase = []
_UpperCamelCase = 1
_UpperCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_UpperCamelCase = 0
_UpperCamelCase = distance
heap.heapify(__snake_case , __snake_case )
for _ in range(1 , len(__snake_case ) ):
_UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_UpperCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__snake_case )]
):
_UpperCamelCase = distance
heap.bottom_to_top(
__snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case )
_UpperCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
_lowerCAmelCase = int(input("Enter number of edges: ").strip())
_lowerCAmelCase = defaultdict(list)
for _ in range(edges_number):
_lowerCAmelCase = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 10 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = '▁'
a_ = {'vocab_file': 'sentencepiece.bpe.model'}
a_ = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model'
),
}
}
a_ = {
'facebook/nllb-200-distilled-600M': 1_0_2_4,
}
# fmt: off
a_ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class UpperCAmelCase_ ( __lowercase ):
UpperCamelCase =VOCAB_FILES_NAMES
UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase =["input_ids", "attention_mask"]
UpperCamelCase =[]
UpperCamelCase =[]
def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_=None , UpperCamelCase_=False , **UpperCamelCase_ , ) -> Dict:
# Mask token behave like a normal word, i.e. include the space before it
__lowercase : Union[str, Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token
__lowercase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
__lowercase : str = legacy_behaviour
super().__init__(
bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_A , **_A , )
__lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_A ) )
__lowercase : Optional[int] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
__lowercase : Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__lowercase : Union[str, Any] = 1
__lowercase : Union[str, Any] = len(self.sp_model )
__lowercase : Union[str, Any] = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A )
}
__lowercase : List[Any] = {v: k for k, v in self.lang_code_to_id.items()}
__lowercase : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__lowercase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__lowercase : List[Any] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__lowercase : str = src_lang if src_lang is not None else '''eng_Latn'''
__lowercase : Optional[int] = self.lang_code_to_id[self._src_lang]
__lowercase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> List[Any]:
__lowercase : Optional[int] = self.__dict__.copy()
__lowercase : List[str] = None
__lowercase : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , UpperCamelCase_ ) -> List[Any]:
__lowercase : Optional[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__lowercase : List[str] = {}
__lowercase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def _lowerCamelCase ( self ) -> Optional[Any]:
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def _lowerCamelCase ( self ) -> Dict:
return self._src_lang
@src_lang.setter
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[int]:
__lowercase : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ) -> int:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A )
__lowercase : int = [1] * len(self.prefix_tokens )
__lowercase : Union[str, Any] = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_A )) + suffix_ones
return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[str]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Dict:
__lowercase : Any = [self.sep_token_id]
__lowercase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> List[str]:
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__lowercase : Union[str, Any] = src_lang
__lowercase : List[Any] = self(_A , add_special_tokens=_A , return_tensors=_A , **_A )
__lowercase : Optional[Any] = self.convert_tokens_to_ids(_A )
__lowercase : Union[str, Any] = tgt_lang_id
return inputs
def _lowerCamelCase ( self ) -> List[Any]:
__lowercase : Union[str, Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[Any]:
return self.sp_model.encode(_A , out_type=_A )
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__lowercase : int = self.sp_model.PieceToId(_A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]:
__lowercase : List[Any] = ''''''.join(_A ).replace(_A , ''' ''' ).strip()
return out_string
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[str]:
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase : Optional[Any] = os.path.join(
_A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _A )
elif not os.path.isfile(self.vocab_file ):
with open(_A , '''wb''' ) as fi:
__lowercase : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = "eng_Latn" , UpperCamelCase_ = None , UpperCamelCase_ = "fra_Latn" , **UpperCamelCase_ , ) -> List[str]:
__lowercase : int = src_lang
__lowercase : List[str] = tgt_lang
return super().prepare_seqaseq_batch(_A , _A , **_A )
def _lowerCamelCase ( self ) -> List[Any]:
return self.set_src_lang_special_tokens(self.src_lang )
def _lowerCamelCase ( self ) -> Optional[int]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any:
__lowercase : Tuple = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
__lowercase : Optional[Any] = []
__lowercase : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
__lowercase : int = [self.cur_lang_code]
__lowercase : str = [self.eos_token_id]
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any:
__lowercase : Tuple = self.lang_code_to_id[lang]
if self.legacy_behaviour:
__lowercase : Optional[Any] = []
__lowercase : int = [self.eos_token_id, self.cur_lang_code]
else:
__lowercase : Any = [self.cur_lang_code]
__lowercase : List[str] = [self.eos_token_id]
| 76 | import logging
import os
from .state import PartialState
class lowerCAmelCase_ ( logging.LoggerAdapter ):
@staticmethod
def UpperCamelCase_ ( _A : Any ):
_UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ):
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCamelCase = kwargs.pop('''main_process_only''' , _A )
_UpperCamelCase = kwargs.pop('''in_order''' , _A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
elif in_order:
_UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
state.wait_for_everyone()
def _snake_case ( __snake_case , __snake_case = None ):
if log_level is None:
_UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case )
_UpperCamelCase = logging.getLogger(__snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__snake_case , {} )
| 10 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
import random
from typing import Any
class a_ :
def __init__( self : str ):
__snake_case = []
__snake_case = 0
__snake_case = 0
def lowercase__ ( self : Dict ):
return self.head == self.tail
def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : Any ):
self.data.append(_A )
__snake_case = self.tail + 1
def lowercase__ ( self : Union[str, Any] ):
__snake_case = self.data[self.head]
__snake_case = self.head + 1
return ret
def lowercase__ ( self : Tuple ):
return self.tail - self.head
def lowercase__ ( self : Dict ):
print(self.data )
print('**************' )
print(self.data[self.head : self.tail] )
class a_ :
def __init__( self : Any , __lowerCAmelCase : Any ):
__snake_case = data
__snake_case = None
__snake_case = None
__snake_case = 1
def lowercase__ ( self : Dict ):
return self.data
def lowercase__ ( self : List[Any] ):
return self.left
def lowercase__ ( self : Optional[Any] ):
return self.right
def lowercase__ ( self : Optional[Any] ):
return self.height
def lowercase__ ( self : List[Any] , __lowerCAmelCase : Any ):
__snake_case = data
def lowercase__ ( self : Dict , __lowerCAmelCase : MyNode | None ):
__snake_case = node
def lowercase__ ( self : Optional[int] , __lowerCAmelCase : MyNode | None ):
__snake_case = node
def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : int ):
__snake_case = height
def lowerCamelCase__ ( a ):
if node is None:
return 0
return node.get_height()
def lowerCamelCase__ ( a , a ):
if a > b:
return a
return b
def lowerCamelCase__ ( a ):
print('left rotation node:' , node.get_data() )
__snake_case = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(__snake_case )
__snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(__snake_case )
__snake_case = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(__snake_case )
return ret
def lowerCamelCase__ ( a ):
print('right rotation node:' , node.get_data() )
__snake_case = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(__snake_case )
__snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(__snake_case )
__snake_case = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(__snake_case )
return ret
def lowerCamelCase__ ( a ):
__snake_case = node.get_left()
assert left_child is not None
node.set_left(left_rotation(__snake_case ) )
return right_rotation(__snake_case )
def lowerCamelCase__ ( a ):
__snake_case = node.get_right()
assert right_child is not None
node.set_right(right_rotation(__snake_case ) )
return left_rotation(__snake_case )
def lowerCamelCase__ ( a , a ):
if node is None:
return MyNode(__snake_case )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , __snake_case ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
__snake_case = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
__snake_case = right_rotation(__snake_case )
else:
__snake_case = lr_rotation(__snake_case )
else:
node.set_right(insert_node(node.get_right() , __snake_case ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
__snake_case = node.get_right()
assert right_child is not None
if data < right_child.get_data():
__snake_case = rl_rotation(__snake_case )
else:
__snake_case = left_rotation(__snake_case )
__snake_case = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(__snake_case )
return node
def lowerCamelCase__ ( a ):
while True:
__snake_case = root.get_right()
if right_child is None:
break
__snake_case = right_child
return root.get_data()
def lowerCamelCase__ ( a ):
while True:
__snake_case = root.get_left()
if left_child is None:
break
__snake_case = left_child
return root.get_data()
def lowerCamelCase__ ( a , a ):
__snake_case = root.get_left()
__snake_case = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
__snake_case = get_left_most(__snake_case )
root.set_data(__snake_case )
root.set_right(del_node(__snake_case , __snake_case ) )
elif left_child is not None:
__snake_case = left_child
elif right_child is not None:
__snake_case = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print('No such data' )
return root
else:
root.set_left(del_node(__snake_case , __snake_case ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(__snake_case , __snake_case ) )
if get_height(__snake_case ) - get_height(__snake_case ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
__snake_case = left_rotation(__snake_case )
else:
__snake_case = rl_rotation(__snake_case )
elif get_height(__snake_case ) - get_height(__snake_case ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
__snake_case = right_rotation(__snake_case )
else:
__snake_case = lr_rotation(__snake_case )
__snake_case = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(__snake_case )
return root
class a_ :
def __init__( self : Any ):
__snake_case = None
def lowercase__ ( self : Dict ):
return get_height(self.root )
def lowercase__ ( self : Any , __lowerCAmelCase : Any ):
print('insert:' + str(_A ) )
__snake_case = insert_node(self.root , _A )
def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : Any ):
print('delete:' + str(_A ) )
if self.root is None:
print('Tree is empty!' )
return
__snake_case = del_node(self.root , _A )
def __str__( self : Any , ): # a level traversale, gives a more intuitive look on the tree
__snake_case = ''
__snake_case = MyQueue()
q.push(self.root )
__snake_case = self.get_height()
if layer == 0:
return output
__snake_case = 0
while not q.is_empty():
__snake_case = q.pop()
__snake_case = ' ' * int(math.pow(2 , layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(_A )
q.push(_A )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
__snake_case = cnt + 1
for i in range(1_0_0 ):
if cnt == math.pow(2 , _A ) - 1:
__snake_case = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def lowerCamelCase__ ( ):
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
_lowercase = AVLtree()
_lowercase = list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 356 | import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = "▁"
_lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = BertGenerationTokenizer
UpperCAmelCase = False
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[str] ):
super().setUp()
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''<s>'''
_UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(_A ) , 1002 )
def UpperCamelCase_ ( self : Dict ):
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def UpperCamelCase_ ( self : Union[str, Any] ):
return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''Hello World!'''
_UpperCamelCase = [1_8536, 2260, 101]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
_UpperCamelCase = [
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
3_4324,
497,
391,
408,
1_1342,
1244,
385,
100,
938,
985,
456,
574,
362,
1_2597,
3200,
3129,
1172,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def UpperCamelCase_ ( self : Dict ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10]
_UpperCamelCase = ''' '''.join(_A )
_UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = self.big_tokenizer.batch_encode_plus(
[sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = BertGenerationConfig()
_UpperCamelCase = BertGenerationEncoder(_A )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
| 10 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class __UpperCAmelCase :
def __init__( self ):
lowerCAmelCase_ = {}
def UpperCAmelCase_ ( self , _lowerCamelCase ):
lowerCAmelCase_ = {}
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
if nodea not in self.connections:
self.add_node(_A )
if nodea not in self.connections:
self.add_node(_A )
lowerCAmelCase_ = probability
def UpperCAmelCase_ ( self ):
return list(self.connections )
def UpperCAmelCase_ ( self , _lowerCamelCase ):
lowerCAmelCase_ = 0
lowerCAmelCase_ = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def snake_case_ ( __snake_case : str , __snake_case : List[str] , __snake_case : Dict) -> Union[str, Any]:
lowerCAmelCase_ = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(__snake_case , __snake_case , __snake_case)
lowerCAmelCase_ = Counter(graph.get_nodes())
lowerCAmelCase_ = start
for _ in range(__snake_case):
lowerCAmelCase_ = graph.transition(__snake_case)
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 274 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = StableUnCLIPPipeline
UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
UpperCAmelCase = False
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = 32
_UpperCamelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , )
torch.manual_seed(0 )
_UpperCamelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
_UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A )
_UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , )
torch.manual_seed(0 )
_UpperCamelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCamelCase = AutoencoderKL()
_UpperCamelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_A )
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_A )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
_UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' )
_UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_A , _A )
def UpperCamelCase_ ( self : Optional[Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
_UpperCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 10 | 0 |
_lowerCamelCase = '0.21.0'
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich | 6 | from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _snake_case ( __snake_case , __snake_case ):
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) )
def _snake_case ( __snake_case , __snake_case ):
if dataset.ndim != value_array.ndim:
_UpperCamelCase = (
'''Wrong input data\'s dimensions... '''
f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(__snake_case )
try:
if dataset.shape[1] != value_array.shape[1]:
_UpperCamelCase = (
'''Wrong input data\'s shape... '''
f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(__snake_case )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
_UpperCamelCase = (
'''Input data have different datatype... '''
f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(__snake_case )
_UpperCamelCase = []
for value in value_array:
_UpperCamelCase = euclidean(__snake_case , dataset[0] )
_UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
_UpperCamelCase = euclidean(__snake_case , __snake_case )
if dist > temp_dist:
_UpperCamelCase = temp_dist
_UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _snake_case ( __snake_case , __snake_case ):
return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 0 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all BART models at https://huggingface.co/models?filter=bart
lowercase__ : List[str] = {
'''vocab_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''',
},
'''merges_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''',
},
}
lowercase__ : Dict = {
'''facebook/bart-base''': 1_0_2_4,
'''facebook/bart-large''': 1_0_2_4,
'''facebook/bart-large-mnli''': 1_0_2_4,
'''facebook/bart-large-cnn''': 1_0_2_4,
'''facebook/bart-large-xsum''': 1_0_2_4,
'''yjernite/bart_eli5''': 1_0_2_4,
}
@lru_cache()
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
lowerCAmelCase = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
lowerCAmelCase = bs[:]
lowerCAmelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__snake_case )
cs.append(2**8 + n )
n += 1
lowerCAmelCase = [chr(__snake_case ) for n in cs]
return dict(zip(__snake_case , __snake_case ) )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int:
lowerCAmelCase = set()
lowerCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCAmelCase = char
return pairs
class lowercase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES
UpperCAmelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="replace" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->Tuple:
lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token
lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token
lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token
lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token
lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token
lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token
super().__init__(
errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , )
with open(_A , encoding='''utf-8''' ) as vocab_handle:
lowerCAmelCase = json.load(_A )
lowerCAmelCase = {v: k for k, v in self.encoder.items()}
lowerCAmelCase = errors # how to handle errors in decoding
lowerCAmelCase = bytes_to_unicode()
lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(_A , encoding='''utf-8''' ) as merges_handle:
lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1]
lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
lowerCAmelCase = dict(zip(_A , range(len(_A ) ) ) )
lowerCAmelCase = {}
lowerCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
return len(self.encoder )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
if token in self.cache:
return self.cache[token]
lowerCAmelCase = tuple(_A )
lowerCAmelCase = get_pairs(_A )
if not pairs:
return token
while True:
lowerCAmelCase = min(_A , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_A , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCAmelCase , lowerCAmelCase = bigram
lowerCAmelCase = []
lowerCAmelCase = 0
while i < len(_A ):
try:
lowerCAmelCase = word.index(_A , _A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCAmelCase = j
if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCAmelCase = tuple(_A )
lowerCAmelCase = new_word
if len(_A ) == 1:
break
else:
lowerCAmelCase = get_pairs(_A )
lowerCAmelCase = ''' '''.join(_A )
lowerCAmelCase = word
return word
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = []
for token in re.findall(self.pat , _A ):
lowerCAmelCase = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(''' ''' ) )
return bpe_tokens
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
return self.encoder.get(_A , self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]:
return self.decoder.get(_A )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = ''''''.join(_A )
lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple:
if not os.path.isdir(_A ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCAmelCase = os.path.join(
_A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase = os.path.join(
_A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(_A , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' )
lowerCAmelCase = 0
with open(_A , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ):
if index != token_index:
logger.warning(
F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
''' Please check that the tokenizer is not corrupted!''' )
lowerCAmelCase = token_index
writer.write(''' '''.join(_A ) + '''\n''' )
index += 1
return vocab_file, merge_file
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Dict:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->Optional[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A )
if token_ids_a is None:
return [1] + ([0] * len(_A )) + [1]
return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Any:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ) ->Dict:
lowerCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()):
lowerCAmelCase = ''' ''' + text
return (text, kwargs)
| 312 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = ShapEPipeline
UpperCAmelCase = ["prompt"]
UpperCAmelCase = ["prompt"]
UpperCAmelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
UpperCAmelCase = False
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
return 32
@property
def UpperCamelCase_ ( self : int ):
return 32
@property
def UpperCamelCase_ ( self : List[str] ):
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 8
@property
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def UpperCamelCase_ ( self : List[Any] ):
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(_A )
@property
def UpperCamelCase_ ( self : int ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
_UpperCamelCase = PriorTransformer(**_A )
return model
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
_UpperCamelCase = ShapERenderer(**_A )
return model
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.dummy_prior
_UpperCamelCase = self.dummy_text_encoder
_UpperCamelCase = self.dummy_tokenizer
_UpperCamelCase = self.dummy_renderer
_UpperCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , )
_UpperCamelCase = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = '''cpu'''
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) )
_UpperCamelCase = output.images[0]
_UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
_UpperCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase_ ( self : Any ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = torch_device == '''cpu'''
_UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_A , relax_max_difference=_A , )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = 1
_UpperCamelCase = 2
_UpperCamelCase = self.get_dummy_inputs(_A )
for key in inputs.keys():
if key in self.batch_params:
_UpperCamelCase = batch_size * [inputs[key]]
_UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
_UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 )
_UpperCamelCase = pipe(
'''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_A , _A )
| 10 | 0 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=0.999 , SCREAMING_SNAKE_CASE__ : List[str]="cosine" , ) -> Dict:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Tuple ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Tuple ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' )
_UpperCAmelCase : Any = []
for i in range(__snake_case ):
_UpperCAmelCase : List[Any] = i / num_diffusion_timesteps
_UpperCAmelCase : List[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) )
return torch.tensor(__snake_case , dtype=torch.floataa )
class UpperCAmelCase_ ( __lowercase , __lowercase ):
__SCREAMING_SNAKE_CASE : Any = [e.name for e in KarrasDiffusionSchedulers]
__SCREAMING_SNAKE_CASE : Any = 2
@register_to_config
def __init__( self : Optional[Any] , A : int = 1_0_0_0 , A : float = 0.00_085 , A : float = 0.012 , A : str = "linear" , A : Optional[Union[np.ndarray, List[float]]] = None , A : str = "epsilon" , A : str = "linspace" , A : int = 0 , ):
if trained_betas is not None:
_UpperCAmelCase : int = torch.tensor(_A , dtype=torch.floataa )
elif beta_schedule == "linear":
_UpperCAmelCase : Optional[Any] = torch.linspace(_A , _A , _A , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_UpperCAmelCase : List[str] = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _A , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_UpperCAmelCase : str = betas_for_alpha_bar(_A )
else:
raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' )
_UpperCAmelCase : str = 1.0 - self.betas
_UpperCAmelCase : str = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_A , _A , _A )
def snake_case_ ( self : Union[str, Any] , A : Dict , A : List[str]=None ):
if schedule_timesteps is None:
_UpperCAmelCase : str = self.timesteps
_UpperCAmelCase : Tuple = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
_UpperCAmelCase : Optional[int] = 1 if len(_A ) > 1 else 0
else:
_UpperCAmelCase : Dict = timestep.cpu().item() if torch.is_tensor(_A ) else timestep
_UpperCAmelCase : List[Any] = self._index_counter[timestep_int]
return indices[pos].item()
@property
def snake_case_ ( self : str ):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def snake_case_ ( self : str , A : torch.FloatTensor , A : Union[float, torch.FloatTensor] , ):
_UpperCAmelCase : Optional[int] = self.index_for_timestep(_A )
if self.state_in_first_order:
_UpperCAmelCase : Tuple = self.sigmas[step_index]
else:
_UpperCAmelCase : Dict = self.sigmas_interpol[step_index]
_UpperCAmelCase : List[str] = sample / ((sigma**2 + 1) ** 0.5)
return sample
def snake_case_ ( self : Optional[Any] , A : int , A : Union[str, torch.device] = None , A : Optional[int] = None , ):
_UpperCAmelCase : int = num_inference_steps
_UpperCAmelCase : Dict = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
_UpperCAmelCase : int = np.linspace(0 , num_train_timesteps - 1 , _A , dtype=_A )[::-1].copy()
elif self.config.timestep_spacing == "leading":
_UpperCAmelCase : Optional[Any] = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_UpperCAmelCase : List[Any] = (np.arange(0 , _A ) * step_ratio).round()[::-1].copy().astype(_A )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
_UpperCAmelCase : Tuple = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_UpperCAmelCase : List[Any] = (np.arange(_A , 0 , -step_ratio )).round().copy().astype(_A )
timesteps -= 1
else:
raise ValueError(
f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' )
_UpperCAmelCase : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
_UpperCAmelCase : Union[str, Any] = torch.from_numpy(np.log(_A ) ).to(_A )
_UpperCAmelCase : Any = np.interp(_A , np.arange(0 , len(_A ) ) , _A )
_UpperCAmelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
_UpperCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A )
# interpolate sigmas
_UpperCAmelCase : Optional[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
_UpperCAmelCase : int = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
_UpperCAmelCase : str = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(_A ).startswith("mps" ):
# mps does not support float64
_UpperCAmelCase : Union[str, Any] = torch.from_numpy(_A ).to(_A , dtype=torch.floataa )
else:
_UpperCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(_A )
# interpolate timesteps
_UpperCAmelCase : Union[str, Any] = self.sigma_to_t(_A ).to(_A , dtype=timesteps.dtype )
_UpperCAmelCase : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
_UpperCAmelCase : Union[str, Any] = torch.cat([timesteps[:1], interleaved_timesteps] )
_UpperCAmelCase : List[str] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
_UpperCAmelCase : List[Any] = defaultdict(_A )
def snake_case_ ( self : Any , A : List[Any] ):
# get log sigma
_UpperCAmelCase : Optional[Any] = sigma.log()
# get distribution
_UpperCAmelCase : List[Any] = log_sigma - self.log_sigmas[:, None]
# get sigmas range
_UpperCAmelCase : Union[str, Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
_UpperCAmelCase : Dict = low_idx + 1
_UpperCAmelCase : Dict = self.log_sigmas[low_idx]
_UpperCAmelCase : Optional[Any] = self.log_sigmas[high_idx]
# interpolate sigmas
_UpperCAmelCase : Optional[Any] = (low - log_sigma) / (low - high)
_UpperCAmelCase : Optional[int] = w.clamp(0 , 1 )
# transform interpolation to time range
_UpperCAmelCase : Dict = (1 - w) * low_idx + w * high_idx
_UpperCAmelCase : List[Any] = t.view(sigma.shape )
return t
@property
def snake_case_ ( self : Optional[Any] ):
return self.sample is None
def snake_case_ ( self : Optional[int] , A : Union[torch.FloatTensor, np.ndarray] , A : Union[float, torch.FloatTensor] , A : Union[torch.FloatTensor, np.ndarray] , A : bool = True , ):
_UpperCAmelCase : List[Any] = self.index_for_timestep(_A )
# advance index counter by 1
_UpperCAmelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(_A ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
_UpperCAmelCase : Optional[Any] = self.sigmas[step_index]
_UpperCAmelCase : List[str] = self.sigmas_interpol[step_index + 1]
_UpperCAmelCase : Optional[int] = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
_UpperCAmelCase : Dict = self.sigmas[step_index - 1]
_UpperCAmelCase : Union[str, Any] = self.sigmas_interpol[step_index]
_UpperCAmelCase : str = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
_UpperCAmelCase : Any = 0
_UpperCAmelCase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
_UpperCAmelCase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol
_UpperCAmelCase : Optional[int] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
_UpperCAmelCase : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol
_UpperCAmelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample" )
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
_UpperCAmelCase : List[str] = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
_UpperCAmelCase : Union[str, Any] = sigma_interpol - sigma_hat
# store for 2nd order step
_UpperCAmelCase : Tuple = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
_UpperCAmelCase : int = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
_UpperCAmelCase : Optional[Any] = sigma_next - sigma_hat
_UpperCAmelCase : Optional[int] = self.sample
_UpperCAmelCase : Optional[Any] = None
_UpperCAmelCase : str = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_A )
def snake_case_ ( self : List[Any] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.FloatTensor , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
_UpperCAmelCase : Optional[int] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_A ):
# mps does not support float64
_UpperCAmelCase : str = self.timesteps.to(original_samples.device , dtype=torch.floataa )
_UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
_UpperCAmelCase : List[str] = self.timesteps.to(original_samples.device )
_UpperCAmelCase : List[Any] = timesteps.to(original_samples.device )
_UpperCAmelCase : Union[str, Any] = [self.index_for_timestep(_A , _A ) for t in timesteps]
_UpperCAmelCase : Optional[Any] = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
_UpperCAmelCase : str = sigma.unsqueeze(-1 )
_UpperCAmelCase : str = original_samples + noise * sigma
return noisy_samples
def __len__( self : List[str] ):
return self.config.num_train_timesteps
| 289 | import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_lowerCAmelCase = HfApi()
_lowerCAmelCase = {}
# fmt: off
_lowerCAmelCase = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
_lowerCAmelCase = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
_lowerCAmelCase = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
_lowerCAmelCase = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
_lowerCAmelCase = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
_lowerCAmelCase = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
_lowerCAmelCase = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
_lowerCAmelCase = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
_lowerCAmelCase = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
_lowerCAmelCase = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
_lowerCAmelCase = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
_lowerCAmelCase = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
_lowerCAmelCase = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
_lowerCAmelCase = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
_lowerCAmelCase = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
_lowerCAmelCase = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f'Started running {mod.modelId}!!!')
if mod.modelId.startswith("CompVis"):
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_lowerCAmelCase = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_lowerCAmelCase = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3
)
print(f'{mod.modelId} has passed successfully!!!')
| 10 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_lowercase : Union[str, Any] =logging.get_logger(__name__)
class snake_case__ (__lowercase ):
"""simple docstring"""
__lowerCAmelCase :Tuple = ["pixel_values"]
def __init__( self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 2_5_5 , __lowercase = True , __lowercase = None , __lowercase = None , **__lowercase , ) -> int:
"""simple docstring"""
super().__init__(**_A )
a__ : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_5_6}
a__ : str = get_size_dict(_A , default_to_square=_A )
a__ : Any = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4}
a__ : Any = get_size_dict(_A )
a__ : Tuple = do_resize
a__ : int = size
a__ : List[Any] = resample
a__ : str = do_center_crop
a__ : Tuple = crop_size
a__ : List[Any] = do_rescale
a__ : Optional[int] = rescale_factor
a__ : Any = do_normalize
a__ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
a__ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ) -> Union[str, Any]:
"""simple docstring"""
a__ : List[Any] = get_size_dict(_A , default_to_square=_A )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
a__ : List[Any] = get_resize_output_image_size(_A , size=size["""shortest_edge"""] , default_to_square=_A )
return resize(_A , size=_A , resample=_A , data_format=_A , **_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> Optional[Any]:
"""simple docstring"""
a__ : str = get_size_dict(_A )
return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase = None , **__lowercase ) -> int:
"""simple docstring"""
return rescale(_A , scale=_A , data_format=_A , **_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> Any:
"""simple docstring"""
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> Optional[int]:
"""simple docstring"""
a__ : int = do_resize if do_resize is not None else self.do_resize
a__ : Union[str, Any] = size if size is not None else self.size
a__ : Any = get_size_dict(_A , default_to_square=_A )
a__ : Optional[Any] = resample if resample is not None else self.resample
a__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
a__ : List[Any] = crop_size if crop_size is not None else self.crop_size
a__ : List[Any] = get_size_dict(_A )
a__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale
a__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
a__ : Any = do_normalize if do_normalize is not None else self.do_normalize
a__ : Any = image_mean if image_mean is not None else self.image_mean
a__ : List[Any] = image_std if image_std is not None else self.image_std
a__ : List[str] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
a__ : str = [to_numpy_array(_A ) for image in images]
if do_resize:
a__ : str = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
a__ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
a__ : int = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
a__ : Dict = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
a__ : Any = [to_channel_dimension_format(_A , _A ) for image in images]
a__ : Union[str, Any] = {"""pixel_values""": images}
return BatchFeature(data=_A , tensor_type=_A )
| 136 | from typing import List
from .keymap import KEYMAP, get_character
def _snake_case ( __snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += [key]
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
def _snake_case ( *__snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += keys
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
class lowerCAmelCase_ ( __lowercase ):
def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ):
_UpperCamelCase = super().__new__(cls , _A , _A , _A )
if not hasattr(_A , '''key_handler''' ):
setattr(_A , '''key_handler''' , {} )
setattr(_A , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCamelCase = getattr(_A , '''handle_key''' , [] )
for key in handled_keys:
_UpperCamelCase = value
return new_cls
@staticmethod
def UpperCamelCase_ ( cls : str ):
_UpperCamelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCamelCase = ord(_A )
_UpperCamelCase = cls.key_handler.get(_A )
if handler:
_UpperCamelCase = char
return handler(cls )
else:
return None
def _snake_case ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 10 | 0 |
# flake8: noqa
# Lint as: python3
_lowercase = [
"""VerificationMode""",
"""Version""",
"""disable_progress_bar""",
"""enable_progress_bar""",
"""is_progress_bar_enabled""",
"""experimental""",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 443 | import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class lowerCAmelCase_ ( unittest.TestCase ):
UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
_A , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A )
self.assertEqual(
_A , [
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
] , )
_UpperCamelCase = text_generator.model.config.eos_token_id
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , )
self.assertEqual(
_A , [
[
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
],
[
{'''generated_token_ids''': ANY(_A )},
{'''generated_token_ids''': ANY(_A )},
],
] , )
@require_tf
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=_A )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A )
self.assertEqual(
_A , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ):
_UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A )
return text_generator, ["This is a test", "Another test"]
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = '''Hello I believe in'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
_UpperCamelCase = text_generator(_A )
self.assertEqual(
_A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
_UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' )
self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] )
def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ):
_UpperCamelCase = text_generator.model
_UpperCamelCase = text_generator.tokenizer
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A )
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A )
self.assertEqual(
_A , [
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
] , )
if text_generator.tokenizer.pad_token is not None:
_UpperCamelCase = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A )
self.assertEqual(
_A , [
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
[{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}],
] , )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A )
with self.assertRaises(_A ):
_UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
_UpperCamelCase = text_generator('''''' )
self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
_UpperCamelCase = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
_UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_0000
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 500 , max_new_tokens=20 )
_UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(_A ):
text_generator(
'''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : Optional[int] ):
import torch
# Classic `model_kwargs`
_UpperCamelCase = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
_A , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def UpperCamelCase_ ( self : Union[str, Any] ):
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : Optional[int] ):
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=_A , top_p=0.5 )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = '''Hello world'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
_UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' )
else:
_UpperCamelCase = logging.get_logger('''transformers.generation.utils''' )
_UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 )
self.assertIn(_A , cl.out )
# The user only sets one -> no warning
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_new_tokens=1 )
self.assertNotIn(_A , cl.out )
with CaptureLogger(_A ) as cl:
_UpperCamelCase = text_generator(_A , max_length=10 )
self.assertNotIn(_A , cl.out )
| 10 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : Any = {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json'
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class lowerCAmelCase__ ( __lowercase ):
"""simple docstring"""
lowerCAmelCase__ = "speech_to_text_2"
lowerCAmelCase__ = ["past_key_values"]
lowerCAmelCase__ = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Dict=10_000 , __SCREAMING_SNAKE_CASE : Any=6 , __SCREAMING_SNAKE_CASE : Optional[int]=2_048 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Dict="relu" , __SCREAMING_SNAKE_CASE : Optional[Any]=256 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : str=1_024 , **__SCREAMING_SNAKE_CASE : str , ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = d_model
__SCREAMING_SNAKE_CASE = decoder_ffn_dim
__SCREAMING_SNAKE_CASE = decoder_layers
__SCREAMING_SNAKE_CASE = decoder_attention_heads
__SCREAMING_SNAKE_CASE = dropout
__SCREAMING_SNAKE_CASE = attention_dropout
__SCREAMING_SNAKE_CASE = activation_dropout
__SCREAMING_SNAKE_CASE = activation_function
__SCREAMING_SNAKE_CASE = init_std
__SCREAMING_SNAKE_CASE = decoder_layerdrop
__SCREAMING_SNAKE_CASE = use_cache
__SCREAMING_SNAKE_CASE = decoder_layers
__SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True
__SCREAMING_SNAKE_CASE = max_target_positions
super().__init__(
pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
| 627 | def _snake_case ( __snake_case = 100 ):
_UpperCamelCase = (n * (n + 1) // 2) ** 2
_UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class UpperCAmelCase__ ( __lowercase ):
"""simple docstring"""
lowerCAmelCase__ : Any = """swinv2"""
lowerCAmelCase__ : Dict = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , _SCREAMING_SNAKE_CASE=2_2_4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=9_6 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[3, 6, 1_2, 2_4] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=3_2 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]:
super().__init__(**_A )
a_ : Tuple = image_size
a_ : Any = patch_size
a_ : List[str] = num_channels
a_ : int = embed_dim
a_ : Tuple = depths
a_ : Dict = len(_A )
a_ : Optional[Any] = num_heads
a_ : Tuple = window_size
a_ : int = mlp_ratio
a_ : List[Any] = qkv_bias
a_ : Optional[int] = hidden_dropout_prob
a_ : Optional[Any] = attention_probs_dropout_prob
a_ : str = drop_path_rate
a_ : Dict = hidden_act
a_ : Any = use_absolute_embeddings
a_ : Optional[Any] = layer_norm_eps
a_ : Tuple = initializer_range
a_ : List[Any] = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a_ : Tuple = int(embed_dim * 2 ** (len(_A ) - 1) )
a_ : Union[str, Any] = (0, 0, 0, 0)
| 473 | import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
_lowerCAmelCase = logging.get_logger(__name__)
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ):
def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ):
_UpperCamelCase = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
_UpperCamelCase = math.floor(val / multiple ) * multiple
if x < min_val:
_UpperCamelCase = math.ceil(val / multiple ) * multiple
return x
_UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size
_UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case )
_UpperCamelCase , _UpperCamelCase = output_size
# determine new height and width
_UpperCamelCase = output_height / input_height
_UpperCamelCase = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
_UpperCamelCase = scale_width
else:
# fit height
_UpperCamelCase = scale_height
_UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case )
_UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case )
return (new_height, new_width)
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = ["pixel_values"]
def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ):
super().__init__(**_A )
_UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384}
_UpperCamelCase = get_size_dict(_A )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = keep_aspect_ratio
_UpperCamelCase = ensure_multiple_of
_UpperCamelCase = resample
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
_UpperCamelCase = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(
_A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , )
return resize(_A , size=_A , resample=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ):
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(_A )
_UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
_UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(_A ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=_A , tensor_type=_A )
def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ):
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_A ) != len(_A ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(_A ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(_A ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_A )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 10 | 0 |
from __future__ import annotations
def UpperCamelCase ( __lowercase : Tuple ):
'''simple docstring'''
if not nums:
raise ValueError('List is empty' )
return sum(__snake_case ) / len(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 558 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
_UpperCamelCase = self.diffusers_dir
shutil.copy(
os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ):
_UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_UpperCamelCase = black.format_str(_A , mode=_A )
_UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(_A , '''w''' , newline='''\n''' ) as f:
f.write(_A )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_A )
with open(_A , '''r''' ) as f:
self.assertTrue(f.read() , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
# Base copy consistency
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , )
# Copy consistency with a really long name
_UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
| 10 | 0 |
"""simple docstring"""
import os
def __UpperCAmelCase ( __UpperCamelCase = "matrix.txt" ):
with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as in_file:
__lowercase : int = in_file.read()
__lowercase : Tuple = [[int(__snake_case ) for cell in row.split(''',''' )] for row in data.strip().splitlines()]
__lowercase : int = [[0 for cell in row] for row in grid]
__lowercase : List[Any] = len(grid[0] )
__lowercase : List[str] = [[0 for i in range(__snake_case )] for j in range(__snake_case )]
__lowercase : Tuple = grid[0][0]
for i in range(1 , __snake_case ):
__lowercase : Optional[Any] = grid[0][i] + dp[0][i - 1]
for i in range(1 , __snake_case ):
__lowercase : Union[str, Any] = grid[i][0] + dp[i - 1][0]
for i in range(1 , __snake_case ):
for j in range(1 , __snake_case ):
__lowercase : Any = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] )
return dp[-1][-1]
if __name__ == "__main__":
print(F"{solution() = }")
| 76 | import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_lowerCAmelCase = True
from torch.cuda.amp import autocast
_lowerCAmelCase = logging.getLogger(__name__)
def _snake_case ( __snake_case=None , __snake_case=None ):
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} )
UpperCAmelCase = field(
default=0.1, metadata={
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."
}, )
UpperCAmelCase = field(
default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, )
UpperCAmelCase = field(
default=0.0_5, metadata={
"help": (
"Propability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
)
}, )
UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
UpperCAmelCase = field(
default="train+validation", metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
}, )
UpperCAmelCase = list_field(
default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = 42
UpperCAmelCase = True
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ):
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
_UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features]
_UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features]
_UpperCamelCase = self.processor.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
_UpperCamelCase = self.processor.pad(
labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , )
# replace padding with -100 to ignore loss correctly
_UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 )
_UpperCamelCase = labels
return batch
class lowerCAmelCase_ ( __lowercase ):
def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ):
model.train()
_UpperCamelCase = self._prepare_inputs(_A )
if self.use_amp:
with autocast():
_UpperCamelCase = self.compute_loss(_A , _A )
else:
_UpperCamelCase = self.compute_loss(_A , _A )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
_UpperCamelCase = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
_UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum()
else:
raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" )
if self.args.gradient_accumulation_steps > 1:
_UpperCamelCase = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(_A ).backward()
elif self.use_apex:
with amp.scale_loss(_A , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(_A )
else:
loss.backward()
return loss.detach()
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
_UpperCamelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCamelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
_UpperCamelCase = datasets.load_dataset(
'''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name )
_UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' )
# Create and save tokenizer
_UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]"""
def remove_special_characters(__snake_case ):
_UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' '''
return batch
_UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] )
_UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] )
def extract_all_chars(__snake_case ):
_UpperCamelCase = ''' '''.join(batch['''text'''] )
_UpperCamelCase = list(set(__snake_case ) )
return {"vocab": [vocab], "all_text": [all_text]}
_UpperCamelCase = train_dataset.map(
__snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , )
_UpperCamelCase = train_dataset.map(
__snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , )
_UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) )
_UpperCamelCase = {v: k for k, v in enumerate(__snake_case )}
_UpperCamelCase = vocab_dict[''' ''']
del vocab_dict[" "]
_UpperCamelCase = len(__snake_case )
_UpperCamelCase = len(__snake_case )
with open('''vocab.json''' , '''w''' ) as vocab_file:
json.dump(__snake_case , __snake_case )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCamelCase = WavaVecaCTCTokenizer(
'''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , )
_UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case )
_UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case )
_UpperCamelCase = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
_UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples )
_UpperCamelCase = train_dataset.select(range(__snake_case ) )
if data_args.max_val_samples is not None:
_UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) )
_UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(__snake_case ):
_UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] )
_UpperCamelCase = resampler(__snake_case ).squeeze().numpy()
_UpperCamelCase = 16000
_UpperCamelCase = batch['''text''']
return batch
_UpperCamelCase = train_dataset.map(
__snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
_UpperCamelCase = eval_dataset.map(
__snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(__snake_case ):
# check that all files have the correct sampling rate
assert (
len(set(batch['''sampling_rate'''] ) ) == 1
), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."""
_UpperCamelCase = processor(
audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] )
batch.update(__snake_case )
return batch
_UpperCamelCase = train_dataset.map(
__snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , )
_UpperCamelCase = eval_dataset.map(
__snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , )
# Metric
_UpperCamelCase = datasets.load_metric('''wer''' )
def compute_metrics(__snake_case ):
_UpperCamelCase = pred.predictions
_UpperCamelCase = np.argmax(__snake_case , axis=-1 )
_UpperCamelCase = processor.tokenizer.pad_token_id
_UpperCamelCase = processor.batch_decode(__snake_case )
# we do not want to group tokens when computing the metrics
_UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case )
_UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
_UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case )
# Initialize our Trainer
_UpperCamelCase = CTCTrainer(
model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
_UpperCamelCase = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
_UpperCamelCase = model_args.model_name_or_path
else:
_UpperCamelCase = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
_UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case )
trainer.save_model()
_UpperCamelCase = train_result.metrics
_UpperCamelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case )
)
_UpperCamelCase = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('''train''' , __snake_case )
trainer.save_metrics('''train''' , __snake_case )
trainer.save_state()
# Evaluation
_UpperCamelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCamelCase = trainer.evaluate()
_UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case )
_UpperCamelCase = min(__snake_case , len(__snake_case ) )
trainer.log_metrics('''eval''' , __snake_case )
trainer.save_metrics('''eval''' , __snake_case )
return results
if __name__ == "__main__":
main()
| 10 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = ["""ReformerTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = ["""ReformerTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
"""REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ReformerAttention""",
"""ReformerForMaskedLM""",
"""ReformerForQuestionAnswering""",
"""ReformerForSequenceClassification""",
"""ReformerLayer""",
"""ReformerModel""",
"""ReformerModelWithLMHead""",
"""ReformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 356 | import math
class lowerCAmelCase_ :
def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1
_UpperCamelCase = n
_UpperCamelCase = [
[math.inf for j in range(0 , _A )] for i in range(0 , _A )
] # adjacency matrix for weight
_UpperCamelCase = [
[math.inf for j in range(0 , _A )] for i in range(0 , _A )
] # dp[i][j] stores minimum distance from i to j
def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ):
_UpperCamelCase = w
def UpperCamelCase_ ( self : Optional[int] ):
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
_UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ):
return self.dp[u][v]
if __name__ == "__main__":
_lowerCAmelCase = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 10 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : int =logging.get_logger(__name__)
A_ : Union[str, Any] ={
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __UpperCAmelCase ( __lowercase ):
__A : Tuple = 'cvt'
def __init__( self , _lowerCamelCase=3 , _lowerCamelCase=[7, 3, 3] , _lowerCamelCase=[4, 2, 2] , _lowerCamelCase=[2, 1, 1] , _lowerCamelCase=[64, 192, 384] , _lowerCamelCase=[1, 3, 6] , _lowerCamelCase=[1, 2, 10] , _lowerCamelCase=[4.0, 4.0, 4.0] , _lowerCamelCase=[0.0, 0.0, 0.0] , _lowerCamelCase=[0.0, 0.0, 0.0] , _lowerCamelCase=[0.0, 0.0, 0.1] , _lowerCamelCase=[True, True, True] , _lowerCamelCase=[False, False, True] , _lowerCamelCase=["dw_bn", "dw_bn", "dw_bn"] , _lowerCamelCase=[3, 3, 3] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=[1, 1, 1] , _lowerCamelCase=0.02 , _lowerCamelCase=1E-12 , **_lowerCamelCase , ):
super().__init__(**_A )
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = patch_sizes
lowerCAmelCase_ = patch_stride
lowerCAmelCase_ = patch_padding
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = depth
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = attention_drop_rate
lowerCAmelCase_ = drop_rate
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = cls_token
lowerCAmelCase_ = qkv_projection_method
lowerCAmelCase_ = kernel_qkv
lowerCAmelCase_ = padding_kv
lowerCAmelCase_ = stride_kv
lowerCAmelCase_ = padding_q
lowerCAmelCase_ = stride_q
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = layer_norm_eps
| 274 | import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
def _snake_case ( __snake_case=None , __snake_case=None ):
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = list_field(
default=[], metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
}, )
UpperCAmelCase = list_field(
default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
UpperCAmelCase = list_field(
default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
}, )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} )
UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
}, )
UpperCAmelCase = field(
default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, )
UpperCAmelCase = field(
default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, )
UpperCAmelCase = field(
default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, )
UpperCAmelCase = field(
default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, )
UpperCAmelCase = field(
default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, )
UpperCAmelCase = field(
default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, )
UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} )
UpperCAmelCase = field(
default=__lowercase, metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
}, )
def UpperCamelCase_ ( self : Union[str, Any] ):
warnings.warn(
F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' , _A , )
def UpperCamelCase_ ( self : str ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def UpperCamelCase_ ( self : List[Any] ):
if len(self.models ) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' )
return self.models
@property
def UpperCamelCase_ ( self : Optional[int] ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''' )
return False
else:
return True
| 10 | 0 |
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class UpperCamelCase_ :
def __init__( self :Dict , __A :Optional[Any] , __A :Dict=13 , __A :int=7 , __A :List[str]=True , __A :Optional[int]=True , __A :Union[str, Any]=True , __A :Optional[Any]=True , __A :List[Any]=99 , __A :Any=32 , __A :Union[str, Any]=2 , __A :Optional[int]=4 , __A :int=37 , __A :Any="gelu" , __A :int=0.1 , __A :Dict=0.1 , __A :Any=512 , __A :List[Any]=16 , __A :Tuple=2 , __A :List[Any]=0.0_2 , __A :List[Any]=False , __A :int=True , __A :Union[str, Any]="None" , __A :Optional[Any]=3 , __A :Dict=4 , __A :Any=None , ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = seq_length
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_input_mask
SCREAMING_SNAKE_CASE__ = use_token_type_ids
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = type_sequence_label_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = num_choices
SCREAMING_SNAKE_CASE__ = relative_attention
SCREAMING_SNAKE_CASE__ = position_biased_input
SCREAMING_SNAKE_CASE__ = pos_att_type
SCREAMING_SNAKE_CASE__ = scope
def _snake_case ( self :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any] , __A :str , __A :str , __A :Optional[Any] , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFDebertaVaModel(config=_A )
SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
SCREAMING_SNAKE_CASE__ = [input_ids, input_mask]
SCREAMING_SNAKE_CASE__ = model(_A )
SCREAMING_SNAKE_CASE__ = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self :Optional[Any] , __A :int , __A :List[str] , __A :str , __A :Tuple , __A :List[Any] , __A :Dict , __A :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFDebertaVaForMaskedLM(config=_A )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE__ = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self :int , __A :str , __A :str , __A :Union[str, Any] , __A :int , __A :Optional[Any] , __A :str , __A :Dict ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = TFDebertaVaForSequenceClassification(config=_A )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE__ = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self :List[Any] , __A :List[str] , __A :Tuple , __A :int , __A :int , __A :Tuple , __A :Tuple , __A :int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = TFDebertaVaForTokenClassification(config=_A )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE__ = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self :Dict , __A :Any , __A :Union[str, Any] , __A :List[str] , __A :Dict , __A :Tuple , __A :Any , __A :Union[str, Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFDebertaVaForQuestionAnswering(config=_A )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE__ = model(_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self :Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( __lowercase , __lowercase , unittest.TestCase ):
lowerCamelCase_ = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
lowerCamelCase_ = (
{
"feature-extraction": TFDebertaVaModel,
"fill-mask": TFDebertaVaForMaskedLM,
"question-answering": TFDebertaVaForQuestionAnswering,
"text-classification": TFDebertaVaForSequenceClassification,
"token-classification": TFDebertaVaForTokenClassification,
"zero-shot": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCamelCase_ = False
lowerCamelCase_ = False
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFDebertaVaModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_A , hidden_size=37 )
def _snake_case ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _snake_case ( self :Optional[Any] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def _snake_case ( self :Dict ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def _snake_case ( self :Dict ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def _snake_case ( self :Optional[Any] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def _snake_case ( self :int ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
self.assertIsNotNone(_A )
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
@unittest.skip(reason="""Model not available yet""" )
def _snake_case ( self :int ) -> Union[str, Any]:
"""simple docstring"""
pass
@slow
def _snake_case ( self :List[str] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
SCREAMING_SNAKE_CASE__ = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
SCREAMING_SNAKE_CASE__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
SCREAMING_SNAKE_CASE__ = model(_A , attention_mask=_A )[0]
SCREAMING_SNAKE_CASE__ = tf.constant(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , _A , atol=1E-4 ) | 6 | import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ):
from .. import __version__
_UpperCamelCase = take_from
_UpperCamelCase = ()
if not isinstance(args[0] , __snake_case ):
_UpperCamelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ):
raise ValueError(
f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
f""" version {__version__} is >= {version_name}""" )
_UpperCamelCase = None
if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__snake_case ),)
_UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(__snake_case , __snake_case ):
values += (getattr(__snake_case , __snake_case ),)
_UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
_UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
_UpperCamelCase = warning + ''' ''' if standard_warn else ''''''
warnings.warn(warning + message , __snake_case , stacklevel=__snake_case )
if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0:
_UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCamelCase = call_frame.filename
_UpperCamelCase = call_frame.lineno
_UpperCamelCase = call_frame.function
_UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(__snake_case ) == 0:
return
elif len(__snake_case ) == 1:
return values[0]
return values
| 10 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase__ : List[str] = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[int] = ['''ViTFeatureExtractor''']
lowercase__ : Tuple = ['''ViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[Any] = [
'''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTForImageClassification''',
'''ViTForMaskedImageModeling''',
'''ViTModel''',
'''ViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : str = [
'''TFViTForImageClassification''',
'''TFViTModel''',
'''TFViTPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[int] = [
'''FlaxViTForImageClassification''',
'''FlaxViTModel''',
'''FlaxViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 312 | import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_lowerCAmelCase = logging.getLogger(__name__)
def _snake_case ( __snake_case , __snake_case ):
return (preds == labels).mean()
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, )
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} )
UpperCAmelCase = field(
default=128, metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
}, )
UpperCAmelCase = field(
default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} )
def _snake_case ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed
set_seed(training_args.seed )
try:
_UpperCamelCase = processors[data_args.task_name]()
_UpperCamelCase = processor.get_labels()
_UpperCamelCase = len(__snake_case )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
_UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_UpperCamelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , )
# Get datasets
_UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_UpperCamelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(__snake_case ) -> Dict:
_UpperCamelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(__snake_case , p.label_ids )}
# Data collator
_UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_UpperCamelCase = Trainer(
model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_UpperCamelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCamelCase = trainer.evaluate()
_UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(__snake_case , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __snake_case , __snake_case )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__snake_case )
return results
def _snake_case ( __snake_case ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 10 | 0 |
"""simple docstring"""
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_lowerCAmelCase : str = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : str=None ) -> Optional[Any]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=__snake_case )
@dataclass
class UpperCAmelCase_ :
__SCREAMING_SNAKE_CASE : List[str] = list_field(
default=[] , metadata={
'help': (
'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'
' of all available models'
)
} , )
__SCREAMING_SNAKE_CASE : Dict = list_field(
default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} )
__SCREAMING_SNAKE_CASE : Optional[Any] = list_field(
default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , )
__SCREAMING_SNAKE_CASE : List[Any] = field(
default=__lowercase , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , )
__SCREAMING_SNAKE_CASE : Union[str, Any] = field(
default=__lowercase , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , )
__SCREAMING_SNAKE_CASE : List[Any] = field(
default=__lowercase , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} )
__SCREAMING_SNAKE_CASE : Tuple = field(default=__lowercase , metadata={'help': 'Use FP16 to accelerate inference.'} )
__SCREAMING_SNAKE_CASE : int = field(default=__lowercase , metadata={'help': 'Benchmark training of model'} )
__SCREAMING_SNAKE_CASE : List[Any] = field(default=__lowercase , metadata={'help': 'Verbose memory tracing'} )
__SCREAMING_SNAKE_CASE : int = field(
default=__lowercase , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , )
__SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__lowercase , metadata={
'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'
} , )
__SCREAMING_SNAKE_CASE : Tuple = field(default=__lowercase , metadata={'help': 'Trace memory line by line'} )
__SCREAMING_SNAKE_CASE : List[str] = field(default=__lowercase , metadata={'help': 'Save result to a CSV file'} )
__SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'help': 'Save all print statements in a log file'} )
__SCREAMING_SNAKE_CASE : Union[str, Any] = field(default=__lowercase , metadata={'help': 'Whether to print environment information'} )
__SCREAMING_SNAKE_CASE : Optional[int] = field(
default=__lowercase , metadata={
'help': (
'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'
' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'
' for debugging / testing and on TPU.'
)
} , )
__SCREAMING_SNAKE_CASE : int = field(
default=f"""inference_time_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving time results to csv.'} , )
__SCREAMING_SNAKE_CASE : List[str] = field(
default=f"""inference_memory_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , )
__SCREAMING_SNAKE_CASE : Any = field(
default=f"""train_time_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , )
__SCREAMING_SNAKE_CASE : Tuple = field(
default=f"""train_memory_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , )
__SCREAMING_SNAKE_CASE : int = field(
default=f"""env_info_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving environment information.'} , )
__SCREAMING_SNAKE_CASE : str = field(
default=f"""log_{round(time() )}.csv""" , metadata={'help': 'Log filename used if print statements are saved in log.'} , )
__SCREAMING_SNAKE_CASE : List[str] = field(default=3 , metadata={'help': 'Times an experiment will be run.'} )
__SCREAMING_SNAKE_CASE : Tuple = field(
default=__lowercase , metadata={
'help': (
'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'
' model weights.'
)
} , )
def snake_case_ ( self : Union[str, Any] ):
warnings.warn(
f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'
" are deprecated in general and it is advised to use external Benchmarking libraries "
" to benchmark Transformer models." , _A , )
def snake_case_ ( self : str ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def snake_case_ ( self : List[Any] ):
if len(self.models ) <= 0:
raise ValueError(
"Please make sure you provide at least one model name / model identifier, *e.g.* `--models"
" bert-base-cased` or `args.models = [\'bert-base-cased\']." )
return self.models
@property
def snake_case_ ( self : Optional[int] ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("Multiprocessing is currently not possible on TPU." )
return False
else:
return True
| 289 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = "trocr"
UpperCAmelCase = ["past_key_values"]
UpperCAmelCase = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ):
_UpperCamelCase = vocab_size
_UpperCamelCase = d_model
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = activation_function
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = init_std
_UpperCamelCase = decoder_layerdrop
_UpperCamelCase = use_cache
_UpperCamelCase = scale_embedding
_UpperCamelCase = use_learned_position_embeddings
_UpperCamelCase = layernorm_embedding
super().__init__(
pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
| 10 | 0 |
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
@require_torch
def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]:
"""simple docstring"""
a__ : List[Any] = pipeline(
task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" )
a__ : Dict = load_dataset("""ashraq/esc50""" )
a__ : int = dataset["""train"""]["""audio"""][-1]["""array"""]
a__ : int = audio_classifier(_A , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(_A ) , [{"""score""": 0.5_0_1, """label""": """Sound of a dog"""}, {"""score""": 0.4_9_9, """label""": """Sound of vaccum cleaner"""}] , )
@unittest.skip("""No models are available in TF""" )
def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]:
"""simple docstring"""
pass
@slow
@require_torch
def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]:
"""simple docstring"""
a__ : int = pipeline(
task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , )
# This is an audio of a dog
a__ : Optional[Any] = load_dataset("""ashraq/esc50""" )
a__ : int = dataset["""train"""]["""audio"""][-1]["""array"""]
a__ : str = audio_classifier(_A , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(_A ) , [
{"""score""": 0.9_9_9, """label""": """Sound of a dog"""},
{"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""},
] , )
a__ : str = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(_A ) , [
[
{"""score""": 0.9_9_9, """label""": """Sound of a dog"""},
{"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""},
],
]
* 5 , )
a__ : Dict = audio_classifier(
[audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 )
self.assertEqual(
nested_simplify(_A ) , [
[
{"""score""": 0.9_9_9, """label""": """Sound of a dog"""},
{"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""},
],
]
* 5 , )
@unittest.skip("""No models are available in TF""" )
def SCREAMING_SNAKE_CASE__( self ) -> str:
"""simple docstring"""
pass
| 136 | import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_lengths
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = gelu_activation
_UpperCamelCase = sinusoidal_embeddings
_UpperCamelCase = causal
_UpperCamelCase = asm
_UpperCamelCase = n_langs
_UpperCamelCase = vocab_size
_UpperCamelCase = n_special
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_labels
_UpperCamelCase = num_choices
_UpperCamelCase = summary_type
_UpperCamelCase = use_proj
_UpperCamelCase = scope
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_input_lengths:
_UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float()
_UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCamelCase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase_ ( self : str ):
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ):
_UpperCamelCase = FlaubertModel(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , lengths=_A , langs=_A )
_UpperCamelCase = model(_A , langs=_A )
_UpperCamelCase = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ):
_UpperCamelCase = FlaubertWithLMHeadModel(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ):
_UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ):
_UpperCamelCase = FlaubertForQuestionAnswering(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , )
_UpperCamelCase = model(
_A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
_UpperCamelCase = model(_A , start_positions=_A , end_positions=_A )
((_UpperCamelCase) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ):
_UpperCamelCase = FlaubertForSequenceClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A )
_UpperCamelCase = model(_A , labels=_A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ):
_UpperCamelCase = self.num_labels
_UpperCamelCase = FlaubertForTokenClassification(_A )
model.to(_A )
model.eval()
_UpperCamelCase = model(_A , attention_mask=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ):
_UpperCamelCase = self.num_choices
_UpperCamelCase = FlaubertForMultipleChoice(config=_A )
model.to(_A )
model.eval()
_UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCAmelCase = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ):
_UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
return inputs_dict
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = FlaubertModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 )
def UpperCamelCase_ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_A )
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_A )
def UpperCamelCase_ ( self : Union[str, Any] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_A )
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_A )
@slow
def UpperCamelCase_ ( self : str ):
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = FlaubertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@slow
@require_torch_gpu
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
_UpperCamelCase = True
_UpperCamelCase = model_class(config=_A )
_UpperCamelCase = self._prepare_for_class(_A , _A )
_UpperCamelCase = torch.jit.trace(
_A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) )
_UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A )
loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' )
_UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
_UpperCamelCase = model(_A )[0]
_UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _A )
_UpperCamelCase = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
| 10 | 0 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ : Optional[Any] =OmegaConf.load(__snake_case )
SCREAMING_SNAKE_CASE_ : Tuple =torch.load(__snake_case , map_location='''cpu''' )['''model''']
SCREAMING_SNAKE_CASE_ : Optional[Any] =list(state_dict.keys() )
# extract state_dict for VQVAE
SCREAMING_SNAKE_CASE_ : Optional[int] ={}
SCREAMING_SNAKE_CASE_ : str ='''first_stage_model.'''
for key in keys:
if key.startswith(__snake_case ):
SCREAMING_SNAKE_CASE_ : Any =state_dict[key]
# extract state_dict for UNetLDM
SCREAMING_SNAKE_CASE_ : Dict ={}
SCREAMING_SNAKE_CASE_ : Tuple ='''model.diffusion_model.'''
for key in keys:
if key.startswith(__snake_case ):
SCREAMING_SNAKE_CASE_ : Optional[int] =state_dict[key]
SCREAMING_SNAKE_CASE_ : Optional[Any] =config.model.params.first_stage_config.params
SCREAMING_SNAKE_CASE_ : Any =config.model.params.unet_config.params
SCREAMING_SNAKE_CASE_ : Optional[Any] =VQModel(**__snake_case ).eval()
vqvae.load_state_dict(__snake_case )
SCREAMING_SNAKE_CASE_ : Tuple =UNetLDMModel(**__snake_case ).eval()
unet.load_state_dict(__snake_case )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__snake_case , )
SCREAMING_SNAKE_CASE_ : int =LDMPipeline(__snake_case , __snake_case , __snake_case )
pipeline.save_pretrained(__snake_case )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument("""--checkpoint_path""", type=str, required=True)
parser.add_argument("""--config_path""", type=str, required=True)
parser.add_argument("""--output_path""", type=str, required=True)
_lowercase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 443 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ):
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = projection_dim
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
_UpperCamelCase = bos_token_id
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
_UpperCamelCase = input_mask.numpy()
_UpperCamelCase , _UpperCamelCase = input_mask.shape
_UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_A ):
_UpperCamelCase = 1
_UpperCamelCase = 0
_UpperCamelCase = self.get_config()
return config, input_ids, tf.convert_to_tensor(_A )
def UpperCamelCase_ ( self : str ):
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ):
_UpperCamelCase = TFBlipTextModel(config=_A )
_UpperCamelCase = model(_A , attention_mask=_A , training=_A )
_UpperCamelCase = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple ):
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else ()
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = BlipTextModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 )
def UpperCamelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCamelCase_ ( self : List[str] ):
pass
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = TFBlipTextModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase_ ( self : int , _A : Optional[int]=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
| 10 | 0 |
'''simple docstring'''
def a__ ( a__ , a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = (boundary[1] - boundary[0]) / steps
__SCREAMING_SNAKE_CASE = boundary[0]
__SCREAMING_SNAKE_CASE = boundary[1]
__SCREAMING_SNAKE_CASE = make_points(__snake_case , __snake_case , __snake_case )
__SCREAMING_SNAKE_CASE = 0.0
y += (h / 2.0) * f(__snake_case )
for i in x_i:
# print(i)
y += h * f(__snake_case )
y += (h / 2.0) * f(__snake_case )
return y
def a__ ( a__ , a__ , a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = a + h
while x < (b - h):
yield x
__SCREAMING_SNAKE_CASE = x + h
def a__ ( a__ ): # enter your function here
"""simple docstring"""
__SCREAMING_SNAKE_CASE = (x - 0) * (x - 0)
return y
def a__ ( ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 0.0 # Lower bound of integration
__SCREAMING_SNAKE_CASE = 1.0 # Upper bound of integration
__SCREAMING_SNAKE_CASE = 10.0 # define number of steps or resolution
__SCREAMING_SNAKE_CASE = [a, b] # define boundary of integration
__SCREAMING_SNAKE_CASE = method_a(__snake_case , __snake_case )
print(F'y = {y}' )
if __name__ == "__main__":
main()
| 627 | from __future__ import annotations
_lowerCAmelCase = [True] * 1_000_001
_lowerCAmelCase = 2
while i * i <= 1_000_000:
if seive[i]:
for j in range(i * i, 1_000_001, i):
_lowerCAmelCase = False
i += 1
def _snake_case ( __snake_case ):
return seive[n]
def _snake_case ( __snake_case ):
return any(digit in '''02468''' for digit in str(__snake_case ) )
def _snake_case ( __snake_case = 1000000 ):
_UpperCamelCase = [2] # result already includes the number 2.
for num in range(3 , limit + 1 , 2 ):
if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ):
_UpperCamelCase = str(__snake_case )
_UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )]
if all(is_prime(__snake_case ) for i in list_nums ):
result.append(__snake_case )
return result
def _snake_case ( ):
return len(find_circular_primes() )
if __name__ == "__main__":
print(f'{len(find_circular_primes()) = }')
| 10 | 0 |
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase = {
'vocab_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase = {
'vocab_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase = {
'vocab_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase = {
'facebook/dpr-ctx_encoder-single-nq-base': 5_12,
'facebook/dpr-ctx_encoder-multiset-base': 5_12,
}
UpperCamelCase = {
'facebook/dpr-question_encoder-single-nq-base': 5_12,
'facebook/dpr-question_encoder-multiset-base': 5_12,
}
UpperCamelCase = {
'facebook/dpr-reader-single-nq-base': 5_12,
'facebook/dpr-reader-multiset-base': 5_12,
}
UpperCamelCase = {
'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True},
}
UpperCamelCase = {
'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True},
}
UpperCamelCase = {
'facebook/dpr-reader-single-nq-base': {'do_lower_case': True},
'facebook/dpr-reader-multiset-base': {'do_lower_case': True},
}
class UpperCAmelCase__ ( __lowercase ):
"""simple docstring"""
lowerCAmelCase__ : str = VOCAB_FILES_NAMES
lowerCAmelCase__ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase__ : List[Any] = DPRContextEncoderTokenizer
class UpperCAmelCase__ ( __lowercase ):
"""simple docstring"""
lowerCAmelCase__ : str = VOCAB_FILES_NAMES
lowerCAmelCase__ : int = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : int = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : int = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase__ : Dict = DPRQuestionEncoderTokenizer
UpperCamelCase = collections.namedtuple(
'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text']
)
UpperCamelCase = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits'])
UpperCamelCase = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n '
@add_start_docstrings(__lowercase )
class UpperCAmelCase__ :
"""simple docstring"""
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]:
if titles is None and texts is None:
return super().__call__(
_A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , )
elif titles is None or texts is None:
a_ : Optional[Any] = titles if texts is None else texts
return super().__call__(
_A , _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , )
a_ : Optional[int] = titles if not isinstance(_A , _A ) else [titles]
a_ : Optional[int] = texts if not isinstance(_A , _A ) else [texts]
a_ : Dict = len(_A )
a_ : Dict = questions if not isinstance(_A , _A ) else [questions] * n_passages
assert len(_A ) == len(
_A ), f'''There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.'''
a_ : Optional[int] = super().__call__(_A , _A , padding=_A , truncation=_A )["input_ids"]
a_ : List[str] = super().__call__(_A , add_special_tokens=_A , padding=_A , truncation=_A )["input_ids"]
a_ : Union[str, Any] = {
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_A , _A )
]
}
if return_attention_mask is not False:
a_ : int = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
a_ : List[Any] = attention_mask
return self.pad(_A , padding=_A , max_length=_A , return_tensors=_A )
def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1_6 , _SCREAMING_SNAKE_CASE = 6_4 , _SCREAMING_SNAKE_CASE = 4 , ) -> Any:
a_ : Any = reader_input["input_ids"]
a_ , a_ , a_ : Tuple = reader_output[:3]
a_ : Dict = len(_A )
a_ : Optional[Any] = sorted(range(_A ) , reverse=_A , key=relevance_logits.__getitem__ )
a_ : Optional[Any] = []
for doc_id in sorted_docs:
a_ : Dict = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
a_ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
a_ : List[Any] = sequence_ids.index(self.pad_token_id )
else:
a_ : List[Any] = len(_A )
a_ : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_A , top_spans=_A , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_A , start_index=_A , end_index=_A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_A ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]:
a_ : Union[str, Any] = []
for start_index, start_score in enumerate(_A ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
a_ : Union[str, Any] = sorted(_A , key=lambda _SCREAMING_SNAKE_CASE : x[1] , reverse=_A )
a_ : Tuple = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
a_ : Union[str, Any] = end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_A ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__lowercase )
class UpperCAmelCase__ ( __lowercase, __lowercase ):
"""simple docstring"""
lowerCAmelCase__ : Any = VOCAB_FILES_NAMES
lowerCAmelCase__ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase__ : str = ["""input_ids""", """attention_mask"""]
lowerCAmelCase__ : List[str] = DPRReaderTokenizer
| 473 | import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = DebertaVaTokenizer
UpperCAmelCase = DebertaVaTokenizerFast
UpperCAmelCase = True
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ):
_UpperCamelCase = '''this is a test'''
_UpperCamelCase = '''this is a test'''
return input_text, output_text
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(_A ) , 3_0001 )
def UpperCamelCase_ ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 )
def UpperCamelCase_ ( self : List[str] ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[Any] ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : int ):
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Tuple ):
# fmt: off
_UpperCamelCase = ''' \tHeLLo!how \n Are yoU? '''
_UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
_UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = tokenizer.encode(_A )
_UpperCamelCase = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''This is a test'''
_UpperCamelCase = [13, 1, 4398, 25, 21, 1289]
_UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
_UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A )
_UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
# fmt: off
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
_UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
_UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
_UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(_A , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = DebertaVaTokenizer(_A )
_UpperCamelCase = tokenizer.encode('''sequence builders''' )
_UpperCamelCase = tokenizer.encode('''multi-sequence build''' )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A )
_UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 10 | 0 |
from __future__ import annotations
from typing import Any
def UpperCamelCase ( __lowercase : int ):
'''simple docstring'''
if not postfix_notation:
return 0
A_ : str = {'+', '-', '*', '/'}
A_ : Tuple = []
for token in postfix_notation:
if token in operations:
A_ , A_ : Union[str, Any] = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(__snake_case ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 558 | import sys
from collections import defaultdict
class lowerCAmelCase_ :
def __init__( self : Optional[int] ):
_UpperCamelCase = []
def UpperCamelCase_ ( self : Any , _A : str ):
return self.node_position[vertex]
def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ):
_UpperCamelCase = pos
def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_UpperCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_UpperCamelCase = 2 * start + 1
else:
_UpperCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
_UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child]
_UpperCamelCase , _UpperCamelCase = (
heap[start],
positions[start],
)
_UpperCamelCase , _UpperCamelCase = temp, tempa
_UpperCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _A )
self.top_to_bottom(_A , _A , _A , _A )
def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ):
_UpperCamelCase = position[index]
while index != 0:
_UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_UpperCamelCase = heap[parent]
_UpperCamelCase = position[parent]
self.set_position(position[parent] , _A )
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , _A )
break
_UpperCamelCase = parent
else:
_UpperCamelCase = val
_UpperCamelCase = temp
self.set_position(_A , 0 )
def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ):
_UpperCamelCase = len(_A ) // 2 - 1
for i in range(_A , -1 , -1 ):
self.top_to_bottom(_A , _A , len(_A ) , _A )
def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ):
_UpperCamelCase = positions[0]
_UpperCamelCase = sys.maxsize
self.top_to_bottom(_A , 0 , len(_A ) , _A )
return temp
def _snake_case ( __snake_case ):
_UpperCamelCase = Heap()
_UpperCamelCase = [0] * len(__snake_case )
_UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
_UpperCamelCase = []
for vertex in range(len(__snake_case ) ):
distance_tv.append(sys.maxsize )
positions.append(__snake_case )
heap.node_position.append(__snake_case )
_UpperCamelCase = []
_UpperCamelCase = 1
_UpperCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_UpperCamelCase = 0
_UpperCamelCase = distance
heap.heapify(__snake_case , __snake_case )
for _ in range(1 , len(__snake_case ) ):
_UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_UpperCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__snake_case )]
):
_UpperCamelCase = distance
heap.bottom_to_top(
__snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case )
_UpperCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
_lowerCAmelCase = int(input("Enter number of edges: ").strip())
_lowerCAmelCase = defaultdict(list)
for _ in range(edges_number):
_lowerCAmelCase = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 10 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {
'configuration_blenderbot_small': [
'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlenderbotSmallConfig',
'BlenderbotSmallOnnxConfig',
],
'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['BlenderbotSmallTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlenderbotSmallForCausalLM',
'BlenderbotSmallForConditionalGeneration',
'BlenderbotSmallModel',
'BlenderbotSmallPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'TFBlenderbotSmallForConditionalGeneration',
'TFBlenderbotSmallModel',
'TFBlenderbotSmallPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'FlaxBlenderbotSmallForConditionalGeneration',
'FlaxBlenderbotSmallModel',
'FlaxBlenderbotSmallPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 76 | import logging
import os
from .state import PartialState
class lowerCAmelCase_ ( logging.LoggerAdapter ):
@staticmethod
def UpperCamelCase_ ( _A : Any ):
_UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ):
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCamelCase = kwargs.pop('''main_process_only''' , _A )
_UpperCamelCase = kwargs.pop('''in_order''' , _A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
elif in_order:
_UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
state.wait_for_everyone()
def _snake_case ( __snake_case , __snake_case = None ):
if log_level is None:
_UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case )
_UpperCamelCase = logging.getLogger(__snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__snake_case , {} )
| 10 | 0 |
'''simple docstring'''
def lowerCamelCase__ ( a , a ):
if discount_rate < 0:
raise ValueError('Discount rate cannot be negative' )
if not cash_flows:
raise ValueError('Cash flows list cannot be empty' )
__snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__snake_case ) )
return round(__snake_case , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356 | import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase = "▁"
_lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = BertGenerationTokenizer
UpperCAmelCase = False
UpperCAmelCase = True
def UpperCamelCase_ ( self : List[str] ):
super().setUp()
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = '''<s>'''
_UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(_A ) , 1002 )
def UpperCamelCase_ ( self : Dict ):
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(_A )
self.assertListEqual(
_A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(_A )
self.assertListEqual(
_A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def UpperCamelCase_ ( self : Union[str, Any] ):
return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
_UpperCamelCase = '''Hello World!'''
_UpperCamelCase = [1_8536, 2260, 101]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@slow
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
_UpperCamelCase = [
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
3_4324,
497,
391,
408,
1_1342,
1244,
385,
100,
938,
985,
456,
574,
362,
1_2597,
3200,
3129,
1172,
]
self.assertListEqual(_A , self.big_tokenizer.encode(_A ) )
@require_torch
@slow
def UpperCamelCase_ ( self : Dict ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10]
_UpperCamelCase = ''' '''.join(_A )
_UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = self.big_tokenizer.batch_encode_plus(
[sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A )
_UpperCamelCase = BertGenerationConfig()
_UpperCamelCase = BertGenerationEncoder(_A )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_A )
model(**_A )
@slow
def UpperCamelCase_ ( self : Dict ):
# fmt: off
_UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
| 10 | 0 |
'''simple docstring'''
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
A_ : List[str] =logging.get_logger(__name__)
class __UpperCAmelCase ( __lowercase ):
def __init__( self , **_lowerCamelCase ):
requires_backends(self , ['''bs4'''] )
super().__init__(**_A )
def UpperCAmelCase_ ( self , _lowerCamelCase ):
lowerCAmelCase_ = []
lowerCAmelCase_ = []
lowerCAmelCase_ = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
lowerCAmelCase_ = parent.find_all(child.name , recursive=_A )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(_A ) else next(i for i, s in enumerate(_A , 1 ) if s is child ) )
lowerCAmelCase_ = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def UpperCAmelCase_ ( self , _lowerCamelCase ):
lowerCAmelCase_ = BeautifulSoup(_A , '''html.parser''' )
lowerCAmelCase_ = []
lowerCAmelCase_ = []
lowerCAmelCase_ = []
for element in html_code.descendants:
if type(_A ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
lowerCAmelCase_ = html.unescape(_A ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(_A )
lowerCAmelCase_ ,lowerCAmelCase_ = self.xpath_soup(_A )
stringaxtag_seq.append(_A )
stringaxsubs_seq.append(_A )
if len(_A ) != len(_A ):
raise ValueError('''Number of doc strings and xtags does not correspond''' )
if len(_A ) != len(_A ):
raise ValueError('''Number of doc strings and xsubs does not correspond''' )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ):
lowerCAmelCase_ = ''''''
for tagname, subs in zip(_A , _A ):
xpath += F'''/{tagname}'''
if subs != 0:
xpath += F'''[{subs}]'''
return xpath
def __call__( self , _lowerCamelCase ):
lowerCAmelCase_ = False
# Check that strings has a valid type
if isinstance(_A , _A ):
lowerCAmelCase_ = True
elif isinstance(_A , (list, tuple) ):
if len(_A ) == 0 or isinstance(html_strings[0] , _A ):
lowerCAmelCase_ = True
if not valid_strings:
raise ValueError(
'''HTML strings must of type `str`, `List[str]` (batch of examples), '''
F'''but is of type {type(_A )}.''' )
lowerCAmelCase_ = bool(isinstance(_A , (list, tuple) ) and (isinstance(html_strings[0] , _A )) )
if not is_batched:
lowerCAmelCase_ = [html_strings]
# Get nodes + xpaths
lowerCAmelCase_ = []
lowerCAmelCase_ = []
for html_string in html_strings:
lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = self.get_three_from_single(_A )
nodes.append(_A )
lowerCAmelCase_ = []
for node, tag_list, sub_list in zip(_A , _A , _A ):
lowerCAmelCase_ = self.construct_xpath(_A , _A )
xpath_strings.append(_A )
xpaths.append(_A )
# return as Dict
lowerCAmelCase_ = {'''nodes''': nodes, '''xpaths''': xpaths}
lowerCAmelCase_ = BatchFeature(data=_A , tensor_type=_A )
return encoded_inputs
| 274 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ):
UpperCAmelCase = StableUnCLIPPipeline
UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
UpperCAmelCase = False
def UpperCamelCase_ ( self : Optional[int] ):
_UpperCamelCase = 32
_UpperCamelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , )
torch.manual_seed(0 )
_UpperCamelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
_UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A )
_UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
_UpperCamelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , )
torch.manual_seed(0 )
_UpperCamelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCamelCase = AutoencoderKL()
_UpperCamelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase_ ( self : Dict ):
_UpperCamelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_A )
def UpperCamelCase_ ( self : List[Any] ):
_UpperCamelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_A )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
_UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' )
_UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_A , _A )
def UpperCamelCase_ ( self : Optional[Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
_UpperCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 10 | 0 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCamelCase_ ( __lowercase , unittest.TestCase ):
lowerCamelCase_ = LEDTokenizer
lowerCamelCase_ = LEDTokenizerFast
lowerCamelCase_ = True
def _snake_case ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
SCREAMING_SNAKE_CASE__ = dict(zip(_A , range(len(_A ) ) ) )
SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
SCREAMING_SNAKE_CASE__ = {"""unk_token""": """<unk>"""}
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_A ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_A ) )
def _snake_case ( self :List[Any] , **__A :Dict ) -> Dict:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A )
def _snake_case ( self :Any , **__A :Any ) -> List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A )
def _snake_case ( self :Tuple , __A :str ) -> Tuple:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def _snake_case ( self :str ) -> str:
"""simple docstring"""
return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" )
@cached_property
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" )
@require_torch
def _snake_case ( self :Tuple ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
SCREAMING_SNAKE_CASE__ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors="""pt""" )
self.assertIsInstance(_A , _A )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
SCREAMING_SNAKE_CASE__ = batch.input_ids.tolist()[0]
self.assertListEqual(_A , _A )
@require_torch
def _snake_case ( self :List[Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ = tokenizer(_A , padding=_A , return_tensors="""pt""" )
self.assertIn("""input_ids""" , _A )
self.assertIn("""attention_mask""" , _A )
self.assertNotIn("""labels""" , _A )
self.assertNotIn("""decoder_attention_mask""" , _A )
@require_torch
def _snake_case ( self :List[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""Summary of the text.""",
"""Another summary.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ = tokenizer(text_target=_A , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def _snake_case ( self :List[Any] ) -> List[str]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ = tokenizer(
["""I am a small frog""" * 1024, """I am a small frog"""] , padding=_A , truncation=_A , return_tensors="""pt""" )
self.assertIsInstance(_A , _A )
self.assertEqual(batch.input_ids.shape , (2, 5122) )
@require_torch
def _snake_case ( self :Union[str, Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization."""]
SCREAMING_SNAKE_CASE__ = [
"""Summary of the text.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ = tokenizer(_A , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ = tokenizer(text_target=_A , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ = inputs["""input_ids"""]
SCREAMING_SNAKE_CASE__ = targets["""input_ids"""]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ = ["""Summary of the text.""", """Another summary."""]
SCREAMING_SNAKE_CASE__ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
SCREAMING_SNAKE_CASE__ = tokenizer(_A , padding=_A )
SCREAMING_SNAKE_CASE__ = [[0] * len(_A ) for x in encoded_output["""input_ids"""]]
SCREAMING_SNAKE_CASE__ = tokenizer.pad(_A )
self.assertSequenceEqual(outputs["""global_attention_mask"""] , _A )
def _snake_case ( self :Any ) -> int:
"""simple docstring"""
pass
def _snake_case ( self :Optional[Any] ) -> str:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(_A , **_A )
SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(_A , **_A )
SCREAMING_SNAKE_CASE__ = """A, <mask> AllenNLP sentence."""
SCREAMING_SNAKE_CASE__ = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A )
SCREAMING_SNAKE_CASE__ = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A )
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(
_A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
_A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) | 6 | from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _snake_case ( __snake_case , __snake_case ):
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) )
def _snake_case ( __snake_case , __snake_case ):
if dataset.ndim != value_array.ndim:
_UpperCamelCase = (
'''Wrong input data\'s dimensions... '''
f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(__snake_case )
try:
if dataset.shape[1] != value_array.shape[1]:
_UpperCamelCase = (
'''Wrong input data\'s shape... '''
f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(__snake_case )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
_UpperCamelCase = (
'''Input data have different datatype... '''
f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(__snake_case )
_UpperCamelCase = []
for value in value_array:
_UpperCamelCase = euclidean(__snake_case , dataset[0] )
_UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
_UpperCamelCase = euclidean(__snake_case , __snake_case )
if dist > temp_dist:
_UpperCamelCase = temp_dist
_UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _snake_case ( __snake_case , __snake_case ):
return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 0 |
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
torch.manual_seed(0 )
lowerCAmelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(_A )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = self.dummy_uncond_unet
lowerCAmelCase = DDIMScheduler()
lowerCAmelCase = self.dummy_vq_model
lowerCAmelCase = LDMPipeline(unet=_A , vqvae=_A , scheduler=_A )
ldm.to(_A )
ldm.set_progress_bar_config(disable=_A )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = ldm(generator=_A , num_inference_steps=2 , output_type='''numpy''' ).images
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = ldm(generator=_A , num_inference_steps=2 , output_type='''numpy''' , return_dict=_A )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
lowerCAmelCase = 1e-2 if torch_device != '''mps''' else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' )
ldm.to(_A )
ldm.set_progress_bar_config(disable=_A )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = ldm(generator=_A , num_inference_steps=5 , output_type='''numpy''' ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowerCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
lowerCAmelCase = 1e-2 if torch_device != '''mps''' else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 312 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase_ ( __lowercase, unittest.TestCase ):
UpperCAmelCase = ShapEPipeline
UpperCAmelCase = ["prompt"]
UpperCAmelCase = ["prompt"]
UpperCAmelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
UpperCAmelCase = False
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
return 32
@property
def UpperCamelCase_ ( self : int ):
return 32
@property
def UpperCamelCase_ ( self : List[str] ):
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 8
@property
def UpperCamelCase_ ( self : int ):
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def UpperCamelCase_ ( self : List[Any] ):
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(_A )
@property
def UpperCamelCase_ ( self : int ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
_UpperCamelCase = PriorTransformer(**_A )
return model
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
_UpperCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
_UpperCamelCase = ShapERenderer(**_A )
return model
def UpperCamelCase_ ( self : str ):
_UpperCamelCase = self.dummy_prior
_UpperCamelCase = self.dummy_text_encoder
_UpperCamelCase = self.dummy_tokenizer
_UpperCamelCase = self.dummy_renderer
_UpperCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , )
_UpperCamelCase = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ):
if str(_A ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(_A )
else:
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A )
_UpperCamelCase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = '''cpu'''
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) )
_UpperCamelCase = output.images[0]
_UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
_UpperCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase_ ( self : Any ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = torch_device == '''cpu'''
_UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_A , relax_max_difference=_A , )
def UpperCamelCase_ ( self : Any ):
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = self.pipeline_class(**_A )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = 1
_UpperCamelCase = 2
_UpperCamelCase = self.get_dummy_inputs(_A )
for key in inputs.keys():
if key in self.batch_params:
_UpperCamelCase = batch_size * [inputs[key]]
_UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def UpperCamelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : List[str] ):
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
_UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' )
_UpperCamelCase = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 )
_UpperCamelCase = pipe(
'''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_A , _A )
| 10 | 0 |
"""simple docstring"""
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"stable diffusion controlnet",
"0.22.0",
"Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.",
standard_warn=False,
stacklevel=3,
)
| 289 | import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_lowerCAmelCase = HfApi()
_lowerCAmelCase = {}
# fmt: off
_lowerCAmelCase = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
_lowerCAmelCase = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
_lowerCAmelCase = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
_lowerCAmelCase = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
_lowerCAmelCase = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
_lowerCAmelCase = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
_lowerCAmelCase = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
_lowerCAmelCase = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
_lowerCAmelCase = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
_lowerCAmelCase = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
_lowerCAmelCase = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
_lowerCAmelCase = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
_lowerCAmelCase = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
_lowerCAmelCase = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
_lowerCAmelCase = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
_lowerCAmelCase = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f'Started running {mod.modelId}!!!')
if mod.modelId.startswith("CompVis"):
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_lowerCAmelCase = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_lowerCAmelCase = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3
)
print(f'{mod.modelId} has passed successfully!!!')
| 10 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : int ={"vocab_file": "spiece.model"}
_lowercase : Optional[int] ={
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class snake_case__ (__lowercase ):
"""simple docstring"""
def __init__( self , __lowercase , __lowercase=False , __lowercase=True , __lowercase=False , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<unk>" , __lowercase="<sep>" , __lowercase="<pad>" , __lowercase="<cls>" , __lowercase="<mask>" , __lowercase=["<eop>", "<eod>"] , __lowercase = None , **__lowercase , ) -> int:
"""simple docstring"""
a__ : Dict = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token
a__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , )
a__ : Dict = 3
a__ : Union[str, Any] = do_lower_case
a__ : int = remove_space
a__ : List[Any] = keep_accents
a__ : Optional[int] = vocab_file
a__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_A )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
a__ : Union[str, Any] = jieba
a__ : Optional[int] = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__( self ) -> List[Any]:
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__( self ) -> Any:
"""simple docstring"""
a__ : Any = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> str:
"""simple docstring"""
a__ : List[Any] = self.__dict__.copy()
a__ : Optional[int] = None
return state
def __setstate__( self , __lowercase ) -> str:
"""simple docstring"""
a__ : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
a__ : List[str] = {}
a__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str:
"""simple docstring"""
if self.remove_space:
a__ : Optional[Any] = """ """.join(inputs.strip().split() )
else:
a__ : Optional[int] = inputs
a__ : Tuple = outputs.replace("""``""" , """\"""" ).replace("""\'\'""" , """\"""" )
if not self.keep_accents:
a__ : Optional[Any] = unicodedata.normalize("""NFKD""" , _A )
a__ : str = """""".join([c for c in outputs if not unicodedata.combining(_A )] )
if self.do_lower_case:
a__ : Union[str, Any] = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple:
"""simple docstring"""
a__ : List[Any] = self.preprocess_text(_A )
a__ : int = self.sp_model.encode(_A , out_type=_A )
a__ : Optional[int] = []
for piece in pieces:
if len(_A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
a__ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
a__ : Union[str, Any] = cur_pieces[1:]
else:
a__ : List[str] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_A )
else:
new_pieces.append(_A )
return new_pieces
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str:
"""simple docstring"""
return self.sp_model.PieceToId(_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int:
"""simple docstring"""
return self.sp_model.IdToPiece(_A )
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]:
"""simple docstring"""
a__ : Optional[int] = """""".join(_A ).replace(_A , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Any:
"""simple docstring"""
a__ : List[Any] = [self.sep_token_id]
a__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A )
if token_ids_a is not None:
return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1]
return ([0] * len(_A )) + [1, 1]
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> int:
"""simple docstring"""
a__ : str = [self.sep_token_id]
a__ : List[str] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Any:
"""simple docstring"""
if not os.path.isdir(_A ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
a__ : Tuple = os.path.join(
_A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _A )
elif not os.path.isfile(self.vocab_file ):
with open(_A , """wb""" ) as fi:
a__ : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__( self , *__lowercase , **__lowercase ) -> List[Any]:
"""simple docstring"""
a__ : Optional[int] = super()._decode(*_A , **_A )
a__ : Union[str, Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 136 | from typing import List
from .keymap import KEYMAP, get_character
def _snake_case ( __snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += [key]
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
def _snake_case ( *__snake_case ):
def decorator(__snake_case ):
_UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] )
handle += keys
setattr(__snake_case , '''handle_key''' , __snake_case )
return func
return decorator
class lowerCAmelCase_ ( __lowercase ):
def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ):
_UpperCamelCase = super().__new__(cls , _A , _A , _A )
if not hasattr(_A , '''key_handler''' ):
setattr(_A , '''key_handler''' , {} )
setattr(_A , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCamelCase = getattr(_A , '''handle_key''' , [] )
for key in handled_keys:
_UpperCamelCase = value
return new_cls
@staticmethod
def UpperCamelCase_ ( cls : str ):
_UpperCamelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCamelCase = ord(_A )
_UpperCamelCase = cls.key_handler.get(_A )
if handler:
_UpperCamelCase = char
return handler(cls )
else:
return None
def _snake_case ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 10 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.