code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import requests lowercase_ = "YOUR API KEY" def lowerCAmelCase (__A , __A = giphy_api_key): """simple docstring""" _a = '''+'''.join(query.split()) _a = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' _a = requests.get(__A).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowercase_ = get_logger(__name__) class __A : '''simple docstring''' def __init__(self , A = None ) -> int: """simple docstring""" _a = ( os.path.join(A , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _a = Extractor def a__ (self , A ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _a = os.path.abspath(A ) return os.path.join(self.extract_dir , hash_url_to_filename(A ) ) def a__ (self , A , A ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(A ) and not (os.path.isdir(A ) and os.listdir(A )) ) def a__ (self , A , A = False ) -> str: """simple docstring""" _a = self.extractor.infer_extractor_format(A ) if not extractor_format: return input_path _a = self._get_output_path(A ) if self._do_extract(A , A ): self.extractor.extract(A , A , A ) return output_path class __A ( A ): '''simple docstring''' @classmethod @abstractmethod def a__ (cls , A , **A ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def a__ (A , A ) -> None: """simple docstring""" ... class __A ( A , A ): '''simple docstring''' __lowerCamelCase : List[bytes] = [] @staticmethod def a__ (A , A ) -> int: """simple docstring""" with open(A , '''rb''' ) as f: return f.read(A ) @classmethod def a__ (cls , A , A = b"" ) -> bool: """simple docstring""" if not magic_number: _a = max(len(A ) for cls_magic_number in cls.magic_numbers ) try: _a = cls.read_magic_number(A , A ) except OSError: return False return any(magic_number.startswith(A ) for cls_magic_number in cls.magic_numbers ) class __A ( A ): '''simple docstring''' @classmethod def a__ (cls , A , **A ) -> bool: """simple docstring""" return tarfile.is_tarfile(A ) @staticmethod def a__ (A , A ) -> List[Any]: """simple docstring""" def resolved(A ) -> str: return os.path.realpath(os.path.abspath(A ) ) def badpath(A , A ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(A , A ) ).startswith(A ) def badlink(A , A ) -> bool: # Links are interpreted relative to the directory containing the link _a = resolved(os.path.join(A , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=A ) _a = resolved(A ) for finfo in members: if badpath(finfo.name , A ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(A , A ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(A , A ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def a__ (A , A ) -> None: """simple docstring""" os.makedirs(A , exist_ok=A ) _a = tarfile.open(A ) tar_file.extractall(A , members=TarExtractor.safemembers(A , A ) ) tar_file.close() class __A ( A ): '''simple docstring''' __lowerCamelCase : int = [b'\x1F\x8B'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" with gzip.open(A , '''rb''' ) as gzip_file: with open(A , '''wb''' ) as extracted_file: shutil.copyfileobj(A , A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def a__ (cls , A , A = b"" ) -> bool: """simple docstring""" if super().is_extractable(A , magic_number=A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(A , '''rb''' ) as fp: _a = _EndRecData(A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _a = fp.read(A ) # CD is where we expect it to be if len(A ) == sizeCentralDir: _a = struct.unpack(A , A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def a__ (A , A ) -> None: """simple docstring""" os.makedirs(A , exist_ok=A ) with zipfile.ZipFile(A , '''r''' ) as zip_file: zip_file.extractall(A ) zip_file.close() class __A ( A ): '''simple docstring''' __lowerCamelCase : str = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" with lzma.open(A ) as compressed_file: with open(A , '''wb''' ) as extracted_file: shutil.copyfileobj(A , A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def a__ (A , A ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(A , exist_ok=A ) _a = rarfile.RarFile(A ) rf.extractall(A ) rf.close() class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = [b'\x28\xb5\x2F\xFD'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd _a = zstd.ZstdDecompressor() with open(A , '''rb''' ) as ifh, open(A , '''wb''' ) as ofh: dctx.copy_stream(A , A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : List[str] = [b'\x42\x5A\x68'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" with bza.open(A , '''rb''' ) as compressed_file: with open(A , '''wb''' ) as extracted_file: shutil.copyfileobj(A , A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Tuple = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(A , exist_ok=A ) with pyazr.SevenZipFile(A , '''r''' ) as archive: archive.extractall(A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[int] = [b'\x04\x22\x4D\x18'] @staticmethod def a__ (A , A ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(A , '''rb''' ) as compressed_file: with open(A , '''wb''' ) as extracted_file: shutil.copyfileobj(A , A ) class __A : '''simple docstring''' __lowerCamelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def a__ (cls ) -> Tuple: """simple docstring""" return max( len(A ) for extractor in cls.extractors.values() if issubclass(A , A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def a__ (A , A ) -> Tuple: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(A , magic_number_length=A ) except OSError: return b"" @classmethod def a__ (cls , A , A = False ) -> bool: """simple docstring""" warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=A , ) _a = cls.infer_extractor_format(A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def a__ (cls , A ) -> str: # <Added version="2.4.0"/> """simple docstring""" _a = cls._get_magic_number_max_length() _a = cls._read_magic_number(A , A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(A , magic_number=A ): return extractor_format @classmethod def a__ (cls , A , A , A = None , A = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(A ) , exist_ok=A ) # Prevent parallel extractions _a = str(Path(A ).with_suffix('''.lock''' ) ) with FileLock(A ): shutil.rmtree(A , ignore_errors=A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(A , A ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=A , ) _a = extractor if extractor != '''deprecated''' else extractor_format else: _a = cls.extractors[extractor_format] return extractor.extract(A , A ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(A ): return extractor.extract(A , A )
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = 'perceiver' def __init__(self , A=256 , A=1_280 , A=768 , A=1 , A=26 , A=8 , A=8 , A=None , A=None , A="kv" , A=1 , A=1 , A="gelu" , A=0.1 , A=0.02 , A=1E-12 , A=True , A=262 , A=2_048 , A=56 , A=[368, 496] , A=16 , A=1_920 , A=16 , A=[1, 16, 224, 224] , **A , ) -> Union[str, Any]: """simple docstring""" super().__init__(**A ) _a = num_latents _a = d_latents _a = d_model _a = num_blocks _a = num_self_attends_per_block _a = num_self_attention_heads _a = num_cross_attention_heads _a = qk_channels _a = v_channels _a = cross_attention_shape_for_attention _a = self_attention_widening_factor _a = cross_attention_widening_factor _a = hidden_act _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = use_query_residual # masked language modeling attributes _a = vocab_size _a = max_position_embeddings # image classification attributes _a = image_size # flow attributes _a = train_size # multimodal autoencoding attributes _a = num_frames _a = audio_samples_per_frame _a = samples_per_patch _a = output_shape class __A ( A ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-4 def a__ (self , A , A = -1 , A = -1 , A = -1 , A = False , A = None , A = 3 , A = 40 , A = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(A , A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = preprocessor.num_special_tokens_to_add(A ) _a = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join(['''a'''] ) * seq_length] * batch_size _a = dict(preprocessor(A , return_tensors=A ) ) _a = inputs.pop('''input_ids''' ) return inputs elif isinstance(A , A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension(A , fixed_dimension=OnnxConfig.default_fixed_batch ) _a = self._generate_dummy_images(A , A , A , A ) _a = dict(preprocessor(images=A , return_tensors=A ) ) _a = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase (__A , __A = True , __A = math.inf , __A = -math.inf , __A = math.inf , __A = -math.inf , __A = False , __A = 100 , __A = 0.01 , __A = 1 , ): """simple docstring""" _a = False _a = search_prob _a = start_temperate _a = [] _a = 0 _a = None while not search_end: _a = current_state.score() if best_state is None or current_score > best_state.score(): _a = current_state scores.append(__A) iterations += 1 _a = None _a = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _a = random.randint(0 , len(__A) - 1) # picking a random neighbor _a = neighbors.pop(__A) _a = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _a = change * -1 # in case we are finding minimum if change > 0: # improves the solution _a = picked_neighbor else: _a = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _a = picked_neighbor _a = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _a = True else: _a = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__A) , __A) plt.xlabel('''Iterations''') plt.ylabel('''Function values''') plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase (__A , __A): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowercase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowercase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCAmelCase (__A , __A): """simple docstring""" return (3 * x**2) - (6 * y) lowercase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) lowercase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase_ = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
11
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[PIL.Image.Image, np.ndarray] class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , ) -> Any: """simple docstring""" super().__init__() self.register_modules( prior=A , image_encoder=A , image_processor=A , scheduler=A , renderer=A , ) def a__ (self , A , A , A , A , A , A ) -> Any: """simple docstring""" if latents is None: _a = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _a = latents.to(A ) _a = latents * scheduler.init_noise_sigma return latents def a__ (self , A=0 ) -> List[str]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _a = torch.device(f'''cuda:{gpu_id}''' ) _a = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) @property def a__ (self ) -> str: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ (self , A , A , A , A , ) -> Tuple: """simple docstring""" if isinstance(A , A ) and isinstance(image[0] , torch.Tensor ): _a = torch.cat(A , axis=0 ) if image[0].ndim == 4 else torch.stack(A , axis=0 ) if not isinstance(A , torch.Tensor ): _a = self.image_processor(A , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) _a = image.to(dtype=self.image_encoder.dtype , device=A ) _a = self.image_encoder(A )['''last_hidden_state'''] _a = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _a = image_embeds.repeat_interleave(A , dim=0 ) if do_classifier_free_guidance: _a = torch.zeros_like(A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(A ) def __call__(self , A , A = 1 , A = 25 , A = None , A = None , A = 4.0 , A = 64 , A = "pil" , A = True , ) -> List[Any]: """simple docstring""" if isinstance(A , PIL.Image.Image ): _a = 1 elif isinstance(A , torch.Tensor ): _a = image.shape[0] elif isinstance(A , A ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _a = len(A ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A )}''' ) _a = self._execution_device _a = batch_size * num_images_per_prompt _a = guidance_scale > 1.0 _a = self._encode_image(A , A , A , A ) # prior self.scheduler.set_timesteps(A , device=A ) _a = self.scheduler.timesteps _a = self.prior.config.num_embeddings _a = self.prior.config.embedding_dim _a = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A , A , A , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _a = latents.reshape(latents.shape[0] , A , A ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) _a = self.prior( A , timestep=A , proj_embedding=A , ).predicted_image_embedding # remove the variance _a , _a = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _a = self.scheduler.step( A , timestep=A , sample=A , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=A ) _a = [] for i, latent in enumerate(A ): print() _a = self.renderer.decode( latent[None, :] , A , size=A , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(A ) _a = torch.stack(A ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _a = images.cpu().numpy() if output_type == "pil": _a = [self.numpy_to_pil(A ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=A )
11
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return [ord(__A) - 96 for elem in plain] def lowerCAmelCase (__A): """simple docstring""" return "".join(chr(elem + 96) for elem in encoded) def lowerCAmelCase (): """simple docstring""" _a = encode(input('''-> ''').strip().lower()) print('''Encoded: ''' , __A) print('''Decoded:''' , decode(__A)) if __name__ == "__main__": main()
11
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) < k or k < 0: raise ValueError('''Invalid Input''') _a = _a = sum(array[:k]) for i in range(len(__A) - k): _a = current_sum - array[i] + array[i + k] _a = max(__A , __A) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase_ = [randint(-1_000, 1_000) for i in range(100)] lowercase_ = randint(0, 110) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
11
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' def __init__(self , *A , **A ) -> None: """simple docstring""" warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , A , ) super().__init__(*A , **A )
11
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCAmelCase (__A): """simple docstring""" _a = {} _a = tokenizer(example['''content'''] , truncation=__A)['''input_ids'''] _a = len(example['''content''']) / len(output['''input_ids''']) return output lowercase_ = HfArgumentParser(PretokenizationArguments) lowercase_ = parser.parse_args() if args.num_workers is None: lowercase_ = multiprocessing.cpu_count() lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowercase_ = time.time() lowercase_ = load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowercase_ = time.time() lowercase_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowercase_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
11
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
1
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" assert column_title.isupper() _a = 0 _a = len(__A) - 1 _a = 0 while index >= 0: _a = (ord(column_title[index]) - 64) * pow(26 , __A) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
11
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __A ( A ): '''simple docstring''' __lowerCamelCase : torch.FloatTensor __lowerCamelCase : Optional[torch.FloatTensor] = None def lowerCAmelCase (__A , __A=0.9_99 , __A="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__A): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__A): return math.exp(t * -12.0) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''') _a = [] for i in range(__A): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__A) / alpha_bar_fn(__A) , __A)) return torch.tensor(__A , dtype=torch.floataa) class __A ( A , A ): '''simple docstring''' @register_to_config def __init__(self , A = 1_000 , A = "fixed_small_log" , A = True , A = 1.0 , A = "epsilon" , A = "squaredcos_cap_v2" , ) -> Optional[int]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) _a = betas_for_alpha_bar(A ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) _a = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _a = 1.0 # setable values _a = None _a = torch.from_numpy(np.arange(0 , A )[::-1].copy() ) _a = variance_type def a__ (self , A , A = None ) -> torch.FloatTensor: """simple docstring""" return sample def a__ (self , A , A = None ) -> int: """simple docstring""" _a = num_inference_steps _a = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _a = (np.arange(0 , A ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _a = torch.from_numpy(A ).to(A ) def a__ (self , A , A=None , A=None , A=None ) -> Optional[Any]: """simple docstring""" if prev_timestep is None: _a = t - 1 _a = self.alphas_cumprod[t] _a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _a = self.betas[t] else: _a = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _a = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _a = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _a = torch.log(torch.clamp(A , min=1E-20 ) ) _a = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _a = variance.log() _a = beta.log() _a = (predicted_variance + 1) / 2 _a = frac * max_log + (1 - frac) * min_log return variance def a__ (self , A , A , A , A = None , A=None , A = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" _a = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _a , _a = torch.split(A , sample.shape[1] , dim=1 ) else: _a = None # 1. compute alphas, betas if prev_timestep is None: _a = t - 1 _a = self.alphas_cumprod[t] _a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _a = self.betas[t] _a = self.alphas[t] else: _a = 1 - alpha_prod_t / alpha_prod_t_prev _a = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _a = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _a = torch.clamp( A , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _a = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _a = 0 if t > 0: _a = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A , device=model_output.device ) _a = self._get_variance( A , predicted_variance=A , prev_timestep=A , ) if self.variance_type == "fixed_small_log": _a = variance elif self.variance_type == "learned_range": _a = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) _a = variance * variance_noise _a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A , pred_original_sample=A ) def a__ (self , A , A , A , ) -> torch.FloatTensor: """simple docstring""" _a = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) _a = timesteps.to(original_samples.device ) _a = alphas_cumprod[timesteps] ** 0.5 _a = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _a = sqrt_alpha_prod.unsqueeze(-1 ) _a = (1 - alphas_cumprod[timesteps]) ** 0.5 _a = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _a = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _a = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
11
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def lowerCAmelCase (__A , __A): """simple docstring""" return math.sqrt(sum(pow(a - b , 2) for a, b in zip(__A , __A))) def lowerCAmelCase (__A , __A): """simple docstring""" if dataset.ndim != value_array.ndim: _a = ( '''Wrong input data\'s dimensions... ''' F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__A) try: if dataset.shape[1] != value_array.shape[1]: _a = ( '''Wrong input data\'s shape... ''' F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__A) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''') if dataset.dtype != value_array.dtype: _a = ( '''Input data have different datatype... ''' F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__A) _a = [] for value in value_array: _a = euclidean(__A , dataset[0]) _a = dataset[0].tolist() for dataset_value in dataset[1:]: _a = euclidean(__A , __A) if dist > temp_dist: _a = temp_dist _a = dataset_value.tolist() answer.append([vector, dist]) return answer def lowerCAmelCase (__A , __A): """simple docstring""" return np.dot(__A , __A) / (norm(__A) * norm(__A)) if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
1
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1)) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
11
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __A ( A ): '''simple docstring''' def __init__(self , A=0.01 , A=1_000 ) -> int: """simple docstring""" _a = p_stop _a = max_length def __iter__(self ) -> str: """simple docstring""" _a = 0 _a = False while not stop and count < self.max_length: yield count count += 1 _a = random.random() < self.p_stop class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self , A , A , A=False , A=True ) -> List[Any]: """simple docstring""" _a = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] _a = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def a__ (self ) -> Tuple: """simple docstring""" _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) _a = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) _a = [[], []] self.check_batch_sampler_shards(A , A ) def a__ (self ) -> Dict: """simple docstring""" _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) _a = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) _a = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) _a = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) _a = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def a__ (self ) -> List[str]: """simple docstring""" _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) _a = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) _a = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def a__ (self ) -> Dict: """simple docstring""" _a = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _a = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a__ (self , A , A , A , A=False , A=2 , A=False ) -> Optional[Any]: """simple docstring""" random.seed(A ) _a = list(A ) _a = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] _a = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) _a = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _a = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) _a = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def a__ (self ) -> str: """simple docstring""" _a = 42 _a = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset _a = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) _a = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ (self ) -> str: """simple docstring""" _a = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ (self ) -> List[Any]: """simple docstring""" _a = DataLoader(list(range(16 ) ) , batch_size=4 ) _a = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ (self ) -> Dict: """simple docstring""" _a = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" Accelerator() _a = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __A ( A ): '''simple docstring''' __lowerCamelCase : List[Any] = 'decision_transformer' __lowerCamelCase : Dict = ['past_key_values'] __lowerCamelCase : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , A=17 , A=4 , A=128 , A=4_096 , A=True , A=1 , A=1_024 , A=3 , A=1 , A=None , A="relu" , A=0.1 , A=0.1 , A=0.1 , A=1E-5 , A=0.02 , A=True , A=True , A=50_256 , A=50_256 , A=False , A=False , **A , ) -> Union[str, Any]: """simple docstring""" _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=A , eos_token_id=A , **A )
11
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowercase_ = threading.Lock() lowercase_ = None lowercase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowercase_ = logging.WARNING lowercase_ = True def lowerCAmelCase (): """simple docstring""" _a = os.getenv('''TRANSFORMERS_VERBOSITY''' , __A) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys()) }''') return _default_log_level def lowerCAmelCase (): """simple docstring""" return __name__.split('''.''')[0] def lowerCAmelCase (): """simple docstring""" return logging.getLogger(_get_library_name()) def lowerCAmelCase (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a = logging.StreamHandler() # Set sys.stderr as stream. _a = sys.stderr.flush # Apply our default configuration to the library root logger. _a = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) _a = False def lowerCAmelCase (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _a = None def lowerCAmelCase (): """simple docstring""" return log_levels def lowerCAmelCase (__A = None): """simple docstring""" if name is None: _a = _get_library_name() _configure_library_root_logger() return logging.getLogger(__A) def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase (__A): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__A) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__A) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__A) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__A) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__A) def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def lowerCAmelCase (__A): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__A) def lowerCAmelCase (__A): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__A) def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() _a = False def lowerCAmelCase (): """simple docstring""" _configure_library_root_logger() _a = True def lowerCAmelCase (): """simple docstring""" _a = _get_library_root_logger().handlers for handler in handlers: _a = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''') handler.setFormatter(__A) def lowerCAmelCase (): """simple docstring""" _a = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__A) def lowerCAmelCase (self , *__A , **__A): """simple docstring""" _a = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , __A) if no_advisory_warnings: return self.warning(*__A , **__A) lowercase_ = warning_advice @functools.lru_cache(__A) def lowerCAmelCase (self , *__A , **__A): """simple docstring""" self.warning(*__A , **__A) lowercase_ = warning_once class __A : '''simple docstring''' def __init__(self , *A , **A ) -> str: # pylint: disable=unused-argument """simple docstring""" _a = args[0] if args else None def __iter__(self ) -> Optional[int]: """simple docstring""" return iter(self._iterator ) def __getattr__(self , A ) -> Optional[int]: """simple docstring""" def empty_fn(*A , **A ): # pylint: disable=unused-argument return return empty_fn def __enter__(self ) -> List[Any]: """simple docstring""" return self def __exit__(self , A , A , A ) -> Union[str, Any]: """simple docstring""" return class __A : '''simple docstring''' def __call__(self , *A , **A ) -> Optional[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*A , **A ) else: return EmptyTqdm(*A , **A ) def a__ (self , *A , **A ) -> Optional[int]: """simple docstring""" _a = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A , **A ) def a__ (self ) -> Optional[int]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase_ = _tqdm_cls() def lowerCAmelCase (): """simple docstring""" global _tqdm_active return bool(_tqdm_active) def lowerCAmelCase (): """simple docstring""" global _tqdm_active _a = True hf_hub_utils.enable_progress_bars() def lowerCAmelCase (): """simple docstring""" global _tqdm_active _a = False hf_hub_utils.disable_progress_bars()
11
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = BlenderbotSmallTokenizer __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" super().setUp() _a = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _a = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Union[str, Any]: """simple docstring""" _a = '''adapt act apte''' _a = '''adapt act apte''' return input_text, output_text def a__ (self ) -> Any: """simple docstring""" _a = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt act apte''' _a = ['''adapt''', '''act''', '''ap@@''', '''te'''] _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_384] _a = '''I am a small frog.''' _a = tok([src_text] , padding=A , truncation=A )['''input_ids'''] _a = tok.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def a__ (self ) -> int: """simple docstring""" _a = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _a = '''I am a small frog .''' _a = '''.''' _a = tok(A )['''input_ids'''] _a = tok(A )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
11
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = KandinskyVaaPriorPipeline __lowerCamelCase : Optional[Any] = ['prompt'] __lowerCamelCase : Tuple = ['prompt', 'negative_prompt'] __lowerCamelCase : Union[str, Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : int = False @property def a__ (self ) -> Union[str, Any]: """simple docstring""" return 32 @property def a__ (self ) -> Optional[Any]: """simple docstring""" return 32 @property def a__ (self ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def a__ (self ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def a__ (self ) -> Any: """simple docstring""" return 100 @property def a__ (self ) -> str: """simple docstring""" _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a__ (self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(A ) @property def a__ (self ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } _a = PriorTransformer(**A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def a__ (self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _a = CLIPVisionModelWithProjection(A ) return model @property def a__ (self ) -> Optional[Any]: """simple docstring""" _a = CLIPImageProcessor( crop_size=224 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.dummy_prior _a = self.dummy_image_encoder _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_image_processor _a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=A , clip_sample_range=10.0 , ) _a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def a__ (self , A , A=0 ) -> Union[str, Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def a__ (self ) -> int: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**A ) _a = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _a = pipe(**self.get_dummy_inputs(A ) ) _a = output.image_embeds _a = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] _a = image[0, -10:] _a = image_from_tuple[0, -10:] assert image.shape == (1, 32) _a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__ (self ) -> List[str]: """simple docstring""" _a = torch_device == '''cpu''' _a = True _a = False self._test_inference_batch_single_identical( test_max_difference=A , relax_max_difference=A , test_mean_pixel_difference=A , ) @skip_mps def a__ (self ) -> Optional[int]: """simple docstring""" _a = torch_device == '''cpu''' _a = False self._test_attention_slicing_forward_pass( test_max_difference=A , test_mean_pixel_difference=A , )
11
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowercase_ = 4 lowercase_ = 3 class __A ( A ): '''simple docstring''' pass def lowerCAmelCase (__A): """simple docstring""" for shard in shards: for i in range(__A): yield {"i": i, "shard": shard} def lowerCAmelCase (): """simple docstring""" _a = int(os.environ['''RANK''']) _a = int(os.environ['''WORLD_SIZE''']) _a = ArgumentParser() parser.add_argument('''--streaming''' , type=__A) parser.add_argument('''--local_rank''' , type=__A) parser.add_argument('''--num_workers''' , type=__A , default=0) _a = parser.parse_args() _a = args.streaming _a = args.num_workers _a = {'''shards''': [F'''shard_{shard_idx}''' for shard_idx in range(__A)]} _a = IterableDataset.from_generator(__A , gen_kwargs=__A) if not streaming: _a = Dataset.from_list(list(__A)) _a = split_dataset_by_node(__A , rank=__A , world_size=__A) _a = torch.utils.data.DataLoader(__A , num_workers=__A) _a = NUM_SHARDS * NUM_ITEMS_PER_SHARD _a = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) _a = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
11
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : List[str] = 'mgp-str' def __init__(self , A=[32, 128] , A=4 , A=3 , A=27 , A=38 , A=50_257 , A=30_522 , A=768 , A=12 , A=12 , A=4.0 , A=True , A=False , A=1E-5 , A=0.0 , A=0.0 , A=0.0 , A=False , A=0.02 , **A , ) -> Dict: """simple docstring""" super().__init__(**A ) _a = image_size _a = patch_size _a = num_channels _a = max_token_length _a = num_character_labels _a = num_bpe_labels _a = num_wordpiece_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = mlp_ratio _a = distilled _a = layer_norm_eps _a = drop_rate _a = qkv_bias _a = attn_drop_rate _a = drop_path_rate _a = output_aa_attentions _a = initializer_range
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
1
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" while b: _a , _a = b, a % b return a def lowerCAmelCase (__A , __A): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__A , a % b) def lowerCAmelCase (): """simple docstring""" print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5)}''') print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3)}''') print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3)}''') print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6)}''') print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3)}''') print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5)}''') print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3)}''') print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3)}''') print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6)}''') print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3)}''') if __name__ == "__main__": main()
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : int = 'codegen' __lowerCamelCase : Dict = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , A=50_400 , A=2_048 , A=2_048 , A=4_096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1E-5 , A=0.02 , A=True , A=50_256 , A=50_256 , A=False , **A , ) -> Optional[Any]: """simple docstring""" _a = vocab_size _a = n_ctx _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __A ( A ): '''simple docstring''' def __init__(self , A , A = "default" , A = None , A = False , ) -> Optional[Any]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , '''pad_token_id''' , A ): # TODO: how to do that better? _a = 0 @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__ (self ) -> int: """simple docstring""" return self._config.n_layer @property def a__ (self ) -> int: """simple docstring""" return self._config.n_head def a__ (self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def a__ (self ) -> int: """simple docstring""" return 13
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __A ( A ): '''simple docstring''' __lowerCamelCase : str = None __lowerCamelCase : Optional[Any] = None @property def a__ (self ) -> List[Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A , '''feature_size''' ) ) self.assertTrue(hasattr(A , '''sampling_rate''' ) ) self.assertTrue(hasattr(A , '''padding_value''' ) ) def a__ (self ) -> str: """simple docstring""" _a = self.feat_extract_tester.prepare_inputs_for_common() _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(A ) == len(A ) for x, y in zip(A , processed_features[input_name] ) ) ) _a = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) _a = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) _a = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def a__ (self ) -> Dict: """simple docstring""" _a = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) _a = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def a__ (self ) -> str: """simple docstring""" _a = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) _a = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def a__ (self , A=False ) -> Any: """simple docstring""" def _inputs_have_equal_length(A ): _a = len(input[0] ) for input_slice in input[1:]: if len(A ) != length: return False return True def _inputs_are_equal(A , A ): if len(A ) != len(A ): return False for input_slice_a, input_slice_a in zip(A , A ): if not np.allclose(np.asarray(A ) , np.asarray(A ) , atol=1E-3 ): return False return True _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = self.feat_extract_tester.prepare_inputs_for_common(numpify=A ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = self.feat_extract_tester.seq_length_diff _a = self.feat_extract_tester.max_seq_length + pad_diff _a = self.feat_extract_tester.min_seq_length _a = self.feat_extract_tester.batch_size _a = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _a = feat_extract.pad(A , padding=A ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''longest''' ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''np''' ) _a = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(A ): feat_extract.pad(A , padding='''max_length''' )[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=A , return_tensors='''np''' ) _a = input_a[input_name] self.assertFalse(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_are_equal(A , A ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _a = feat_extract.pad(A , pad_to_multiple_of=10 ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''longest''' , pad_to_multiple_of=10 ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=A ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=A , return_tensors='''np''' , ) _a = input_a[input_name] self.assertTrue(all(len(A ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(A , A ) ) _a = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(A ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _a = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def a__ (self , A=False ) -> List[Any]: """simple docstring""" def _inputs_have_equal_length(A ): _a = len(input[0] ) for input_slice in input[1:]: if len(A ) != length: return False return True def _inputs_are_equal(A , A ): if len(A ) != len(A ): return False for input_slice_a, input_slice_a in zip(A , A ): if not np.allclose(np.asarray(A ) , np.asarray(A ) , atol=1E-3 ): return False return True _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = self.feat_extract_tester.prepare_inputs_for_common(numpify=A ) _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=A ) _a = input_a[input_name] _a = feat_extract.pad(A , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) _a = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A ) ) self.assertFalse(_inputs_have_equal_length(A ) ) # truncate to smallest with np _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=A , ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) _a = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A ) ) # truncate to middle _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=A , return_tensors='''np''' , ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=A ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) _a = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_are_equal(A , A ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , truncation=A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , padding='''longest''' , truncation=A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , padding='''longest''' , truncation=A )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(A ): feat_extract.pad(A , padding='''max_length''' , truncation=A )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _a = 12 _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A , truncation=A , ) _a = input_a[input_name] _a = feat_extract.pad( A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A , ) _a = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _a = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _a = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertFalse(_inputs_have_equal_length(A ) ) def a__ (self ) -> List[Any]: """simple docstring""" self._check_padding(numpify=A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self._check_truncation(numpify=A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._check_truncation(numpify=A ) @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = self.feat_extract_tester.prepare_inputs_for_common() _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''np''' )[input_name] _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def a__ (self ) -> Any: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = self.feat_extract_tester.prepare_inputs_for_common() _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''np''' )[input_name] _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def a__ (self ) -> Dict: """simple docstring""" _a = self.feat_extract_dict _a = True _a = self.feature_extraction_class(**A ) _a = self.feat_extract_tester.prepare_inputs_for_common() _a = [len(A ) for x in speech_inputs] _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = feat_extract.pad(A , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , A ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.feat_extract_dict _a = True _a = self.feature_extraction_class(**A ) _a = self.feat_extract_tester.prepare_inputs_for_common() _a = [len(A ) for x in speech_inputs] _a = feat_extract.model_input_names[0] _a = BatchFeature({input_name: speech_inputs} ) _a = min(A ) _a = feat_extract.pad( A , padding='''max_length''' , max_length=A , truncation=A , return_tensors='''np''' ) self.assertIn('''attention_mask''' , A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
11
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
1
'''simple docstring''' def lowerCAmelCase (__A , __A = False): """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''') # array bounds provided by analysis _a = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] _a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__A , 1): if n < _p: # then we have our last prime to check _a = primes[:idx] break _a , _a = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _a = False for r in range(__A): _a = pow(__A , d * 2**r , __A) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _a = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCAmelCase (): """simple docstring""" assert not miller_rabin(561) assert miller_rabin(563) # 2047 assert not miller_rabin(838_201) assert miller_rabin(838_207) # 1_373_653 assert not miller_rabin(17_316_001) assert miller_rabin(17_316_017) # 25_326_001 assert not miller_rabin(3_078_386_641) assert miller_rabin(3_078_386_653) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801) assert miller_rabin(1_713_045_574_819) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307) assert miller_rabin(2_779_799_728_327) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441) assert miller_rabin(113_850_023_909_527) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351) assert miller_rabin(1_275_041_018_848_804_391) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867) assert miller_rabin(79_666_464_458_507_787_791_951) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333) assert miller_rabin(552_840_677_446_647_897_660_359) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
11
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' def __init__(self , A=None , **A ) -> str: """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , A , ) super().__init__(args=A , **A )
11
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
1
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase_ = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def lowerCAmelCase (__A): """simple docstring""" _a = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(__A , __A) lowercase_ = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = key for k, v in WHISPER_MAPPING.items(): if k in key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) return s_dict def lowerCAmelCase (__A): """simple docstring""" _a , _a = emb.weight.shape _a = nn.Linear(__A , __A , bias=__A) _a = emb.weight.data return lin_layer def lowerCAmelCase (__A , __A): """simple docstring""" os.makedirs(__A , exist_ok=__A) _a = os.path.basename(__A) _a = url.split('''/''')[-2] _a = os.path.join(__A , __A) if os.path.exists(__A) and not os.path.isfile(__A): raise RuntimeError(F'''{download_target} exists and is not a regular file''') if os.path.isfile(__A): _a = open(__A , '''rb''').read() if hashlib.shaaaa(__A).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''') with urllib.request.urlopen(__A) as source, open(__A , '''wb''') as output: with tqdm( total=int(source.info().get('''Content-Length''')) , ncols=80 , unit='''iB''' , unit_scale=__A , unit_divisor=1_024) as loop: while True: _a = source.read(8_192) if not buffer: break output.write(__A) loop.update(len(__A)) _a = open(__A , '''rb''').read() if hashlib.shaaaa(__A).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''') return model_bytes def lowerCAmelCase (__A , __A): """simple docstring""" if ".pt" not in checkpoint_path: _a = _download(_MODELS[checkpoint_path]) else: _a = torch.load(__A , map_location='''cpu''') _a = original_checkpoint['''dims'''] _a = original_checkpoint['''model_state_dict'''] _a = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(__A) rename_keys(__A) _a = True _a = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] _a = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=__A , decoder_ffn_dim=__A , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) _a = WhisperForConditionalGeneration(__A) _a , _a = model.model.load_state_dict(__A , strict=__A) if len(__A) > 0 and not set(__A) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''') if tie_embeds: _a = make_linear_from_emb(model.model.decoder.embed_tokens) else: _a = proj_out_weights model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowercase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
11
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
1
'''simple docstring''' import sys import turtle def lowerCAmelCase (__A , __A): """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCAmelCase (__A , __A , __A , __A , ): """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) if depth == 0: return triangle(__A , get_mid(__A , __A) , get_mid(__A , __A) , depth - 1) triangle(__A , get_mid(__A , __A) , get_mid(__A , __A) , depth - 1) triangle(__A , get_mid(__A , __A) , get_mid(__A , __A) , depth - 1) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) lowercase_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") lowercase_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
11
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
1
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__A , int(b / 2)) * actual_power(__A , int(b / 2)) else: return a * actual_power(__A , int(b / 2)) * actual_power(__A , int(b / 2)) def lowerCAmelCase (__A , __A): """simple docstring""" if b < 0: return 1 / actual_power(__A , __A) return actual_power(__A , __A) if __name__ == "__main__": print(power(-2, -3))
11
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class __A ( A ): '''simple docstring''' __lowerCamelCase : int = 'detr' __lowerCamelCase : Tuple = ['past_key_values'] __lowerCamelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__(self , A=True , A=None , A=3 , A=100 , A=6 , A=2_048 , A=8 , A=6 , A=2_048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> int: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A , A ): _a = backbone_config.get('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(A ) # set timm attributes to None _a , _a , _a = None, None, None _a = use_timm_backbone _a = backbone_config _a = num_channels _a = num_queries _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = decoder_layerdrop _a = encoder_layers _a = auxiliary_loss _a = position_embedding_type _a = backbone _a = use_pretrained_backbone _a = dilation # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def a__ (self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def a__ (self ) -> int: """simple docstring""" return self.d_model @classmethod def a__ (cls , A , **A ) -> Optional[int]: """simple docstring""" return cls(backbone_config=A , **A ) def a__ (self ) -> Dict[str, any]: """simple docstring""" _a = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[int] = version.parse('1.11' ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-5 @property def a__ (self ) -> int: """simple docstring""" return 12
11
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' def __init__(self , *A , **A ) -> None: """simple docstring""" warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , A , ) super().__init__(*A , **A )
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' from typing import Any class __A : '''simple docstring''' def __init__(self , A ) -> int: """simple docstring""" _a = data _a = None def __repr__(self ) -> str: """simple docstring""" return f'''Node({self.data})''' class __A : '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" _a = None def __iter__(self ) -> Any: """simple docstring""" _a = self.head while node: yield node.data _a = node.next def __len__(self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__(self ) -> str: """simple docstring""" return "->".join([str(A ) for item in self] ) def __getitem__(self , A ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__(self , A , A ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) _a = self.head for _ in range(A ): _a = current.next _a = data def a__ (self , A ) -> None: """simple docstring""" self.insert_nth(len(self ) , A ) def a__ (self , A ) -> None: """simple docstring""" self.insert_nth(0 , A ) def a__ (self , A , A ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) _a = Node(A ) if self.head is None: _a = new_node elif index == 0: _a = self.head # link new_node to head _a = new_node else: _a = self.head for _ in range(index - 1 ): _a = temp.next _a = temp.next _a = new_node def a__ (self ) -> None: # print every node data """simple docstring""" print(self ) def a__ (self ) -> Any: """simple docstring""" return self.delete_nth(0 ) def a__ (self ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def a__ (self , A = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) _a = self.head # default first node if index == 0: _a = self.head.next else: _a = self.head for _ in range(index - 1 ): _a = temp.next _a = temp.next _a = temp.next.next return delete_node.data def a__ (self ) -> bool: """simple docstring""" return self.head is None def a__ (self ) -> None: """simple docstring""" _a = None _a = self.head while current: # Store the current node's next node. _a = current.next # Make the current node's next point backwards _a = prev # Make the previous node be the current node _a = current # Make the current node the next node (to progress iteration) _a = next_node # Return prev in order to put the head at the end _a = prev def lowerCAmelCase (): """simple docstring""" _a = LinkedList() assert linked_list.is_empty() is True assert str(__A) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(__A) == i linked_list.insert_nth(__A , i + 1) assert str(__A) == "->".join(str(__A) for i in range(1 , 11)) linked_list.insert_head(0) linked_list.insert_tail(11) assert str(__A) == "->".join(str(__A) for i in range(0 , 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(__A) == 9 assert str(__A) == "->".join(str(__A) for i in range(1 , 10)) assert all(linked_list[i] == i + 1 for i in range(0 , 9)) is True for i in range(0 , 9): _a = -i assert all(linked_list[i] == -i for i in range(0 , 9)) is True linked_list.reverse() assert str(__A) == "->".join(str(__A) for i in range(-8 , 1)) def lowerCAmelCase (): """simple docstring""" _a = [ -9, 100, Node(77_345_112), '''dlrow olleH''', 7, 5_555, 0, -1_92.5_55_55, '''Hello, world!''', 77.9, Node(10), None, None, 12.20, ] _a = LinkedList() for i in test_input: linked_list.insert_tail(__A) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__A) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _a = linked_list.delete_head() assert result == -9 assert ( str(__A) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _a = linked_list.delete_tail() assert result == 12.2 assert ( str(__A) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _a = linked_list.delete_nth(10) assert result is None assert ( str(__A) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''')) assert ( str(__A) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__A) assert ( str(__A) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__A) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCAmelCase (): """simple docstring""" from doctest import testmod testmod() _a = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''').strip()) linked_list.insert_head(input('''Inserting 2nd at head ''').strip()) print('''\nPrint list:''') linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''').strip()) linked_list.insert_tail(input('''Inserting 2nd at tail ''').strip()) print('''\nPrint list:''') linked_list.print_list() print('''\nDelete head''') linked_list.delete_head() print('''Delete tail''') linked_list.delete_tail() print('''\nPrint list:''') linked_list.print_list() print('''\nReverse linked list''') linked_list.reverse() print('''\nPrint list:''') linked_list.print_list() print('''\nString representation of linked list:''') print(__A) print('''\nReading/changing Node data using indexing:''') print(F'''Element at Position 1: {linked_list[1]}''') _a = input('''Enter New Value: ''').strip() print('''New list:''') print(__A) print(F'''length of linked_list is : {len(__A)}''') if __name__ == "__main__": main()
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
1
'''simple docstring''' import pprint import requests lowercase_ = "https://zenquotes.io/api" def lowerCAmelCase (): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''').json() def lowerCAmelCase (): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''').json() if __name__ == "__main__": lowercase_ = random_quotes() pprint.pprint(response)
11
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if any(not isinstance(__A , __A) or x < 0 for x in sequence): raise TypeError('''Sequence must be list of non-negative integers''') for _ in range(len(__A)): for i, (rod_upper, rod_lower) in enumerate(zip(__A , sequence[1:])): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase (__A): """simple docstring""" _a = torch.load(__A , map_location='''cpu''') if "model" in sd.keys(): _a = torch.load(__A , map_location='''cpu''')['''model'''] # pop unnecessary weights _a = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(__A) _a = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _a = sd.pop(__A) _a = list(sd.keys()) for key in keys: if ".qkv_proj." in key: _a = sd[key] # We split QKV in separate Q,K,V _a = key.replace('''.qkv_proj.''' , '''.q_proj.''') _a = key.replace('''.qkv_proj.''' , '''.k_proj.''') _a = key.replace('''.qkv_proj.''' , '''.v_proj.''') _a = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _a , _a , _a = torch.split(__A , depth // 3 , dim=0) _a = q _a = k _a = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase (__A , __A , __A=None): """simple docstring""" _a = load_checkpoint(__A) if config is not None: _a = OPTConfig.from_pretrained(__A) else: _a = OPTConfig() _a = OPTModel(__A).half().eval() model.load_state_dict(__A) # Check results Path(__A).mkdir(exist_ok=__A) model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowercase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCAmelCase (__A , __A=0): """simple docstring""" return sorted(__A , key=lambda __A: x[column]) def lowerCAmelCase (__A , __A , __A=float('''inf''')): """simple docstring""" for i in range(points_counts - 1): for j in range(i + 1 , __A): _a = euclidean_distance_sqr(points[i] , points[j]) if current_dis < min_dis: _a = current_dis return min_dis def lowerCAmelCase (__A , __A , __A=float('''inf''')): """simple docstring""" for i in range(min(6 , points_counts - 1) , __A): for j in range(max(0 , i - 6) , __A): _a = euclidean_distance_sqr(points[i] , points[j]) if current_dis < min_dis: _a = current_dis return min_dis def lowerCAmelCase (__A , __A , __A): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(__A , __A) # recursion _a = points_counts // 2 _a = closest_pair_of_points_sqr( __A , points_sorted_on_y[:mid] , __A) _a = closest_pair_of_points_sqr( __A , points_sorted_on_y[mid:] , points_counts - mid) _a = min(__A , __A) _a = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(__A) _a = dis_between_closest_in_strip( __A , len(__A) , __A) return min(__A , __A) def lowerCAmelCase (__A , __A): """simple docstring""" _a = column_based_sort(__A , column=0) _a = column_based_sort(__A , column=1) return ( closest_pair_of_points_sqr( __A , __A , __A) ) ** 0.5 if __name__ == "__main__": lowercase_ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
11
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
1
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A): """simple docstring""" if num <= 0: _a = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(__A) _a = [True] * (num + 1) _a = [] _a = 2 _a = int(math.sqrt(__A)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__A) # Set multiples of start be False for i in range(start * start , num + 1 , __A): if sieve[i] is True: _a = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(__A) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A : '''simple docstring''' def __init__(self , A , A=2 , A=3 , A=4 , A=2 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=36 , A=3 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=6 , A=6 , A=3 , A=4 , A=None , A=1_000 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = num_channels _a = image_size _a = patch_size _a = text_seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = coordinate_size _a = shape_size _a = num_labels _a = num_choices _a = scope _a = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _a = text_seq_length _a = (image_size // patch_size) ** 2 + 1 _a = self.text_seq_length + self.image_seq_length def a__ (self ) -> Optional[int]: """simple docstring""" _a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a = bbox[i, j, 3] _a = bbox[i, j, 1] _a = t if bbox[i, j, 2] < bbox[i, j, 0]: _a = bbox[i, j, 2] _a = bbox[i, j, 0] _a = t _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.text_seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _a = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a__ (self , A , A , A , A , A , A , A , A ) -> List[str]: """simple docstring""" _a = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image _a = model(A , pixel_values=A ) _a = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A ) _a = model(A , bbox=A , pixel_values=A , token_type_ids=A ) _a = model(A , bbox=A , pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _a = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _a = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A ) -> Tuple: """simple docstring""" _a = self.num_labels _a = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() _a = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ (self , A , A , A , A , A , A , A , A ) -> Optional[Any]: """simple docstring""" _a = self.num_labels _a = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() _a = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def a__ (self , A , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() _a = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ (self ) -> int: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = False __lowerCamelCase : int = False __lowerCamelCase : int = False __lowerCamelCase : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowerCamelCase : List[str] = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def a__ (self , A , A , A , A , A ) -> Dict: """simple docstring""" return True def a__ (self ) -> Dict: """simple docstring""" _a = LayoutLMvaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self , A , A , A=False ) -> List[str]: """simple docstring""" _a = copy.deepcopy(A ) if model_class in get_values(A ): _a = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): _a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in get_values(A ): _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in [ *get_values(A ), ]: _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in [ *get_values(A ), ]: _a = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A , ) return inputs_dict def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Tuple: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def a__ (self ) -> List[Any]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase (): """simple docstring""" _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ) -> Optional[int]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def a__ (self ) -> Any: """simple docstring""" _a = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(A ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=A , return_tensors='''pt''' ).pixel_values.to(A ) _a = torch.tensor([[1, 2]] ) _a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _a = model( input_ids=input_ids.to(A ) , bbox=bbox.to(A ) , pixel_values=pixel_values.to(A ) , ) # verify the logits _a = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A ) _a = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1E-4 ) )
11
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = StableUnCLIPPipeline __lowerCamelCase : Dict = TEXT_TO_IMAGE_PARAMS __lowerCamelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCamelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowerCamelCase : List[str] = False def a__ (self ) -> str: """simple docstring""" _a = 32 _a = embedder_hidden_size # prior components torch.manual_seed(0 ) _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _a = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=A , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _a = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=A , num_layers=1 , ) torch.manual_seed(0 ) _a = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _a = StableUnCLIPImageNormalizer(embedding_dim=A ) _a = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _a = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _a = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=A , layers_per_block=1 , upcast_attention=A , use_linear_projection=A , ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=A , steps_offset=1 , ) torch.manual_seed(0 ) _a = AutoencoderKL() _a = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a__ (self , A , A=0 ) -> Tuple: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a__ (self ) -> List[str]: """simple docstring""" _a = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=A ) def a__ (self ) -> Tuple: """simple docstring""" _a = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=A ) @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ) -> Optional[int]: """simple docstring""" _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _a = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a = pipe('''anime turle''' , generator=A , output_type='''np''' ) _a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _a = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _a = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _a = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
11
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = 'rwkv' __lowerCamelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__(self , A=50_277 , A=1_024 , A=4_096 , A=32 , A=None , A=None , A=1E-5 , A=0 , A=0 , A=6 , A=False , A=True , **A , ) -> Union[str, Any]: """simple docstring""" _a = vocab_size _a = context_length _a = hidden_size _a = num_hidden_layers _a = attention_hidden_size if attention_hidden_size is not None else hidden_size _a = intermediate_size if intermediate_size is not None else 4 * hidden_size _a = layer_norm_epsilon _a = rescale_every _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( tie_word_embeddings=A , bos_token_id=A , eos_token_id=A , **A )
11
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase_ = logging.getLogger(__name__) class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A=None ) -> str: """simple docstring""" super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) _a = None def a__ (self , A ) -> Union[str, Any]: """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually _a = self._infer_socket_ifname() # avoid clash with the NCCL port _a = str(distributed_port + 1 ) _a = dist.new_group(ranks=A , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def a__ (self ) -> Optional[int]: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def a__ (self , A , A , A=torch.floataa ) -> int: """simple docstring""" _a = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def a__ (self ) -> Dict: """simple docstring""" _a = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _a = next((addr for addr in addrs if addr.startswith('''e''' )) , A ) return ifname def a__ (self , A , A ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): _a , _a = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training _a = dist.get_world_size(group=self.process_group ) # gather logic _a = None if self._is_main(): _a = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic _a = question_hidden_states.shape[0] _a = [] _a = [] if self._is_main(): assert len(A ) == world_size _a , _a = self._main_retrieve(torch.cat(A ).numpy() , A ) _a , _a = torch.tensor(A ), torch.tensor(A ) _a = self._chunk_tensor(A , A ) _a = self._chunk_tensor(A , A ) _a = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) _a = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } lowercase_ = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } lowercase_ = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def lowerCAmelCase (__A): """simple docstring""" _a = set() _a = word[0] for char in word[1:]: pairs.add((prev_char, char)) _a = char _a = set(__A) return pairs class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> Optional[Any]: """simple docstring""" super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) _a = vocab_file _a = merges_file _a = {} _a = 0 _a = 1 _a = 2 _a = 3 self.add_from_file(A ) _a = {v: k for k, v in self.encoder.items()} with open(A , encoding='''utf-8''' ) as merges_handle: _a = merges_handle.read().split('''\n''' )[:-1] _a = [tuple(merge.split()[:-1] ) for merge in merges] _a = dict(zip(A , range(len(A ) ) ) ) _a = {} def a__ (self , A , A = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ (self , A , A = None , A = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def a__ (self , A , A = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ (self ) -> Union[str, Any]: """simple docstring""" return len(self.encoder ) def a__ (self ) -> Union[str, Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ (self , A ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] _a = tuple(A ) _a = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _a = get_pairs(A ) if not pairs: return token while True: _a = min(A , key=lambda A : self.bpe_ranks.get(A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _a , _a = bigram _a = [] _a = 0 while i < len(A ): try: _a = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _a = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a = tuple(A ) _a = new_word if len(A ) == 1: break else: _a = get_pairs(A ) _a = '''@@ '''.join(A ) _a = word[:-4] _a = word return word def a__ (self , A ) -> str: """simple docstring""" _a = [] _a = re.findall(R'''\S+\n?''' , A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(''' ''' ) ) ) return split_tokens def a__ (self , A ) -> Dict: """simple docstring""" return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def a__ (self , A ) -> Any: """simple docstring""" return self.decoder.get(A , self.unk_token ) def a__ (self , A ) -> int: """simple docstring""" _a = ''' '''.join(A ).replace('''@@ ''' , '''''' ).strip() return out_string def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) if os.path.abspath(self.merges_file ) != os.path.abspath(A ): copyfile(self.merges_file , A ) return out_vocab_file, out_merge_file def a__ (self , A ) -> List[Any]: """simple docstring""" if isinstance(A , A ): try: with open(A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _a = f.readlines() for lineTmp in lines: _a = lineTmp.strip() _a = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) _a = line[:idx] _a = len(self.encoder )
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
1
'''simple docstring''' from math import loga def lowerCAmelCase (__A): """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''') elif isinstance(__A , __A): raise TypeError('''Input value must be a \'int\' type''') return 0 if (a == 0) else int(loga(a & -a)) if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' __lowerCamelCase : Tuple = 'linear' __lowerCamelCase : Optional[Any] = 'cosine' __lowerCamelCase : Optional[int] = 'cosine_with_restarts' __lowerCamelCase : Optional[Any] = 'polynomial' __lowerCamelCase : Optional[int] = 'constant' __lowerCamelCase : Dict = 'constant_with_warmup' __lowerCamelCase : Optional[int] = 'piecewise_constant' def lowerCAmelCase (__A , __A = -1): """simple docstring""" return LambdaLR(__A , lambda __A: 1 , last_epoch=__A) def lowerCAmelCase (__A , __A , __A = -1): """simple docstring""" def lr_lambda(__A): if current_step < num_warmup_steps: return float(__A) / float(max(1.0 , __A)) return 1.0 return LambdaLR(__A , __A , last_epoch=__A) def lowerCAmelCase (__A , __A , __A = -1): """simple docstring""" _a = {} _a = step_rules.split(''',''') for rule_str in rule_list[:-1]: _a , _a = rule_str.split(''':''') _a = int(__A) _a = float(__A) _a = value _a = float(rule_list[-1]) def create_rules_function(__A , __A): def rule_func(__A) -> float: _a = sorted(rules_dict.keys()) for i, sorted_step in enumerate(__A): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _a = create_rules_function(__A , __A) return LambdaLR(__A , __A , last_epoch=__A) def lowerCAmelCase (__A , __A , __A , __A=-1): """simple docstring""" def lr_lambda(__A): if current_step < num_warmup_steps: return float(__A) / float(max(1 , __A)) return max( 0.0 , float(num_training_steps - current_step) / float(max(1 , num_training_steps - num_warmup_steps))) return LambdaLR(__A , __A , __A) def lowerCAmelCase (__A , __A , __A , __A = 0.5 , __A = -1): """simple docstring""" def lr_lambda(__A): if current_step < num_warmup_steps: return float(__A) / float(max(1 , __A)) _a = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps)) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__A) * 2.0 * progress))) return LambdaLR(__A , __A , __A) def lowerCAmelCase (__A , __A , __A , __A = 1 , __A = -1): """simple docstring""" def lr_lambda(__A): if current_step < num_warmup_steps: return float(__A) / float(max(1 , __A)) _a = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps)) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__A) * progress) % 1.0)))) return LambdaLR(__A , __A , __A) def lowerCAmelCase (__A , __A , __A , __A=1e-7 , __A=1.0 , __A=-1): """simple docstring""" _a = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''') def lr_lambda(__A): if current_step < num_warmup_steps: return float(__A) / float(max(1 , __A)) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _a = lr_init - lr_end _a = num_training_steps - num_warmup_steps _a = 1 - (current_step - num_warmup_steps) / decay_steps _a = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__A , __A , __A) lowercase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCAmelCase (__A , __A , __A = None , __A = None , __A = None , __A = 1 , __A = 1.0 , __A = -1 , ): """simple docstring""" _a = SchedulerType(__A) _a = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__A , last_epoch=__A) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__A , step_rules=__A , last_epoch=__A) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''') if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__A , num_warmup_steps=__A , last_epoch=__A) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''') if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , num_cycles=__A , last_epoch=__A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , power=__A , last_epoch=__A , ) return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , last_epoch=__A)
11
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> Optional[int]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> Tuple: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> Tuple: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = True __lowerCamelCase : int = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxRobertaModelTester(self ) @slow def a__ (self ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''roberta-base''' , from_pt=A ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A )
11
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class __A : '''simple docstring''' def __init__(self , A=None , A=None ) -> Any: """simple docstring""" _a = list(poly_a or [0] )[:] _a = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _a = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _a = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _a = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _a = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _a = self.__multiply() def a__ (self , A ) -> Tuple: """simple docstring""" _a = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(A ) <= 1: return dft[0] # _a = self.c_max_length // 2 while next_ncol > 0: _a = [[] for i in range(A )] _a = self.root**next_ncol # First half of next step _a = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _a = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _a = new_dft _a = next_ncol // 2 return dft[0] def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.__dft('''A''' ) _a = self.__dft('''B''' ) _a = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _a = 2 while next_ncol <= self.c_max_length: _a = [[] for i in range(A )] _a = self.root ** (next_ncol // 2) _a = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _a = new_inverse_c next_ncol *= 2 # Unpack _a = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self ) -> Union[str, Any]: """simple docstring""" _a = '''A = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _a = '''B = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _a = '''A*B = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__(self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.02 , A=["stage2", "stage3", "stage4"] , A=3 , A=None , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = num_channels _a = num_stages _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = intermediate_size _a = hidden_act _a = type_sequence_label_size _a = initializer_range _a = out_features _a = num_labels _a = scope _a = num_stages def a__ (self ) -> List[Any]: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def a__ (self ) -> Optional[int]: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def a__ (self ) -> Optional[Any]: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=A , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=A , loss_ignore_index=255 , num_labels=self.num_labels , ) def a__ (self , A , A , A ) -> Union[str, Any]: """simple docstring""" _a = UperNetForSemanticSegmentation(config=A ) model.to(A ) model.eval() _a = model(A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def a__ (self ) -> int: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __lowerCamelCase : Any = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __lowerCamelCase : List[Any] = False __lowerCamelCase : Tuple = False __lowerCamelCase : int = False __lowerCamelCase : str = False __lowerCamelCase : List[str] = False __lowerCamelCase : int = False def a__ (self ) -> List[str]: """simple docstring""" _a = UperNetModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def a__ (self ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ (self ) -> List[str]: """simple docstring""" return def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def a__ (self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def a__ (self ) -> Tuple: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def a__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__ (self ) -> Any: """simple docstring""" pass def a__ (self ) -> str: """simple docstring""" def check_hidden_states_output(A , A , A ): _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(A , A , A ) def a__ (self ) -> str: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(A ) _a = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _a = model_class(config=A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def a__ (self ) -> Tuple: """simple docstring""" pass @slow def a__ (self ) -> str: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = UperNetForSemanticSegmentation.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase (): """simple docstring""" _a = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''') _a = Image.open(__A).convert('''RGB''') return image @require_torch @require_vision @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> List[str]: """simple docstring""" _a = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) _a = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(A ) _a = prepare_img() _a = processor(images=A , return_tensors='''pt''' ).to(A ) with torch.no_grad(): _a = model(**A ) _a = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , A ) _a = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1E-4 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) _a = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(A ) _a = prepare_img() _a = processor(images=A , return_tensors='''pt''' ).to(A ) with torch.no_grad(): _a = model(**A ) _a = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , A ) _a = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1E-4 ) )
11
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> str: """simple docstring""" _a = tempfile.mkdtemp() _a = BlipImageProcessor() _a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) _a = BlipaProcessor(A , A ) processor.save_pretrained(self.tmpdirname ) def a__ (self , **A ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A ).tokenizer def a__ (self , **A ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def a__ (self ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ (self ) -> List[str]: """simple docstring""" _a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _a = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a = self.get_image_processor(do_normalize=A , padding_value=1.0 ) _a = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def a__ (self ) -> Any: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=A , image_processor=A ) _a = self.prepare_image_inputs() _a = image_processor(A , return_tensors='''np''' ) _a = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__ (self ) -> int: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=A , image_processor=A ) _a = '''lower newer''' _a = processor(text=A ) _a = tokenizer(A , return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ (self ) -> int: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=A , image_processor=A ) _a = '''lower newer''' _a = self.prepare_image_inputs() _a = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def a__ (self ) -> Dict: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=A , image_processor=A ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a = processor.batch_decode(A ) _a = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def a__ (self ) -> Any: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=A , image_processor=A ) _a = '''lower newer''' _a = self.prepare_image_inputs() _a = processor(text=A , images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
11
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
1
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return 10 - x * x def lowerCAmelCase (__A , __A): """simple docstring""" if equation(__A) * equation(__A) >= 0: raise ValueError('''Wrong space!''') _a = a while (b - a) >= 0.01: # Find middle point _a = (a + b) / 2 # Check if middle point is root if equation(__A) == 0.0: break # Decide the side to repeat the steps if equation(__A) * equation(__A) < 0: _a = c else: _a = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowercase_ = ["gpt2"] lowercase_ = "gpt2" if is_tf_available(): class __A ( tf.Module ): '''simple docstring''' def __init__(self , A ) -> List[Any]: """simple docstring""" super().__init__() _a = tokenizer _a = AutoConfig.from_pretrained(A ) _a = TFGPTaLMHeadModel.from_config(A ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def a__ (self , A ) -> Optional[Any]: """simple docstring""" _a = self.tokenizer(A ) _a = tokenized['''input_ids'''].to_tensor() _a = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _a = self.model(input_ids=A , attention_mask=A )['''logits'''] return outputs @require_tf @require_keras_nlp class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Any: """simple docstring""" super().setUp() _a = [GPTaTokenizer.from_pretrained(A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _a = [TFGPTaTokenizer.from_pretrained(A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _a = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _a = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a__ (self ) -> Any: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _a = tokenizer([test_inputs] , return_tensors='''tf''' ) _a = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _a = python_outputs[key].numpy() _a = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(A , tf.intaa ) == tf_outputs_values ) ) @slow def a__ (self ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = tf.function(A ) for test_inputs in self.test_sentences: _a = tf.constant(A ) _a = compiled_tokenizer(A ) _a = tf_tokenizer(A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ (self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = ModelToSave(tokenizer=A ) _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = model.serving(A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _a = Path(A ) / '''saved.model''' tf.saved_model.save(A , A , signatures={'''serving_default''': model.serving} ) _a = tf.saved_model.load(A ) _a = loaded_model.signatures['''serving_default'''](A )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def a__ (self ) -> List[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = tf_tokenizer(A ) # Build model with some sample inputs _a = tf_tokenizer.get_config() _a = TFGPTaTokenizer.from_config(A ) _a = model_from_config(A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def a__ (self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run _a = 123_123 for max_length in [3, 5, 1_024]: _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = tf_tokenizer(A , max_length=A ) _a = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
11
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): '''simple docstring''' @property def a__ (self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def a__ (self ) -> str: """simple docstring""" _a = self.dummy_uncond_unet _a = KarrasVeScheduler() _a = KarrasVePipeline(unet=A , scheduler=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _a = torch.manual_seed(0 ) _a = pipe(num_inference_steps=2 , generator=A , output_type='''numpy''' ).images _a = torch.manual_seed(0 ) _a = pipe(num_inference_steps=2 , generator=A , output_type='''numpy''' , return_dict=A )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> str: """simple docstring""" _a = '''google/ncsnpp-celebahq-256''' _a = UNetaDModel.from_pretrained(A ) _a = KarrasVeScheduler() _a = KarrasVePipeline(unet=A , scheduler=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _a = torch.manual_seed(0 ) _a = pipe(num_inference_steps=20 , generator=A , output_type='''numpy''' ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
11
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'wav2vec2' def __init__(self , A=32 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.0 , A=0.1 , A=0.1 , A=0.02 , A=1E-5 , A="group" , A="gelu" , A=(512, 512, 512, 512, 512, 512, 512) , A=(5, 2, 2, 2, 2, 2, 2) , A=(10, 3, 3, 3, 3, 2, 2) , A=False , A=128 , A=16 , A=False , A=True , A=0.05 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=320 , A=2 , A=0.1 , A=100 , A=256 , A=256 , A=0.1 , A="sum" , A=False , A=False , A=256 , A=(512, 512, 512, 512, 1_500) , A=(5, 3, 3, 1, 1) , A=(1, 2, 3, 1, 1) , A=512 , A=0 , A=1 , A=2 , A=False , A=3 , A=2 , A=3 , A=None , A=None , **A , ) -> int: """simple docstring""" super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(A ) _a = list(A ) _a = list(A ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(A ) _a = list(A ) _a = list(A ) _a = xvector_output_dim @property def a__ (self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' def lowerCAmelCase (__A = 600_851_475_143): """simple docstring""" try: _a = int(__A) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''') if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''') _a = 2 _a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _a = i while n % i == 0: _a = n // i i += 1 return int(__A) if __name__ == "__main__": print(F"""{solution() = }""")
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
1
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase_ = 1.0_54_57_18_17e-34 # unit of ℏ : J * s lowercase_ = 3e8 # unit of c : m * s^-1 def lowerCAmelCase (__A , __A , __A): """simple docstring""" if (force, area, distance).count(0) != 1: raise ValueError('''One and only one argument must be 0''') if force < 0: raise ValueError('''Magnitude of force can not be negative''') if distance < 0: raise ValueError('''Distance can not be negative''') if area < 0: raise ValueError('''Area can not be negative''') if force == 0: _a = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _a = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _a = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''') # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'owlvit_text_model' def __init__(self , A=49_408 , A=512 , A=2_048 , A=12 , A=8 , A=16 , A="quick_gelu" , A=1E-5 , A=0.0 , A=0.02 , A=1.0 , A=0 , A=49_406 , A=49_407 , **A , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _a = vocab_size _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = max_position_embeddings _a = hidden_act _a = layer_norm_eps _a = attention_dropout _a = initializer_range _a = initializer_factor @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = 'owlvit_vision_model' def __init__(self , A=768 , A=3_072 , A=12 , A=12 , A=3 , A=768 , A=32 , A="quick_gelu" , A=1E-5 , A=0.0 , A=0.02 , A=1.0 , **A , ) -> Union[str, Any]: """simple docstring""" super().__init__(**A ) _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = num_channels _a = image_size _a = patch_size _a = hidden_act _a = layer_norm_eps _a = attention_dropout _a = initializer_range _a = initializer_factor @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[int] = 'owlvit' __lowerCamelCase : List[str] = True def __init__(self , A=None , A=None , A=512 , A=2.6592 , A=True , **A , ) -> Optional[int]: """simple docstring""" super().__init__(**A ) if text_config is None: _a = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _a = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _a = OwlViTTextConfig(**A ) _a = OwlViTVisionConfig(**A ) _a = projection_dim _a = logit_scale_init_value _a = return_dict _a = 1.0 @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) @classmethod def a__ (cls , A , A , **A ) -> Any: """simple docstring""" _a = {} _a = text_config _a = vision_config return cls.from_dict(A , **A ) def a__ (self ) -> Tuple: """simple docstring""" _a = copy.deepcopy(self.__dict__ ) _a = self.text_config.to_dict() _a = self.vision_config.to_dict() _a = self.__class__.model_type return output class __A ( A ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-4 def a__ (self , A , A = -1 , A = -1 , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _a = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def a__ (self ) -> int: """simple docstring""" return 14
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = None , __A = None , ): """simple docstring""" if config_name_or_path is None: _a = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: _a = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _a = question_encoder_name_or_path _a = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. _a = RagConfig.from_pretrained(__A) _a = AutoConfig.from_pretrained(__A) _a = AutoConfig.from_pretrained(__A) _a = gen_config _a = question_encoder_config _a = model_class.from_pretrained_question_encoder_generator( __A , __A , config=__A) rag_model.save_pretrained(__A) # Sanity check. model_class.from_pretrained(__A) # Save tokenizers. _a = AutoTokenizer.from_pretrained(__A) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''') _a = AutoTokenizer.from_pretrained(__A) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) lowercase_ = parser.parse_args() lowercase_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
11
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import math def lowerCAmelCase (__A): """simple docstring""" _a = [True] * n _a = False _a = False _a = True for i in range(3 , int(n**0.5 + 1) , 2): _a = i * 2 while index < n: _a = False _a = index + i _a = [2] for i in range(3 , __A , 2): if is_prime[i]: primes.append(__A) return primes def lowerCAmelCase (__A = 999_966_663_333): """simple docstring""" _a = math.floor(math.sqrt(__A)) + 100 _a = prime_sieve(__A) _a = 0 _a = 0 _a = primes[prime_index] while (last_prime**2) <= limit: _a = primes[prime_index + 1] _a = last_prime**2 _a = next_prime**2 # Get numbers divisible by lps(current) _a = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _a = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _a = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _a = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
11
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __A ( datasets.BeamBasedBuilder ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=A , ) def a__ (self , A , A ) -> Optional[Any]: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def a__ (self , A , A ) -> str: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) class __A ( datasets.BeamBasedBuilder ): '''simple docstring''' def a__ (self ) -> int: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=A , ) def a__ (self , A , A ) -> str: """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def a__ (self , A , A ) -> int: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) def lowerCAmelCase (): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''])] def lowerCAmelCase (): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''])] class __A ( A ): '''simple docstring''' @require_beam def a__ (self ) -> List[Any]: """simple docstring""" _a = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _a = DummyBeamDataset(cache_dir=A , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _a = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , A ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def a__ (self ) -> Optional[Any]: """simple docstring""" import apache_beam as beam _a = beam.io.parquetio.WriteToParquet _a = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _a = DummyBeamDataset(cache_dir=A , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: _a = partial(A , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( A , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( A , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _a = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def a__ (self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: _a = DummyBeamDataset(cache_dir=A ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def a__ (self ) -> str: """simple docstring""" _a = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _a = NestedBeamDataset(cache_dir=A , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) _a = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , A ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = RobertaTokenizer __lowerCamelCase : List[Any] = RobertaTokenizerFast __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Dict = {'cls_token': '<s>'} def a__ (self ) -> int: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def a__ (self , **A ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Any: """simple docstring""" _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def a__ (self ) -> int: """simple docstring""" _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=A ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=A ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def a__ (self ) -> List[Any]: """simple docstring""" _a = self.tokenizer_class.from_pretrained('''roberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=A ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=A , add_prefix_space=A ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=A , add_prefix_space=A ) _a = tokenizer.build_inputs_with_special_tokens(A ) _a = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def a__ (self ) -> Dict: """simple docstring""" _a = self.get_tokenizer() _a = '''Encode this sequence.''' _a = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A , A ) _a = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A , A ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a = tokenizer.encode(A , add_special_tokens=A ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A , A ) # Testing spaces after special tokens _a = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(A ) _a = '''Encode <mask> sequence''' _a = '''Encode <mask>sequence''' _a = tokenizer.encode(A ) _a = encoded.index(A ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A , A ) _a = tokenizer.encode(A ) _a = encoded.index(A ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A , A ) def a__ (self ) -> Optional[int]: """simple docstring""" pass def a__ (self ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _a = self.rust_tokenizer_class.from_pretrained(A , **A ) _a = self.tokenizer_class.from_pretrained(A , **A ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) _a = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def a__ (self ) -> Tuple: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , A ) self.assertEqual(post_processor_state['''add_prefix_space'''] , A ) self.assertEqual(post_processor_state['''trim_offsets'''] , A ) def a__ (self ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _a = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a = f'''{text_of_1_token} {text_of_1_token}''' _a = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) _a = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) _a = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) _a = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) _a = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) _a = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) _a = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) _a = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) _a = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) _a = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , ) _a = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) _a = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , ) _a = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) _a = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
11
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
1
'''simple docstring''' lowercase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def lowerCAmelCase (): """simple docstring""" _a = input('''Enter message: ''') _a = input('''Enter key [alphanumeric]: ''') _a = input('''Encrypt/Decrypt [e/d]: ''') if mode.lower().startswith('''e'''): _a = '''encrypt''' _a = encrypt_message(__A , __A) elif mode.lower().startswith('''d'''): _a = '''decrypt''' _a = decrypt_message(__A , __A) print(F'''\n{mode.title()}ed message:''') print(__A) def lowerCAmelCase (__A , __A): """simple docstring""" return translate_message(__A , __A , '''encrypt''') def lowerCAmelCase (__A , __A): """simple docstring""" return translate_message(__A , __A , '''decrypt''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = [] _a = 0 _a = key.upper() for symbol in message: _a = LETTERS.find(symbol.upper()) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index]) elif mode == "decrypt": num -= LETTERS.find(key[key_index]) num %= len(__A) if symbol.isupper(): translated.append(LETTERS[num]) elif symbol.islower(): translated.append(LETTERS[num].lower()) key_index += 1 if key_index == len(__A): _a = 0 else: translated.append(__A) return "".join(__A) if __name__ == "__main__": main()
11
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowercase_ = logging.get_logger(__name__) lowercase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : '''simple docstring''' __lowerCamelCase : str = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) __lowerCamelCase : str = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) __lowerCamelCase : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase : int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) __lowerCamelCase : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) __lowerCamelCase : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) __lowerCamelCase : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __lowerCamelCase : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __lowerCamelCase : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) __lowerCamelCase : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __A ( A ): '''simple docstring''' __lowerCamelCase : int = 'train' __lowerCamelCase : Union[str, Any] = 'dev' class __A ( A ): '''simple docstring''' __lowerCamelCase : SquadDataTrainingArguments __lowerCamelCase : List[SquadFeatures] __lowerCamelCase : Split __lowerCamelCase : bool def __init__(self , A , A , A = None , A = Split.train , A = False , A = None , A = "pt" , ) -> int: """simple docstring""" _a = args _a = is_language_sensitive _a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(A , A ): try: _a = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) _a = mode # Load data features from cache or dataset file _a = '''v2''' if args.version_2_with_negative else '''v1''' _a = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a = cached_features_file + '''.lock''' with FileLock(A ): if os.path.exists(A ) and not args.overwrite_cache: _a = time.time() _a = torch.load(A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _a = self.old_features['''features'''] _a = self.old_features.get('''dataset''' , A ) _a = self.old_features.get('''examples''' , A ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: _a = self.processor.get_dev_examples(args.data_dir ) else: _a = self.processor.get_train_examples(args.data_dir ) _a , _a = squad_convert_examples_to_features( examples=self.examples , tokenizer=A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=A , ) _a = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__(self ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__(self , A ) -> Dict[str, torch.Tensor]: """simple docstring""" _a = self.features[i] _a = torch.tensor(feature.input_ids , dtype=torch.long ) _a = torch.tensor(feature.attention_mask , dtype=torch.long ) _a = torch.tensor(feature.token_type_ids , dtype=torch.long ) _a = torch.tensor(feature.cls_index , dtype=torch.long ) _a = torch.tensor(feature.p_mask , dtype=torch.float ) _a = torch.tensor(feature.is_impossible , dtype=torch.float ) _a = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _a = torch.tensor(feature.start_position , dtype=torch.long ) _a = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
11
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") lowercase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' __lowerCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowerCamelCase : bool = field( default=A , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class __A : '''simple docstring''' __lowerCamelCase : Optional[str] = field(default=A , metadata={'help': 'The input training data file (a text file).'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowerCamelCase : Optional[int] = field( default=A , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase : bool = field( default=A , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def a__ (self ) -> str: """simple docstring""" if self.train_file is not None: _a = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _a = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __A : '''simple docstring''' __lowerCamelCase : PreTrainedTokenizerBase __lowerCamelCase : Union[bool, str, PaddingStrategy] = True __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[int] = None def __call__(self , A ) -> int: """simple docstring""" _a = '''label''' if '''label''' in features[0].keys() else '''labels''' _a = [feature.pop(A ) for feature in features] _a = len(A ) _a = len(features[0]['''input_ids'''] ) _a = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] _a = list(chain(*A ) ) _a = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten _a = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels _a = torch.tensor(A , dtype=torch.intaa ) return batch def lowerCAmelCase (): """simple docstring""" _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith('''.json'''): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , __A , __A) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a = training_args.get_process_log_level() logger.setLevel(__A) datasets.utils.logging.set_verbosity(__A) transformers.utils.logging.set_verbosity(__A) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''') elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''') # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _a = {} if data_args.train_file is not None: _a = data_args.train_file if data_args.validation_file is not None: _a = data_args.validation_file _a = data_args.train_file.split('''.''')[-1] _a = load_dataset( __A , data_files=__A , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _a = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _a = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _a = [F'''ending{i}''' for i in range(4)] _a = '''sent1''' _a = '''sent2''' if data_args.max_seq_length is None: _a = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''') _a = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''') _a = min(data_args.max_seq_length , tokenizer.model_max_length) # Preprocessing the datasets. def preprocess_function(__A): _a = [[context] * 4 for context in examples[context_name]] _a = examples[question_header_name] _a = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(__A) ] # Flatten out _a = list(chain(*__A)) _a = list(chain(*__A)) # Tokenize _a = tokenizer( __A , __A , truncation=__A , max_length=__A , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__A) , 4)] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''') _a = raw_datasets['''train'''] if data_args.max_train_samples is not None: _a = min(len(__A) , data_args.max_train_samples) _a = train_dataset.select(range(__A)) with training_args.main_process_first(desc='''train dataset map pre-processing'''): _a = train_dataset.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''') _a = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: _a = min(len(__A) , data_args.max_eval_samples) _a = eval_dataset.select(range(__A)) with training_args.main_process_first(desc='''validation dataset map pre-processing'''): _a = eval_dataset.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _a = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__A , pad_to_multiple_of=8 if training_args.fpaa else None) ) # Metric def compute_metrics(__A): _a , _a = eval_predictions _a = np.argmax(__A , axis=1) return {"accuracy": (preds == label_ids).astype(np.floataa).mean().item()} # Initialize our Trainer _a = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__A , data_collator=__A , compute_metrics=__A , ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=__A) trainer.save_model() # Saves the tokenizer too for easy upload _a = train_result.metrics _a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A) ) _a = min(__A , len(__A)) trainer.log_metrics('''train''' , __A) trainer.save_metrics('''train''' , __A) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''') _a = trainer.evaluate() _a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A) _a = min(__A , len(__A)) trainer.log_metrics('''eval''' , __A) trainer.save_metrics('''eval''' , __A) _a = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**__A) else: trainer.create_model_card(**__A) def lowerCAmelCase (__A): """simple docstring""" main() if __name__ == "__main__": main()
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model"} lowercase_ = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowercase_ = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__(self , A , A=False , A=False , A=False , A=None , A=None , A=None , A=None , A = None , **A , ) -> None: """simple docstring""" _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) _a = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _a = '''<|endoftext|>''' if eos_token is None else eos_token _a = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _a = unk_token if pad_token is None else pad_token _a = eos_token if bos_token is None else bos_token else: _a = '''<pad>''' if pad_token is None else pad_token _a = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off _a = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _a = re.compile( f'''[{''.join(map(A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]''' ) def __getstate__(self ) -> Tuple: """simple docstring""" _a = self.__dict__.copy() _a = None return state def __setstate__(self , A ) -> str: """simple docstring""" _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def a__ (self ) -> int: """simple docstring""" return len(self.sp_model ) def a__ (self , A ) -> str: """simple docstring""" _a = self.non_printing_characters_re.sub('''''' , A ) # Normalize whitespaces _a = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization _a = unicodedata.normalize('''NFC''' , A ) return text def a__ (self , A , **A ) -> List[str]: """simple docstring""" _a = self.preprocess_text(A ) return self.sp_model.encode(A , out_type=A ) def a__ (self , A ) -> int: """simple docstring""" return self.sp_model.PieceToId(A ) def a__ (self , A ) -> str: """simple docstring""" return self.sp_model.IdToPiece(A ) @staticmethod def a__ (A ) -> str: """simple docstring""" return out_string def a__ (self , A ) -> str: """simple docstring""" _a = [] _a = '''''' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token _a = True _a = [] else: current_sub_tokens.append(A ) _a = False out_string += self.sp_model.decode(A ) return out_string def a__ (self ) -> Dict[str, int]: """simple docstring""" _a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def a__ (self , A , A = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(A , A ): _a = self.preprocess_text(A ) _a = self.sp_model.encode(A ) else: _a = [self.preprocess_text(A ) for t in text] _a = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": _a = torch.tensor(A ) return token_ids def a__ (self , A ) -> str: """simple docstring""" return self.sp_model.decode(A ) def a__ (self , A ) -> List[int]: """simple docstring""" _a = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] _a = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'upernet' def __init__(self , A=None , A=512 , A=0.02 , A=[1, 2, 3, 6] , A=True , A=0.4 , A=384 , A=256 , A=1 , A=False , A=255 , **A , ) -> Optional[int]: """simple docstring""" super().__init__(**A ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _a = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(A , A ): _a = backbone_config.get('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(A ) _a = backbone_config _a = hidden_size _a = initializer_range _a = pool_scales _a = use_auxiliary_head _a = auxiliary_loss_weight _a = auxiliary_in_channels _a = auxiliary_channels _a = auxiliary_num_convs _a = auxiliary_concat_input _a = loss_ignore_index def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import math lowercase_ = 10 lowercase_ = 7 lowercase_ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase (__A = 20): """simple docstring""" _a = math.comb(__A , __A) _a = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __A) _a = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
11
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase_ = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __A : '''simple docstring''' __lowerCamelCase : Dict = PegasusConfig __lowerCamelCase : Optional[int] = {} __lowerCamelCase : Any = 'gelu' def __init__(self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=5 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Union[str, Any]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = eos_token_id _a = pad_token_id _a = bos_token_id def a__ (self ) -> Any: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _a = np.concatenate([input_ids, eos_tensor] , axis=1 ) _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _a = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def a__ (self , A , A , A ) -> List[str]: """simple docstring""" _a = 20 _a = model_class_name(A ) _a = model.encode(inputs_dict['''input_ids'''] ) _a , _a = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _a = model.init_cache(decoder_input_ids.shape[0] , A , A ) _a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) _a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _a = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) _a = model.decode(A , A ) _a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def a__ (self , A , A , A ) -> Optional[int]: """simple docstring""" _a = 20 _a = model_class_name(A ) _a = model.encode(inputs_dict['''input_ids'''] ) _a , _a = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _a = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _a = model.init_cache(decoder_input_ids.shape[0] , A , A ) _a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) _a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _a = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) _a = model.decode(A , A , decoder_attention_mask=A ) _a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def lowerCAmelCase (__A , __A , __A , __A=None , __A=None , ): """simple docstring""" if attention_mask is None: _a = np.not_equal(__A , config.pad_token_id).astype(np.inta) if decoder_attention_mask is None: _a = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id).astype(np.inta), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __lowerCamelCase : Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __lowerCamelCase : Tuple = True __lowerCamelCase : Optional[Any] = False __lowerCamelCase : List[str] = False __lowerCamelCase : str = False def a__ (self ) -> int: """simple docstring""" _a = FlaxPegasusModelTester(self ) _a = ConfigTester(self , config_class=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def a__ (self ) -> str: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def a__ (self ) -> Tuple: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a = self._prepare_for_class(A , A ) _a = model_class(A ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest('''JIT Enabled''' ): _a = encode_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _a = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a = model_class(A ) _a = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _a = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest('''JIT Enabled''' ): _a = decode_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _a = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=A ) _a = np.ones((1, 1) ) _a = model(A ) self.assertIsNotNone(A ) @slow def a__ (self ) -> List[Any]: """simple docstring""" _a = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) _a = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) _a = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _a = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _a = tokenizer(A , return_tensors='''np''' , truncation=A , max_length=512 , padding=A ) _a = model.generate(**A , num_beams=2 ).sequences _a = tokenizer.batch_decode(A , skip_special_tokens=A ) assert tgt_text == decoded
11
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase (__A , __A): """simple docstring""" assert isinstance(__A , __A) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True]) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a = TextDatasetReader(__A , cache_dir=__A , keep_in_memory=__A).read() _check_text_dataset(__A , __A) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''text''': '''string'''} _a = features.copy() if features else default_expected_features _a = ( Features({feature: Value(__A) for feature, dtype in features.items()}) if features is not None else None ) _a = TextDatasetReader(__A , features=__A , cache_dir=__A).read() _check_text_dataset(__A , __A) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train'''), '''train''', '''test''']) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''text''': '''string'''} _a = TextDatasetReader(__A , cache_dir=__A , split=__A).read() _check_text_dataset(__A , __A) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list]) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if issubclass(__A , __A): _a = text_path elif issubclass(__A , __A): _a = [text_path] _a = tmp_path / '''cache''' _a = {'''text''': '''string'''} _a = TextDatasetReader(__A , cache_dir=__A).read() _check_text_dataset(__A , __A) def lowerCAmelCase (__A , __A , __A=("train",)): """simple docstring""" assert isinstance(__A , __A) for split in splits: _a = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True]) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a = TextDatasetReader({'''train''': text_path} , cache_dir=__A , keep_in_memory=__A).read() _check_text_datasetdict(__A , __A) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _a = {'''text''': '''string'''} _a = features.copy() if features else default_expected_features _a = ( Features({feature: Value(__A) for feature, dtype in features.items()}) if features is not None else None ) _a = TextDatasetReader({'''train''': text_path} , features=__A , cache_dir=__A).read() _check_text_datasetdict(__A , __A) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train'''), '''train''', '''test''']) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if split: _a = {split: text_path} else: _a = '''train''' _a = {'''train''': text_path, '''test''': text_path} _a = tmp_path / '''cache''' _a = {'''text''': '''string'''} _a = TextDatasetReader(__A , cache_dir=__A).read() _check_text_datasetdict(__A , __A , splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys())
11
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
1
'''simple docstring''' import random from typing import Any def lowerCAmelCase (__A): """simple docstring""" for _ in range(len(__A)): _a = random.randint(0 , len(__A) - 1) _a = random.randint(0 , len(__A) - 1) _a , _a = data[b], data[a] return data if __name__ == "__main__": lowercase_ = [0, 1, 2, 3, 4, 5, 6, 7] lowercase_ = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
1
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not all(x.isalpha() for x in string): raise ValueError('''String must only contain alphabetic characters.''') _a = sorted(string.lower()) return len(__A) == len(set(__A)) if __name__ == "__main__": lowercase_ = input("Enter a string ").strip() lowercase_ = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
11
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase (__A): """simple docstring""" if "img_encoder.pos_embed" in name: _a = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''') if "img_encoder.patch_embed.proj" in name: _a = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''') if "img_encoder.patch_embed.norm" in name: _a = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''') if "img_encoder.layers" in name: _a = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''') if "blocks" in name and "res" not in name: _a = name.replace('''blocks''' , '''layers''') if "attn" in name and "pre_assign" not in name: _a = name.replace('''attn''' , '''self_attn''') if "proj" in name and "self_attn" in name and "text" not in name: _a = name.replace('''proj''' , '''out_proj''') if "pre_assign_attn.attn.proj" in name: _a = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''') if "norm1" in name: _a = name.replace('''norm1''' , '''layer_norm1''') if "norm2" in name and "pre_assign" not in name: _a = name.replace('''norm2''' , '''layer_norm2''') if "img_encoder.norm" in name: _a = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''') # text encoder if "text_encoder.token_embedding" in name: _a = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''') if "text_encoder.positional_embedding" in name: _a = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''') if "text_encoder.transformer.resblocks." in name: _a = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''') if "ln_1" in name: _a = name.replace('''ln_1''' , '''layer_norm1''') if "ln_2" in name: _a = name.replace('''ln_2''' , '''layer_norm2''') if "c_fc" in name: _a = name.replace('''c_fc''' , '''fc1''') if "c_proj" in name: _a = name.replace('''c_proj''' , '''fc2''') if "text_encoder" in name: _a = name.replace('''text_encoder''' , '''text_model''') if "ln_final" in name: _a = name.replace('''ln_final''' , '''final_layer_norm''') # projection layers if "img_projector.linear_hidden." in name: _a = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''') if "img_projector.linear_out." in name: _a = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''') if "text_projector.linear_hidden" in name: _a = name.replace('''text_projector.linear_hidden''' , '''text_projection''') if "text_projector.linear_out" in name: _a = name.replace('''text_projector.linear_out''' , '''text_projection.3''') return name def lowerCAmelCase (__A , __A): """simple docstring""" for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(__A) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _a = key.split('''.''') _a , _a = int(key_split[2]), int(key_split[4]) _a = config.vision_config.hidden_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _a = key.split('''.''') _a = int(key_split[3]) _a = config.text_config.hidden_size if "weight" in key: _a = val[:dim, :] _a = val[ dim : dim * 2, : ] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = rename_key(__A) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _a = val.squeeze_() else: _a = val return orig_state_dict def lowerCAmelCase (): """simple docstring""" _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = Image.open(requests.get(__A , stream=__A).raw) return im @torch.no_grad() def lowerCAmelCase (__A , __A , __A="groupvit-gcc-yfcc" , __A=False): """simple docstring""" _a = GroupViTConfig() _a = GroupViTModel(__A).eval() _a = torch.load(__A , map_location='''cpu''')['''model'''] _a = convert_state_dict(__A , __A) _a , _a = model.load_state_dict(__A , strict=__A) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__A) == 0) # verify result _a = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''') _a = prepare_img() _a = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=__A , padding=__A , return_tensors='''pt''') with torch.no_grad(): _a = model(**__A) if model_name == "groupvit-gcc-yfcc": _a = torch.tensor([[13.35_23, 6.36_29]]) elif model_name == "groupvit-gcc-redcaps": _a = torch.tensor([[16.18_73, 8.62_30]]) else: raise ValueError(F'''Model name {model_name} not supported.''') assert torch.allclose(outputs.logits_per_image , __A , atol=1e-3) processor.save_pretrained(__A) model.save_pretrained(__A) print('''Successfully saved processor and model to''' , __A) if push_to_hub: print('''Pushing to the hub...''') processor.push_to_hub(__A , organization='''nielsr''') model.push_to_hub(__A , organization='''nielsr''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) lowercase_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowercase_ = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCAmelCase (__A , __A , __A , __A=5): """simple docstring""" assert masked_input.count('''<mask>''') == 1 _a = torch.tensor(tokenizer.encode(__A , add_special_tokens=__A)).unsqueeze(0) # Batch size 1 _a = model(__A)[0] # The last hidden-state is the first element of the output tuple _a = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _a = logits[0, masked_index, :] _a = logits.softmax(dim=0) _a , _a = prob.topk(k=__A , dim=0) _a = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(__A))]) _a = tokenizer.mask_token _a = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): _a = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(__A) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__A) , __A), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(__A , __A), values[index].item(), predicted_token, )) return topk_filled_outputs lowercase_ = CamembertTokenizer.from_pretrained("camembert-base") lowercase_ = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() lowercase_ = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
11
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> List[str]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=A , ) assert hasattr(self , '''env''' ) def a__ (self , A ) -> Optional[Any]: """simple docstring""" _a = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings _a = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version='''py36''' , ) def a__ (self , A ) -> Tuple: """simple docstring""" TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def a__ (self , A ) -> List[str]: """simple docstring""" _a = self.create_estimator(A ) # run training estimator.fit() # result dataframe _a = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _a = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , A )
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" _a = '''''' for i in table: res += inp[i - 1] return res def lowerCAmelCase (__A): """simple docstring""" return data[1:] + data[0] def lowerCAmelCase (__A , __A): """simple docstring""" _a = '''''' for i in range(len(__A)): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase (__A , __A): """simple docstring""" _a = int('''0b''' + data[0] + data[-1] , 2) _a = int('''0b''' + data[1:3] , 2) return bin(s[row][col])[2:] def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = message[:4] _a = message[4:] _a = apply_table(__A , __A) _a = xor(__A , __A) _a = apply_sbox(__A , temp[:4]) # noqa: E741 _a = apply_sbox(__A , temp[4:]) _a = '''0''' * (2 - len(__A)) + l # noqa: E741 _a = '''0''' * (2 - len(__A)) + r _a = apply_table(l + r , __A) _a = xor(__A , __A) return temp + right if __name__ == "__main__": lowercase_ = input("Enter 10 bit key: ") lowercase_ = input("Enter 8 bit message: ") lowercase_ = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ = [2, 4, 3, 1] lowercase_ = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ = apply_table(key, paa_table) lowercase_ = temp[:5] lowercase_ = temp[5:] lowercase_ = left_shift(left) lowercase_ = left_shift(right) lowercase_ = apply_table(left + right, pa_table) lowercase_ = left_shift(left) lowercase_ = left_shift(right) lowercase_ = left_shift(left) lowercase_ = left_shift(right) lowercase_ = apply_table(left + right, pa_table) # encryption lowercase_ = apply_table(message, IP) lowercase_ = function(expansion, sa, sa, keya, temp) lowercase_ = temp[4:] + temp[:4] lowercase_ = function(expansion, sa, sa, keya, temp) lowercase_ = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption lowercase_ = apply_table(CT, IP) lowercase_ = function(expansion, sa, sa, keya, temp) lowercase_ = temp[4:] + temp[:4] lowercase_ = function(expansion, sa, sa, keya, temp) lowercase_ = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase (): """simple docstring""" _a , _a = 9, 14 # noqa: F841 _a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _a = defaultdict(__A) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost]) adjancency[nodea].append([nodea, cost]) _a = mst(__A) _a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _a = tuple(answer[:2]) _a = tuple(edge[::-1]) assert edge in result or reverse in result
11
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class __A ( A ): '''simple docstring''' __lowerCamelCase : List[Any] = ['image_processor', 'feature_extractor'] __lowerCamelCase : int = 'TvltImageProcessor' __lowerCamelCase : Optional[Any] = 'TvltFeatureExtractor' def __init__(self , A , A ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=A , feature_extractor=A ) _a = image_processor _a = feature_extractor def __call__(self , A=None , A=None , A=None , A=None , A=False , A=False , *A , **A , ) -> List[Any]: """simple docstring""" if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) _a = None if images is not None: _a = self.image_processor(A , mask_pixel=A , *A , **A ) if images_mixed is not None: _a = self.image_processor(A , is_mixed=A , *A , **A ) if audio is not None: _a = self.feature_extractor( A , *A , sampling_rate=A , mask_audio=A , **A ) _a = {} if audio is not None: output_dict.update(A ) if images is not None: output_dict.update(A ) if images_mixed_dict is not None: output_dict.update(A ) return output_dict @property def a__ (self ) -> List[str]: """simple docstring""" _a = self.image_processor.model_input_names _a = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
11
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase (__A): """simple docstring""" _a = DPTConfig(embedding_type='''hybrid''') if "large" in checkpoint_url: _a = 1_024 _a = 4_096 _a = 24 _a = 16 _a = [5, 11, 17, 23] _a = [256, 512, 1_024, 1_024] _a = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _a = 768 _a = [1, 1, 1, 0.5] _a = [256, 512, 768, 768] _a = 150 _a = 16 _a = (1, 384, 384) _a = False _a = '''project''' if "ade" in checkpoint_url: _a = True _a = 768 _a = [1, 1, 1, 0.5] _a = 150 _a = 16 _a = '''huggingface/label-files''' _a = '''ade20k-id2label.json''' _a = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''')) , '''r''')) _a = {int(__A): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase (__A): """simple docstring""" _a = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__A , __A) def lowerCAmelCase (__A): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _a = name.replace('''pretrained.model''' , '''dpt.encoder''') if "pretrained.model" in name: _a = name.replace('''pretrained.model''' , '''dpt.embeddings''') if "patch_embed" in name: _a = name.replace('''patch_embed''' , '''''') if "pos_embed" in name: _a = name.replace('''pos_embed''' , '''position_embeddings''') if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''') if "proj" in name and "project" not in name: _a = name.replace('''proj''' , '''projection''') if "blocks" in name: _a = name.replace('''blocks''' , '''layer''') if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''') if "norm1" in name and "backbone" not in name: _a = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name and "backbone" not in name: _a = name.replace('''norm2''' , '''layernorm_after''') if "scratch.output_conv" in name: _a = name.replace('''scratch.output_conv''' , '''head''') if "scratch" in name: _a = name.replace('''scratch''' , '''neck''') if "layer1_rn" in name: _a = name.replace('''layer1_rn''' , '''convs.0''') if "layer2_rn" in name: _a = name.replace('''layer2_rn''' , '''convs.1''') if "layer3_rn" in name: _a = name.replace('''layer3_rn''' , '''convs.2''') if "layer4_rn" in name: _a = name.replace('''layer4_rn''' , '''convs.3''') if "refinenet" in name: _a = int(name[len('''neck.refinenet''') : len('''neck.refinenet''') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _a = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: _a = name.replace('''out_conv''' , '''projection''') if "resConfUnit1" in name: _a = name.replace('''resConfUnit1''' , '''residual_layer1''') if "resConfUnit2" in name: _a = name.replace('''resConfUnit2''' , '''residual_layer2''') if "conv1" in name: _a = name.replace('''conv1''' , '''convolution1''') if "conv2" in name: _a = name.replace('''conv2''' , '''convolution2''') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''') if "pretrained.act_postprocess2.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''') if "pretrained.act_postprocess3.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''') if "pretrained.act_postprocess4.0.project.0" in name: _a = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''') # resize blocks if "pretrained.act_postprocess1.3" in name: _a = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''') if "pretrained.act_postprocess1.4" in name: _a = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''') if "pretrained.act_postprocess2.3" in name: _a = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''') if "pretrained.act_postprocess2.4" in name: _a = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''') if "pretrained.act_postprocess3.3" in name: _a = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''') if "pretrained.act_postprocess4.3" in name: _a = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''') if "pretrained.act_postprocess4.4" in name: _a = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''') if "pretrained" in name: _a = name.replace('''pretrained''' , '''dpt''') if "bn" in name: _a = name.replace('''bn''' , '''batch_norm''') if "head" in name: _a = name.replace('''head''' , '''head.head''') if "encoder.norm" in name: _a = name.replace('''encoder.norm''' , '''layernorm''') if "auxlayer" in name: _a = name.replace('''auxlayer''' , '''auxiliary_head.head''') if "backbone" in name: _a = name.replace('''backbone''' , '''backbone.bit.encoder''') if ".." in name: _a = name.replace('''..''' , '''.''') if "stem.conv" in name: _a = name.replace('''stem.conv''' , '''bit.embedder.convolution''') if "blocks" in name: _a = name.replace('''blocks''' , '''layers''') if "convolution" in name and "backbone" in name: _a = name.replace('''convolution''' , '''conv''') if "layer" in name and "backbone" in name: _a = name.replace('''layer''' , '''layers''') if "backbone.bit.encoder.bit" in name: _a = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''') if "embedder.conv" in name: _a = name.replace('''embedder.conv''' , '''embedder.convolution''') if "backbone.bit.encoder.stem.norm" in name: _a = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''') return name def lowerCAmelCase (__A , __A): """simple docstring""" for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''') _a = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[: config.hidden_size, :] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = in_proj_bias[-config.hidden_size :] def lowerCAmelCase (): """simple docstring""" _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = Image.open(requests.get(__A , stream=__A).raw) return im @torch.no_grad() def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a , _a = get_dpt_config(__A) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _a = torch.load(__A , map_location='''cpu''') # remove certain keys remove_ignore_keys_(__A) # rename keys for key in state_dict.copy().keys(): _a = state_dict.pop(__A) _a = val # read in qkv matrices read_in_q_k_v(__A , __A) # load HuggingFace model _a = DPTForSemanticSegmentation(__A) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__A) model.load_state_dict(__A) model.eval() # Check outputs on an image _a = 480 if '''ade''' in checkpoint_url else 384 _a = DPTImageProcessor(size=__A) _a = prepare_img() _a = image_processor(__A , return_tensors='''pt''') # forward pass _a = model(**__A).logits if '''ade''' in checkpoint_url else model(**__A).predicted_depth if show_prediction: _a = ( torch.nn.functional.interpolate( outputs.unsqueeze(1) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=__A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255).show() if pytorch_dump_folder_path is not None: Path(__A).mkdir(exist_ok=__A) print(F'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(__A) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(__A) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''') image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) lowercase_ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
11
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowercase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' __lowerCamelCase : Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowerCamelCase : Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) __lowerCamelCase : int = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __lowerCamelCase : bool = field( default=A , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'A csv or a json file containing the training data.'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'A csv or a json file containing the validation data.'} ) __lowerCamelCase : Optional[str] = field(default=A , metadata={'help': 'A csv or a json file containing the test data.'} ) def a__ (self ) -> Any: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: _a = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _a = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __A : '''simple docstring''' __lowerCamelCase : str = field( default=A , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowerCamelCase : bool = field( default=A , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowerCAmelCase (): """simple docstring""" _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith('''.json'''): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout)] , ) _a = training_args.get_process_log_level() logger.setLevel(__A) datasets.utils.logging.set_verbosity(__A) transformers.utils.logging.set_verbosity(__A) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''') elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''') # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _a = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _a = data_args.train_file.split('''.''')[-1] _a = data_args.test_file.split('''.''')[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _a = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''') for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''') if data_args.train_file.endswith('''.csv'''): # Loading a dataset from local csv files _a = load_dataset('''csv''' , data_files=__A , cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files _a = load_dataset('''json''' , data_files=__A , cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _a = raw_datasets['''train'''].features['''label'''].names _a = len(__A) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _a = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) _a = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _a = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _a = False # Some models have set the order of the labels to use, so let's make sure we do use it. _a = {'''Refused''': 0, '''Entailed''': 1} _a = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''') _a = min(data_args.max_seq_length , tokenizer.model_max_length) def preprocess_tabfact_function(__A): # Tokenize the texts def _convert_table_text_to_pandas(__A): _a = [_table_row.split('''#''') for _table_row in _table_text.strip('''\n''').split('''\n''')] _a = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0]) return _table_pd _a = examples['''statement'''] _a = list(map(_convert_table_text_to_pandas , examples['''table_text'''])) _a = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A) _a = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing'''): _a = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''') _a = raw_datasets['''train'''] if data_args.max_train_samples is not None: _a = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''') _a = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: _a = eval_dataset.select(range(data_args.max_eval_samples)) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''') _a = raw_datasets['''test'''] if data_args.max_predict_samples is not None: _a = predict_dataset.select(range(data_args.max_predict_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A)) , 3): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''') # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A): _a = p.predictions[0] if isinstance(p.predictions , __A) else p.predictions _a = np.argmax(__A , axis=1) return {"accuracy": (preds == p.label_ids).astype(np.floataa).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _a = default_data_collator elif training_args.fpaa: _a = DataCollatorWithPadding(__A , pad_to_multiple_of=8) else: _a = None # Initialize our Trainer _a = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=__A) _a = train_result.metrics _a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A) ) _a = min(__A , len(__A)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , __A) trainer.save_metrics('''train''' , __A) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''') _a = trainer.evaluate(eval_dataset=__A) _a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A) _a = min(__A , len(__A)) trainer.log_metrics('''eval''' , __A) trainer.save_metrics('''eval''' , __A) if training_args.do_predict: logger.info('''*** Predict ***''') # Removing the `label` columns because it contains -1 and Trainer won't like that. _a = predict_dataset.remove_columns('''label''') _a = trainer.predict(__A , metric_key_prefix='''predict''').predictions _a = np.argmax(__A , axis=1) _a = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''') if trainer.is_world_process_zero(): with open(__A , '''w''') as writer: logger.info('''***** Predict Results *****''') writer.write('''index\tprediction\n''') for index, item in enumerate(__A): _a = label_list[item] writer.write(F'''{index}\t{item}\n''') _a = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**__A) else: trainer.create_model_card(**__A) def lowerCAmelCase (__A): """simple docstring""" main() if __name__ == "__main__": main()
11
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = DebertaTokenizer __lowerCamelCase : Dict = True __lowerCamelCase : str = DebertaTokenizerFast def a__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''[UNK]'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> str: """simple docstring""" _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def a__ (self ) -> Tuple: """simple docstring""" _a = self.get_tokenizer() _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.get_tokenizer() _a = tokenizer('''Hello''' , '''World''' ) _a = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , A ) @slow def a__ (self ) -> Dict: """simple docstring""" _a = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=A ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=A , add_prefix_space=A ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=A , add_prefix_space=A ) _a = tokenizer.build_inputs_with_special_tokens(A ) _a = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _a = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) _a = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] _a = tokenizer(A , padding=A ) _a = [tokenizer.decode(A , skip_special_tokens=A ) for seq in encoding['''input_ids''']] # fmt: off _a = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _a = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , A ) for expected, decoded in zip(A , A ): self.assertEqual(A , A )
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = (DPMSolverSDEScheduler,) __lowerCamelCase : Union[str, Any] = 10 def a__ (self , **A ) -> List[str]: """simple docstring""" _a = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**A ) return config def a__ (self ) -> Tuple: """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=A ) def a__ (self ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=A , beta_end=A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def a__ (self ) -> int: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(A , A ) _a = model(A , A ) _a = scheduler.step(A , A , A ) _a = output.prev_sample _a = torch.sum(torch.abs(A ) ) _a = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type='''v_prediction''' ) _a = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(A , A ) _a = model(A , A ) _a = scheduler.step(A , A , A ) _a = output.prev_sample _a = torch.sum(torch.abs(A ) ) _a = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def a__ (self ) -> List[str]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) _a = self.dummy_model() _a = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _a = scheduler.scale_model_input(A , A ) _a = model(A , A ) _a = scheduler.step(A , A , A ) _a = output.prev_sample _a = torch.sum(torch.abs(A ) ) _a = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def a__ (self ) -> Tuple: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**A , use_karras_sigmas=A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) _a = self.dummy_model() _a = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma _a = sample.to(A ) for t in scheduler.timesteps: _a = scheduler.scale_model_input(A , A ) _a = model(A , A ) _a = scheduler.step(A , A , A ) _a = output.prev_sample _a = torch.sum(torch.abs(A ) ) _a = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
11
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
1
'''simple docstring''' import numpy as np def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = int(np.ceil((x_end - xa) / h)) _a = np.zeros((n + 1,)) _a = ya _a = xa for k in range(__A): _a = f(__A , y[k]) _a = f(x + 0.5 * h , y[k] + 0.5 * h * ka) _a = f(x + 0.5 * h , y[k] + 0.5 * h * ka) _a = f(x + h , y[k] + h * ka) _a = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCAmelCase (__A): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCAmelCase (__A , __A , __A): """simple docstring""" return max(metric_fn(__A , __A) for gt in ground_truths) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = [line.strip() for line in open(__A , '''r''').readlines()] _a = [] if args.gold_data_mode == "qa": _a = pd.read_csv(__A , sep='''\t''' , header=__A) for answer_list in data[1]: _a = ast.literal_eval(__A) answers.append(__A) else: _a = [line.strip() for line in open(__A , '''r''').readlines()] _a = [[reference] for reference in references] _a = _a = _a = 0 for prediction, ground_truths in zip(__A , __A): total += 1 em += metric_max_over_ground_truths(__A , __A , __A) fa += metric_max_over_ground_truths(__A , __A , __A) _a = 1_00.0 * em / total _a = 1_00.0 * fa / total logger.info(F'''F1: {fa:.2f}''') logger.info(F'''EM: {em:.2f}''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = args.k _a = [line.strip() for line in open(__A , '''r''').readlines()] _a = [line.strip() for line in open(__A , '''r''').readlines()] _a = _a = 0 for hypo, reference in zip(__A , __A): _a = set(hypo.split('''\t''')[:k]) _a = set(reference.split('''\t''')) total += 1 em += len(hypo_provenance & ref_provenance) / k _a = 1_00.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" def strip_title(__A): if title.startswith('''"'''): _a = title[1:] if title.endswith('''"'''): _a = title[:-1] return title _a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __A , return_tensors='''pt''' , padding=__A , truncation=__A , )['''input_ids'''].to(args.device) _a = rag_model.rag.question_encoder(__A) _a = question_enc_outputs[0] _a = rag_model.retriever( __A , question_enc_pool_output.cpu().detach().to(torch.floataa).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) _a = rag_model.retriever.index.get_doc_dicts(result.doc_ids) _a = [] for docs in all_docs: _a = [strip_title(__A) for title in docs['''title''']] provenance_strings.append('''\t'''.join(__A)) return provenance_strings def lowerCAmelCase (__A , __A , __A): """simple docstring""" with torch.no_grad(): _a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __A , return_tensors='''pt''' , padding=__A , truncation=__A) _a = inputs_dict.input_ids.to(args.device) _a = inputs_dict.attention_mask.to(args.device) _a = rag_model.generate( # rag_model overwrites generate __A , attention_mask=__A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _a = rag_model.retriever.generator_tokenizer.batch_decode(__A , skip_special_tokens=__A) if args.print_predictions: for q, a in zip(__A , __A): logger.info('''Q: {} - A: {}'''.format(__A , __A)) return answers def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=__A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=__A , choices=['''exact''', '''compressed''', '''legacy'''] , type=__A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=__A , type=__A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=__A , help='''Number of retrieved docs''') parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=__A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=__A , help='''k for the precision@k calculation''') parser.add_argument( '''--evaluation_set''' , default=__A , type=__A , required=__A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=__A , type=__A , required=__A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=__A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=__A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=__A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=__A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=__A , help='''Min length of the generated answers''') parser.add_argument('''--max_length''' , default=50 , type=__A , help='''Max length of the generated answers''') parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) _a = parser.parse_args() _a = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') return args def lowerCAmelCase (__A): """simple docstring""" _a = {} if args.model_type is None: _a = infer_model_type(args.model_name_or_path) assert args.model_type is not None if args.model_type.startswith('''rag'''): _a = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration _a = args.n_docs if args.index_name is not None: _a = args.index_name if args.index_path is not None: _a = args.index_path else: _a = BartForConditionalGeneration _a = ( [f.path for f in os.scandir(args.model_name_or_path) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , __A) _a = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k _a = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path)) score_fn(__A , args.predictions_path , args.gold_data_path) continue logger.info('''***** Running evaluation for {} *****'''.format(__A)) logger.info(''' Batch size = %d''' , args.eval_batch_size) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path)) if args.model_type.startswith('''rag'''): _a = RagRetriever.from_pretrained(__A , **__A) _a = model_class.from_pretrained(__A , retriever=__A , **__A) model.retriever.init_retrieval() else: _a = model_class.from_pretrained(__A , **__A) model.to(args.device) with open(args.evaluation_set , '''r''') as eval_file, open(args.predictions_path , '''w''') as preds_file: _a = [] for line in tqdm(__A): questions.append(line.strip()) if len(__A) == args.eval_batch_size: _a = evaluate_batch_fn(__A , __A , __A) preds_file.write('''\n'''.join(__A) + '''\n''') preds_file.flush() _a = [] if len(__A) > 0: _a = evaluate_batch_fn(__A , __A , __A) preds_file.write('''\n'''.join(__A)) preds_file.flush() score_fn(__A , args.predictions_path , args.gold_data_path) if __name__ == "__main__": lowercase_ = get_args() main(args)
11
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self , A ) -> str: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _a = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(A ) def a__ (self ) -> str: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ (self ) -> Dict: """simple docstring""" _a = '''sgugger/tiny-distilbert-classification''' _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) _a = PyTorchBenchmark(A ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ (self ) -> int: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' _a = AutoConfig.from_pretrained(A ) # set architectures equal to `None` _a = None _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A , configs=[config] ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ (self ) -> str: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) _a = PyTorchBenchmark(A ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__ (self ) -> Tuple: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' _a = AutoConfig.from_pretrained(A ) _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A , configs=[config] ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = '''sshleifer/tinier_bart''' _a = AutoConfig.from_pretrained(A ) _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A , configs=[config] ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ (self ) -> Any: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' _a = AutoConfig.from_pretrained(A ) _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A , configs=[config] ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__ (self ) -> Dict: """simple docstring""" _a = '''sshleifer/tinier_bart''' _a = AutoConfig.from_pretrained(A ) _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) _a = PyTorchBenchmark(A , configs=[config] ) _a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__ (self ) -> int: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(A , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(A , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(A , '''train_time.csv''' ) , env_info_csv_file=os.path.join(A , '''env.csv''' ) , multi_process=A , ) _a = PyTorchBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''env.csv''' ) ).exists() ) def a__ (self ) -> str: """simple docstring""" _a = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(A ): self.assertTrue(hasattr(A , '''sequential''' ) ) self.assertTrue(hasattr(A , '''cumulative''' ) ) self.assertTrue(hasattr(A , '''current''' ) ) self.assertTrue(hasattr(A , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _a = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , '''log.txt''' ) , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) _a = PyTorchBenchmark(A ) _a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A , '''log.txt''' ) ).exists() )
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowercase_ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowercase_ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowercase_ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowercase_ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowercase_ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowercase_ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : int = DPRContextEncoderTokenizer class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : List[str] = DPRQuestionEncoderTokenizer lowercase_ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowercase_ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowercase_ = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A ) class __A : '''simple docstring''' def __call__(self , A , A = None , A = None , A = False , A = False , A = None , A = None , A = None , **A , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) elif titles is None or texts is None: _a = titles if texts is None else texts return super().__call__( A , A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) _a = titles if not isinstance(A , A ) else [titles] _a = texts if not isinstance(A , A ) else [texts] _a = len(A ) _a = questions if not isinstance(A , A ) else [questions] * n_passages assert len(A ) == len( A ), f'''There should be as many titles than texts but got {len(A )} titles and {len(A )} texts.''' _a = super().__call__(A , A , padding=A , truncation=A )['''input_ids'''] _a = super().__call__(A , add_special_tokens=A , padding=A , truncation=A )['''input_ids'''] _a = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A , A ) ] } if return_attention_mask is not False: _a = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _a = attention_mask return self.pad(A , padding=A , max_length=A , return_tensors=A ) def a__ (self , A , A , A = 16 , A = 64 , A = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _a = reader_input['''input_ids'''] _a , _a , _a = reader_output[:3] _a = len(A ) _a = sorted(range(A ) , reverse=A , key=relevance_logits.__getitem__ ) _a = [] for doc_id in sorted_docs: _a = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _a = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _a = sequence_ids.index(self.pad_token_id ) else: _a = len(A ) _a = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A , top_spans=A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A , start_index=A , end_index=A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ (self , A , A , A , A , ) -> List[DPRSpanPrediction]: """simple docstring""" _a = [] for start_index, start_score in enumerate(A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _a = sorted(A , key=lambda A : x[1] , reverse=A ) _a = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' _a = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A ) class __A ( A , A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : Any = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Dict = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] __lowerCamelCase : Optional[int] = DPRReaderTokenizer
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' def __init__(self , *A , **A ) -> None: """simple docstring""" warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , A , ) super().__init__(*A , **A )
11
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
11
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowercase_ = re.compile(R"\s+") def lowerCAmelCase (__A): """simple docstring""" return {"hash": hashlib.mda(re.sub(__A , '''''' , example['''content''']).encode('''utf-8''')).hexdigest()} def lowerCAmelCase (__A): """simple docstring""" _a = [len(__A) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(__A), "line_max": max(__A)} def lowerCAmelCase (__A): """simple docstring""" _a = np.mean([c.isalnum() for c in example['''content''']]) return {"alpha_frac": alpha_frac} def lowerCAmelCase (__A , __A): """simple docstring""" if example["hash"] in uniques: uniques.remove(example['''hash''']) return True else: return False def lowerCAmelCase (__A , __A=5): """simple docstring""" _a = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] _a = example['''content'''].splitlines() for _, line in zip(range(__A) , __A): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCAmelCase (__A , __A=5 , __A=0.05): """simple docstring""" _a = ['''unit tests''', '''test file''', '''configuration file'''] _a = example['''content'''].splitlines() _a = 0 _a = 0 # first test for _, line in zip(range(__A) , __A): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _a = example['''content'''].count('''\n''') _a = int(coeff * nlines) for line in lines: count_config += line.lower().count('''config''') count_test += line.lower().count('''test''') if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCAmelCase (__A): """simple docstring""" _a = ['''def ''', '''class ''', '''for ''', '''while '''] _a = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCAmelCase (__A , __A=4): """simple docstring""" _a = example['''content'''].splitlines() _a = 0 for line in lines: counter += line.lower().count('''=''') if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCAmelCase (__A): """simple docstring""" _a = tokenizer(example['''content'''] , truncation=__A)['''input_ids'''] _a = len(example['''content''']) / len(__A) return {"ratio": ratio} def lowerCAmelCase (__A): """simple docstring""" _a = {} results.update(get_hash(__A)) results.update(line_stats(__A)) results.update(alpha_stats(__A)) results.update(char_token_ratio(__A)) results.update(is_autogenerated(__A)) results.update(is_config_or_test(__A)) results.update(has_no_keywords(__A)) results.update(has_few_assignments(__A)) return results def lowerCAmelCase (__A , __A , __A): """simple docstring""" if not check_uniques(__A , __A): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCAmelCase (__A): """simple docstring""" with open(__A , '''rb''') as f_in: with gzip.open(str(__A) + '''.gz''' , '''wb''' , compresslevel=6) as f_out: shutil.copyfileobj(__A , __A) os.unlink(__A) # Settings lowercase_ = HfArgumentParser(PreprocessingArguments) lowercase_ = parser.parse_args() if args.num_workers is None: lowercase_ = multiprocessing.cpu_count() lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowercase_ = time.time() lowercase_ = load_dataset(args.dataset_name, split="train") print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing lowercase_ = time.time() lowercase_ = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes lowercase_ = set(ds.unique("hash")) lowercase_ = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics lowercase_ = time.time() lowercase_ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowercase_ = time.time() lowercase_ , lowercase_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file lowercase_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) lowercase_ = output_dir / "data" data_dir.mkdir(exist_ok=True) lowercase_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowercase_ = str(data_dir / F"""file-{file_number+1:012}.json""") lowercase_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
11
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __A : '''simple docstring''' def __init__(self , A , A=3 , A=32 , A=3 , A=10 , A=[8, 16, 32, 64] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=1 , ) -> Any: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = num_channels _a = embeddings_size _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = hidden_act _a = num_labels _a = scope _a = len(A ) _a = out_features _a = out_indices _a = num_groups def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def a__ (self ) -> Union[str, Any]: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def a__ (self , A , A , A ) -> List[str]: """simple docstring""" _a = BitModel(config=A ) model.to(A ) model.eval() _a = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ (self , A , A , A ) -> List[Any]: """simple docstring""" _a = self.num_labels _a = BitForImageClassification(A ) model.to(A ) model.eval() _a = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ (self , A , A , A ) -> Any: """simple docstring""" _a = BitBackbone(config=A ) model.to(A ) model.eval() _a = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a = None _a = BitBackbone(config=A ) model.to(A ) model.eval() _a = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ (self ) -> Any: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCamelCase : str = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowerCamelCase : Optional[int] = False __lowerCamelCase : int = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = BitModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ (self ) -> Union[str, Any]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def a__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def a__ (self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def a__ (self ) -> Dict: """simple docstring""" pass def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(config=A ) for name, module in model.named_modules(): if isinstance(A , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def a__ (self ) -> Tuple: """simple docstring""" def check_hidden_states_output(A , A , A ): _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _a = layer_type _a = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(A , A , A ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def a__ (self ) -> int: """simple docstring""" pass def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def a__ (self ) -> int: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = BitModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase (): """simple docstring""" _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ) -> str: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ (self ) -> int: """simple docstring""" _a = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): _a = model(**A ) # verify the logits _a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A ) _a = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @require_torch class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = (BitBackbone,) if is_torch_available() else () __lowerCamelCase : List[str] = BitConfig __lowerCamelCase : Any = False def a__ (self ) -> Dict: """simple docstring""" _a = BitModelTester(self )
11
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
1
'''simple docstring''' import os import string import sys lowercase_ = 1 << 8 lowercase_ = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } lowercase_ = KEYMAP["up"] lowercase_ = KEYMAP["left"] if sys.platform == "win32": lowercase_ = [] lowercase_ = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): lowercase_ = ord(str(i)) def lowerCAmelCase (): """simple docstring""" if os.name == "nt": import msvcrt _a = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__A) == 0: # Read the keystroke _a = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _a = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _a = chr(WIN_KEYMAP[cha]) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''])) WIN_CH_BUFFER.append(__A) if ord(__A) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126)) _a = chr(KEYMAP['''esc''']) except KeyError: _a = cha[1] else: _a = ch.decode(__A) else: _a = WIN_CH_BUFFER.pop(0) elif os.name == "posix": import termios import tty _a = sys.stdin.fileno() _a = termios.tcgetattr(__A) try: tty.setraw(__A) _a = sys.stdin.read(1) finally: termios.tcsetattr(__A , termios.TCSADRAIN , __A) return ch def lowerCAmelCase (): """simple docstring""" _a = get_raw_chars() if ord(__A) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__A) == KEYMAP["esc"]: _a = get_raw_chars() if ord(__A) == KEYMAP["mod_int"]: _a = get_raw_chars() if ord(__A) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__A) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__A) + ARROW_KEY_FLAG) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
11
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __A ( A ): '''simple docstring''' @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task='''fill-mask''' , model=A ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Dict: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task='''fill-mask''' , model=A ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def a__ (self ) -> Optional[int]: """simple docstring""" _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
11
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
1
'''simple docstring''' from math import factorial class __A : '''simple docstring''' def __init__(self , A , A ) -> str: """simple docstring""" _a = real if isinstance(A , A ): _a = [1] * rank else: _a = rank def __repr__(self ) -> List[Any]: """simple docstring""" return ( f'''{self.real}+''' f'''{'+'.join(str(A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def a__ (self ) -> List[Any]: """simple docstring""" _a = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , A ) def __add__(self , A ) -> int: """simple docstring""" if not isinstance(A , A ): return Dual(self.real + other , self.duals ) _a = self.duals.copy() _a = other.duals.copy() if len(A ) > len(A ): o_dual.extend([1] * (len(A ) - len(A )) ) elif len(A ) < len(A ): s_dual.extend([1] * (len(A ) - len(A )) ) _a = [] for i in range(len(A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , A ) __lowerCamelCase : Optional[Any] = __add__ def __sub__(self , A ) -> Optional[Any]: """simple docstring""" return self + other * -1 def __mul__(self , A ) -> Union[str, Any]: """simple docstring""" if not isinstance(A , A ): _a = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , A ) _a = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , A ) __lowerCamelCase : Optional[Any] = __mul__ def __truediv__(self , A ) -> Optional[Any]: """simple docstring""" if not isinstance(A , A ): _a = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , A ) raise ValueError def __floordiv__(self , A ) -> str: """simple docstring""" if not isinstance(A , A ): _a = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , A ) raise ValueError def __pow__(self , A ) -> Optional[Any]: """simple docstring""" if n < 0 or isinstance(A , A ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self _a = self for _ in range(n - 1 ): x *= self return x def lowerCAmelCase (__A , __A , __A): """simple docstring""" if not callable(__A): raise ValueError('''differentiate() requires a function as input for func''') if not isinstance(__A , (float, int)): raise ValueError('''differentiate() requires a float as input for position''') if not isinstance(__A , __A): raise ValueError('''differentiate() requires an int as input for order''') _a = Dual(__A , 1) _a = func(__A) if order == 0: return result.real return result.duals[order - 1] * factorial(__A) if __name__ == "__main__": import doctest doctest.testmod() def lowerCAmelCase (__A): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
11
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
1
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase_ = data_utils.TransfoXLTokenizer lowercase_ = data_utils.TransfoXLCorpus lowercase_ = data_utils lowercase_ = data_utils def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__A , '''rb''') as fp: _a = pickle.load(__A , encoding='''latin1''') # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _a = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''') _a = corpus.vocab.__dict__ torch.save(__A , __A) _a = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __A) _a = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''') torch.save(__A , __A) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _a = os.path.abspath(__A) _a = os.path.abspath(__A) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''') # Initialise PyTorch model if transfo_xl_config_file == "": _a = TransfoXLConfig() else: _a = TransfoXLConfig.from_json_file(__A) print(F'''Building PyTorch model from configuration: {config}''') _a = TransfoXLLMHeadModel(__A) _a = load_tf_weights_in_transfo_xl(__A , __A , __A) # Save pytorch-model _a = os.path.join(__A , __A) _a = os.path.join(__A , __A) print(F'''Save PyTorch model to {os.path.abspath(__A)}''') torch.save(model.state_dict() , __A) print(F'''Save configuration file to {os.path.abspath(__A)}''') with open(__A , '''w''' , encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) lowercase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
11
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase_ = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[int] = 'tapas' def __init__(self , A=30_522 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=1_024 , A=[3, 256, 256, 2, 256, 256, 10] , A=0.02 , A=1E-12 , A=0 , A=10.0 , A=0 , A=1.0 , A=None , A=1.0 , A=False , A=None , A=1.0 , A=1.0 , A=False , A=False , A="ratio" , A=None , A=None , A=64 , A=32 , A=False , A=True , A=False , A=False , A=True , A=False , A=None , A=None , **A , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=A , **A ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_sizes _a = initializer_range _a = layer_norm_eps # Fine-tuning task hyperparameters _a = positive_label_weight _a = num_aggregation_labels _a = aggregation_loss_weight _a = use_answer_as_supervision _a = answer_loss_importance _a = use_normalized_answer_loss _a = huber_loss_delta _a = temperature _a = aggregation_temperature _a = use_gumbel_for_cells _a = use_gumbel_for_aggregation _a = average_approximation_function _a = cell_selection_preference _a = answer_loss_cutoff _a = max_num_rows _a = max_num_columns _a = average_logits_per_cell _a = select_one_column _a = allow_empty_column_selection _a = init_cell_selection_weights_to_zero _a = reset_position_index_per_cell _a = disable_per_token_loss # Aggregation hyperparameters _a = aggregation_labels _a = no_aggregation_label_index if isinstance(self.aggregation_labels , A ): _a = {int(A ): v for k, v in aggregation_labels.items()}
11
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
1